Adipic acid is a dicarboxylic acid of great industrial importance,mainly used in the production of nylon-6,6 and polyurethane.The use of nitric acid as an oxidant in the industrial production of adipic acid poses sign...Adipic acid is a dicarboxylic acid of great industrial importance,mainly used in the production of nylon-6,6 and polyurethane.The use of nitric acid as an oxidant in the industrial production of adipic acid poses significant carbon footprint to the environment.Clean adipic acid synthesis methods using a heterogeneous catalyst with H2O2 as oxidant and water as solvent have potential advantages of low catalyst cost,easy synthesis and recovery,cleanness and environmental protection.In this work,hexagonal mesoporous silicate materials were synthesized by a sol–gel method and evaluated for cyclohexanol/cyclohexanone oxidation to adipic acid.The physical and chemical properties of Fe-HMS were characterized by XRD,HR-TEM,BET and UV–Vis.The experimental results showed that Fe-HMS materials show pore sizes ranging from 2–3 nm.W-and Mo-based polyoxometalates were also evaluated and compared to the Fe-based HMS catalysts.To improve the adipic acid yield,the influence of the transition metal as well as the effect of metal loading,reaction temperature and catalyst amount on the catalytic performances of Fe-HMS have been investigated in details.When Si/Fe atomic ratio=100,Fe-HMS catalyst shows the highest activity,with a cyclohexanone conversion of 92.3%and adipic acid selectivity of 29.4%.The reaction pathway of cyclohexanone oxidation was further proposed based on experimental data.展开更多
Deposition of inorganic-organic nano-hybrid ultrathin films onto mesoporous silicate materials has been proven possible by using layer-by-layer assembly method. In combination with sol-gel method, titania, subsequent...Deposition of inorganic-organic nano-hybrid ultrathin films onto mesoporous silicate materials has been proven possible by using layer-by-layer assembly method. In combination with sol-gel method, titania, subsequently dye molecules (or polymer) were successfully fabricated onto the inner wall of SBA-15. Their structures were preliminarily characterized by FTIR and solid-state UV-Vis spectroscopy, thermal analysis, and BET surface area measurements, respectively.展开更多
Most porous materials with high specific surface area and diverse internal structures possess good adsorption ability.In this work,a tremella-like mesoporous calcium silicate hydrate(CSH)with high adsorption capacity ...Most porous materials with high specific surface area and diverse internal structures possess good adsorption ability.In this work,a tremella-like mesoporous calcium silicate hydrate(CSH)with high adsorption capacity was successfully prepared via a facile hydrothermal method.The adsorption effect and adsorption mechanism of the as-prepared calcium silicate hydrate(APCSH)towards formaldehyde from water were investigated systematically.Results indicate that AP-CSH has high Ca/Si ratio(1.95),large specific surface area(122.83 m2 g-1)and exhibits excellent adsorption capacity.The results of batch adsorption experiments show that AP-CSH can remove formaldehyde from water rapidly and effectively with the maximum removal efficiency of 98.94%.The adsorption process agrees well with the pseudo-second-order and Freundlich isotherm model.Furthermore,regeneration can be achieved by simply immersing AP-CSH in absolute ethanol and the removal efficiency can still reach about 99.50%after five cycles.The adsorption mechanism was also studied by experimental analyses and molecular dynamics simulation.Both experimental results and theoretical simulation support that formaldehyde adsorption over AP-CSH belongs to chemical adsorption.展开更多
基金supported by the National Natural Science Foundation(21706290)Natural Science Foundation of Shandong Province(ZR2017MB004,ZR2017BB007)+5 种基金Postdoctoral Research Funding of Shandong Province(201703016)Fundamental Research Funding of Qingdao(17-1-1-67-jch,17-1-1-80-jch)Qingdao Postdoctoral Research Funding(BY20170210)“the Fundamental Research Funds for the Central Universities”(18CX02145A,17CX02017A)new faculty start-up funding from China University of Petroleum(YJ201601058)China Postdoctoral Science Foundation(2017M612374)。
文摘Adipic acid is a dicarboxylic acid of great industrial importance,mainly used in the production of nylon-6,6 and polyurethane.The use of nitric acid as an oxidant in the industrial production of adipic acid poses significant carbon footprint to the environment.Clean adipic acid synthesis methods using a heterogeneous catalyst with H2O2 as oxidant and water as solvent have potential advantages of low catalyst cost,easy synthesis and recovery,cleanness and environmental protection.In this work,hexagonal mesoporous silicate materials were synthesized by a sol–gel method and evaluated for cyclohexanol/cyclohexanone oxidation to adipic acid.The physical and chemical properties of Fe-HMS were characterized by XRD,HR-TEM,BET and UV–Vis.The experimental results showed that Fe-HMS materials show pore sizes ranging from 2–3 nm.W-and Mo-based polyoxometalates were also evaluated and compared to the Fe-based HMS catalysts.To improve the adipic acid yield,the influence of the transition metal as well as the effect of metal loading,reaction temperature and catalyst amount on the catalytic performances of Fe-HMS have been investigated in details.When Si/Fe atomic ratio=100,Fe-HMS catalyst shows the highest activity,with a cyclohexanone conversion of 92.3%and adipic acid selectivity of 29.4%.The reaction pathway of cyclohexanone oxidation was further proposed based on experimental data.
基金Financial supports from Science and Technology Committee of Shanghai Municipality(Contract No.nm 049)the National Natural Science Foundation of China(Contract No.20173017)were acknowledged.
文摘Deposition of inorganic-organic nano-hybrid ultrathin films onto mesoporous silicate materials has been proven possible by using layer-by-layer assembly method. In combination with sol-gel method, titania, subsequently dye molecules (or polymer) were successfully fabricated onto the inner wall of SBA-15. Their structures were preliminarily characterized by FTIR and solid-state UV-Vis spectroscopy, thermal analysis, and BET surface area measurements, respectively.
基金the National Natural Science Foundation of China(Grant No.21606005)the Beijing Municipal Natural Science Foundation(Grant No.2192016)+1 种基金the Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan(Grant No.CIT&TCD201904042)the Innovative Research Team of New Functional Materials of Beijing Technology and Business University。
文摘Most porous materials with high specific surface area and diverse internal structures possess good adsorption ability.In this work,a tremella-like mesoporous calcium silicate hydrate(CSH)with high adsorption capacity was successfully prepared via a facile hydrothermal method.The adsorption effect and adsorption mechanism of the as-prepared calcium silicate hydrate(APCSH)towards formaldehyde from water were investigated systematically.Results indicate that AP-CSH has high Ca/Si ratio(1.95),large specific surface area(122.83 m2 g-1)and exhibits excellent adsorption capacity.The results of batch adsorption experiments show that AP-CSH can remove formaldehyde from water rapidly and effectively with the maximum removal efficiency of 98.94%.The adsorption process agrees well with the pseudo-second-order and Freundlich isotherm model.Furthermore,regeneration can be achieved by simply immersing AP-CSH in absolute ethanol and the removal efficiency can still reach about 99.50%after five cycles.The adsorption mechanism was also studied by experimental analyses and molecular dynamics simulation.Both experimental results and theoretical simulation support that formaldehyde adsorption over AP-CSH belongs to chemical adsorption.