期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Mesoscale Simulation of Vesiculation of Lipid Droplets
1
作者 徐蕊 王子璐 何学浩 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第6期663-671,I0003,共10页
An implicit solvent coarse-grained (CG) lipid model using three beads to reflect the basically molecular structure of two-tailed lipid is developed. In this model, the nonbonded interaction employs a variant MIE pot... An implicit solvent coarse-grained (CG) lipid model using three beads to reflect the basically molecular structure of two-tailed lipid is developed. In this model, the nonbonded interaction employs a variant MIE potential and the bonded interaction utilizes a Harmonic potential form. The CG force field parameters are achieved by matching the structural and mechan-ical properties of dipalmitoylphosphatidylcholine (DPPC) bilayers. The model successfully reproduces the formation of lipid bilayer from a random initial state and the spontaneous vesiculation of lipid bilayer from a disk-like structure. After that, the model is used to sys-tematically study the vesiculation processes of spherical and cylindrical lipid droplets. The results show that the present CG model can effectively simulate the formation and evolution of mesoscale complex vesicles. 展开更多
关键词 mesoscale simulation Implicit solvent coarse-grained lipid model Lipid droplet Complex vesicle
下载PDF
Force chains based mesoscale simulation on the dynamic response of Al-PTFE granular composites 被引量:6
2
作者 Le Tang Chao Ge +2 位作者 Huan-guo Guo Qing-bo Yu Hai-fu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期56-63,共8页
Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the... Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the randomly normal distribution of real Al particles size is developed.The dynamic compressive process of Al-PTFE composites with varied Al mass fraction is simulated and validated against the experiments.The results indicate that,force chains behavior governed by the number and the size of agglomerated Al particles,significantly affects the impact response of the material.The failure mode of the material evolves from shear failure of matrix to debonding failure of particles with increasing density.A high crack area of the material is critical mechanism to arouse the initiation reaction.The damage maintained by force chains during large plastic strain builds up more local stresses concentration to enhance a possible reaction performance.In addition,simulation is performed with identical mass fraction but various Al size distribution to explore the effects of size centralization and dispersion on the mechanical properties of materials.It is found that smaller sized Al particle of composites are more preferred than its bulky material in ultimate strength.Increasing dispersed degree is facilitated to create stable force chains in samples with comparable particle number.The simulation studies provide further insights into the plastic deformation,failure mechanism,and possible energy release capacity for Al-PTFE composites,which is helpful for further design and application of reactive materials. 展开更多
关键词 Al-PTFE Granular composites mesoscale simulation Dynamic response Force chains
下载PDF
Mesoscale study on explosion-induced formation and thermochemical response of PTFE/Al granular jet 被引量:2
3
作者 Yuan-feng Zheng Zhi-jian Zheng +2 位作者 Guan-cheng Lu Hai-fu Wang Huan-guo Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期112-125,共14页
The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simul... The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified. 展开更多
关键词 Reactive materials Shaped charge mesoscale simulation FORMATION Thermochemical response
下载PDF
Review on the mesoscale characterization of cement-stabilized macadam materials 被引量:1
4
作者 Qiao Dong Shiao Yan +3 位作者 Xueqin Chen Shi Dong Xiaokang Zhao Pawel Polaczyk 《Journal of Road Engineering》 2023年第1期71-86,共16页
The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt f... The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt from fatigue cracking under cyclic loading in the service process.Cracks in the base will create irreversible structural and functional deficiencies,such as the potential for reflective cracking of subsequently placed asphalt concrete overlays.The fracture of the base will shorten the service life of the pavement.The quality of the CSM base is directly related to the bearing capacity and integrity of the whole pavement structure.It is of practical significance to further study the fatigue failure behavior of CSM material for the long-term performance of the pavement.The CSM material is a typical heterogeneous multiphase composite.On the mesoscale,CSM consists of aggregate,cement mortar,pores,and the interface transitional zone(ITZ).On the microscale,the hardened mortar contains a large number of capillary pores,unhydrated particles,hydrated crystals,etc.,which makes the spatial distribution of its material properties stochastic.In addition,cement hydration,dry shrinkage,and temperature shrinkage can also produce micro-crack defects in cement mortar.These microcracks will have crossscale evolution under load,resulting in structural fracture.Macroscopic complex deformation and mechanical response are the reflections of its microscopic and even mesoscale composition and structure.This study summarized the existing studies on the mesoscopic properties of CSM materials,respectively from the three aspects of mesostructure,structural characterization,and mesoscale fatigue damage analysis,to help the development of long-life pavement.The future research direction is to explore the mesoscale characteristics of CSM using multiscale representation and analysis methods,to establish the connection between mesoscale characteristics and macroscopic mechanical properties. 展开更多
关键词 Road engineering Cement-stabilized macadam Fatigue cracking mesoscale simulation
下载PDF
The mesoscale numerical simulation of the flow field of the Hainan Island and the Leizhou Peninsula 被引量:7
5
作者 Tu Xiaoling, Zhou Mingyu and Sheng Shaohua National Research Center for Marine Environmental Forecast, Beijing 100081, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第2期219-235,共17页
The flow field over Hainan Island and the Leizhou Peninsula in summer and winter is discussed with three-dimensional mesoscale model developed in the University of Virginia and using the representative meteorological ... The flow field over Hainan Island and the Leizhou Peninsula in summer and winter is discussed with three-dimensional mesoscale model developed in the University of Virginia and using the representative meteorological data of January and July.Simulation results indicate that the local weather characteristics over the Hainan Island are distinctly influenced by theWuzhi Mountain terrain. The cloudy or rainfall weather over the northeast of the Wuzhi Mountain occurs easily, under proper large-scale conditions of flow, temperature and humidity. while west wind prevails. The overcast or rainfall weather is often induced by strong convection in the afternoon over west of the Hainan Island under easterly prevailing wind. 展开更多
关键词 The mesoscale numerical simulation of the flow field of the Hainan Island and the Leizhou Peninsula FLOW
下载PDF
Numerical Simulation and Diagnosis of A Rainstorm in Guangdong Province 被引量:2
6
作者 李翠华 李阳斌 +5 位作者 王婷 王天龙 罗律 胡小妮 蒲利荣 孙晓文 《Meteorological and Environmental Research》 CAS 2010年第7期1-4,共4页
A heavy rainfall process in Guangdong Province on 17-18 in June of 2009 was simulated by the mesoscale numerical model MM5 and was analyzed with the synoptic charts and satellite imagine.The results indicated that 500... A heavy rainfall process in Guangdong Province on 17-18 in June of 2009 was simulated by the mesoscale numerical model MM5 and was analyzed with the synoptic charts and satellite imagine.The results indicated that 500 hPa southern trough and 850 hPa shear line constituted the two systems of causing the weather process of heavy precipitation,whose favorable configuration was the focus of the heavy rain forecast.High-level westerly jet stream played an important role in this heavy rainfall process.With the 'suction effect' of strong upper-level jet divergence at 200 hPa level,the low-level shear line pressed southward,which made low-level warm damp air move upwards along the shear line so as to generate a strong upward motion,providing favorable background conditions for the occurrence and development of heavy precipitation.There was fairly good correspondence between 850 hPa horizontal helicity center and the influence system's development and movement.The distribution of horizontal helicity had a certain relationship with the falling areas of heavy precipitation. 展开更多
关键词 mesoscale numerical simulation Heavy rain HELICITY China
下载PDF
A Review of Major Progresses in Mesoscale Dynamic Research in China since 1999 被引量:7
7
作者 周晓平 陆汉城 +1 位作者 倪允琪 谈哲敏 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第3期497-504,共8页
Mesoscale research conducted by Chinese meteorologists during the past four years is reviewed. Advances in theoretical studies include (a) mesoscale quasi-balanced and semi-balanced dynamics, derived through scale ana... Mesoscale research conducted by Chinese meteorologists during the past four years is reviewed. Advances in theoretical studies include (a) mesoscale quasi-balanced and semi-balanced dynamics, derived through scale analysis and the perturbation method which are suitable for describing mesoscale vortices; (b) subcritical instability and vortex-sheet instability; (c) frontal adjustment mechanism and the effect of topography on frontgenesis; and (d) slantwise vorticity development theories, the slantwise vortex equation, and moist potential vorticity (MPV) anomalies with precipitation-related heat and mass sinks and MPV impermeability theorem. Prom the MPV conservation viewpoint, the transformation mechanism between different scale weather systems is analyzed. Based on the data analysis, a new dew-point front near the periphery of the West Pacific subtropical high is identified. In the light of MPV theory and Q-vector theory, some events associated with torrential rain systems and severe storms are analyzed and diagnosed. Progress in mesoscale numerical simulation has been made in the development of meso-α, meso-β vortices, meso-γ-scale downbursts and precipitation produced by deep convective systems with MM5 and other mesoscale models. 展开更多
关键词 mesoscale dynamics mesoscale numerical simulations observational data diagnoses
下载PDF
The Major Research Advances of Mesoscale Weather Dynamics in China Since 2003 被引量:1
8
作者 陆汉城 高守亭 +2 位作者 谈哲敏 周晓平 伍荣生 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第6期1049-1059,共11页
This paper reviews the main theoretical progress of mesoscale weather dynamics since 2003, including: (1) The dynamic mechanisms of balanced and unbalanced flow are applied to study the genesis and development prob... This paper reviews the main theoretical progress of mesoscale weather dynamics since 2003, including: (1) The dynamic mechanisms of balanced and unbalanced flow are applied to study the genesis and development problems of mesoscale circulation. The symmetric instability and transverse-wave instability are analyzed in line and vortex atmosphere convection, and further research has been done on nonlinear convective symmetric instability. The interaction between forced convection and unstable convection and the wave characteristics of mesoscale motion are also discussed. (2) Intermediate atmosphere dynamic boundary layer models are developed. The complicated nonlinear interaction is analyzed theoretically between the atmospheric boundary layer and the free atmosphere. The structure of the topography boundary layer, atmospheric frontogenesis, the structure and circulation of the low-level front and other boundary layer dynamic problems are discussed. (3) The formation and development of meso-β-scale rainstorms under the background of the East-Asia atmosphere circulation are diagnosed with the variation of MPV (moist potential vorticity) anomalies. And some physical vectors are modified and applied in the moist atmosphere. 展开更多
关键词 mesoscale dynamics mesoscale circulation mesoscale numerical simulation and diagnoses
下载PDF
High Resolution Global Modeling of the Atmospheric Circulation 被引量:1
9
作者 Kevin HAMILTON 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第6期842-856,共15页
An informal review is presented of recent developments in numerical simulation of the global atmospheric circulation with very fine numerical resolution models, The focus is on results obtained recently with versions ... An informal review is presented of recent developments in numerical simulation of the global atmospheric circulation with very fine numerical resolution models, The focus is on results obtained recently with versions of the GFDL SKYHI model and the Atmospheric Model for the Earth Simulator (AFES) global atmospheric models. These models have been run with effective horizontal grid resolution of -10-40 km and fine vertical resolution. The results presented demonstrate the utility of such models for the study of a diverse range of phenomena, Specifically the models are shown to simulate the development of tropical cyclones with peak winds and minimum central pressures comparable to those of the most intense hurricanes actually observed, More fundamentally, the spectrum of energy content in the mesoscale in the flow can be reproduced by these models down to near the smallest explicitly-resolved horizontal scales, in the middle atmosphere it is shown that increasing horizontal resolution can lead to significantly improved overall simulation of the global-scale circulation, The application of the models to two specific problems requiring very fine resolution global will be discussed, The spatial and temporal variability of the vertical eddy flux of zonal momentum associated with gravity waves near the tropopause is evaluated in the very fine resolution AFES model, This is a subject of great importance for understanding and modelling the flow in the middle atmosphere, Then the simulation of the small scale variations of the semidiurnal surface pressure oscillation is analyzed, and the signature of significant topographic modulation of the semidiurnal atmospheric tide is identified. 展开更多
关键词 general circulation model mesoscale simulation gravity waves atmospheric tides
下载PDF
Analysis of a Group of Weak Small-Scale Vortexes in the Planetary Boundary Layer in the Mei-yu Front 被引量:13
10
作者 翟国庆 周玲丽 王智 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期399-408,共10页
A mei-yu front process in the lower reaches of the Yangtze River on 23 June 1999 was simulated by using the fifth-generation Pennsylvania State University-NCAR (PSU/NCAR) Mesoscale Model (MM5) with FDDA (Four Dim... A mei-yu front process in the lower reaches of the Yangtze River on 23 June 1999 was simulated by using the fifth-generation Pennsylvania State University-NCAR (PSU/NCAR) Mesoscale Model (MM5) with FDDA (Four Dimension Data Assimilation). The analysis shows that seven weak small mesoscale vortexes of tens of kilometers, correspondent to surface low trough or mesoscale centers, in the planetary boundary layer (PBL) in the mei-yu front were heavily responsible for the heavy rainfall. Sometimes, several weak small-scale vortexes in the PBL could form a vortex group, some of which would weaken locally, and some would develop to be a meso-α-scale low vortex through combination. The initial dynamical triggering mechanism was related to two strong currents: one was the northeast flow in the PBL at the rear of the mei-yu front, the vortexes occurred exactly at the side of the northeast flow; and the other was the strong southwest low-level jet (LLJ) in front of the Mei-yu front, which moved to the upper of the vortexes. Consequently, there were notable horizontal and vertical wind shears to form positive vorticity in the center of the southwest LLJ. The development of mesoscale convergence in the PBL and divergence above, as well as the vertical positive vorticity column, were related to the small wind column above the nose-shaped velocity contours of the northeast flow embedding southwestward in the PBL, which intensified the horizontal wind shear and the positive vorticity column above the vortexes, baroclinicity and instability. 展开更多
关键词 mei-yu front heavy rainfall mesoscale numerical simulation FDDA meso-β-scale vortexes group physical diagnosis and analysis
下载PDF
Sensitivity Experiments of an Eastward-Moving Southwest Vortex to Initial Perturbations 被引量:7
11
作者 王智 高坤 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第4期638-649,共12页
Whether the initial conditions contain pronounced mesoscale signals is important to the simulation of the southwest vortex. An eastward-moving southwest vortex is simulated using the PSU/NCAR MM5. A modest degree of s... Whether the initial conditions contain pronounced mesoscale signals is important to the simulation of the southwest vortex. An eastward-moving southwest vortex is simulated using the PSU/NCAR MM5. A modest degree of success is achieved, but the most serious failure is that the formation and displacement of the simulated vortex in its early phase are about fourteen hours later than the observed vortex. Considering the relatively sparse data on the mesoscale vortex and in an attempt to understand the cause of the forecast failure, an adjoint model is used to examine the sensitivity of the southwest vortex to perturbations of initial conditions. The adjoint sensitivity indicates how small perturbations of model variables at the initial time in the model domain can influence the vortex. A large sensitivity for zonal wind is located under 400 hPa, a large sensitivity for meridional wind is located under 500 hPa, a large sensitivity for temperature is located between 500 and 900 hPa, and almost all of the large sensitivity areas are located in the southwestern area. Based on the adjoint sensitivity results, perturbations are added to initial conditions to improve the simulation of the southwest vortex. The results show that the initial conditions with perturbations can successfully simulate the formation and displacement of the vortex; the wind perturbations added to the initial conditions appear to be a cyclone circulation under the middle level of the atmosphere in the southwestern area with an anticyclone circulation to its southwest; a water vapor perturbation added to initial conditions can strengthen the vortex and the speed of its displacement. 展开更多
关键词 southwest vortex mesoscale numerical simulation adjoint model sensitivity experiment
下载PDF
Impact of the Complex Terrain in Beijing on Formation of Low-Level Jets
12
作者 Li’ao ZHOU Chenggang WANG +1 位作者 Shiguang MIAO Ju LI 《Journal of Meteorological Research》 SCIE CSCD 2024年第1期138-150,共13页
This study investigated how the Taihang Mountains and the Yanshan Mountains affect low-level jets(LLJs)in the Beijing area,based on conventional radiosonde observations from Nanjiao Observatory(2016–2017)and high-res... This study investigated how the Taihang Mountains and the Yanshan Mountains affect low-level jets(LLJs)in the Beijing area,based on conventional radiosonde observations from Nanjiao Observatory(2016–2017)and high-resolution Weather Research and Forecasting–Advanced Research WRF(WRF-ARW)model simulations.Analysis of radiosonde observations indicated that LLJs in the study area are mainly from the southwest and northwest directions,with occurrence frequency of 44.6%and 33.0%,respectively.Southwest(northwest)LLJs are aligned parallel(perpendicular)to the orientation of the Taihang Mountain Range.Terrain sensitivity experiments using the WRF-ARW model were then conducted to examine the effects of terrain forcing on the northwest and southwest LLJs,with adopted terrain heights of 100%and 50%.The results showed that for northwest LLJs,reduction in the elevation of the Taihang Mountain Range led to weakening of jet intensity by approximately 20%and reduction in jet maximum height by approximately 250 m;lowering the Yanshan Mountain Range had minor influence on the northwest LLJs,with only a 5.2%reduction in intensity and no substantial change in jet maximum height.For southwest LLJs,reduction in the elevation of both the Taihang and Yanshan Mountain ranges resulted in minor changes in the intensity and height of the jets.Further analysis revealed that the topography in the Beijing area could modulate the height and intensity of the stable layer by altering the inversion structure within the boundary layer.The LLJs can develop rapidly within the stable layer,and both the location and the scale of the jet core exhibited reasonable agreement with the extent of the stable layer. 展开更多
关键词 low-level jets(LLJs) mesoscale numerical simulation terrain forcing
原文传递
A CASE STUDY OF FRONTAL CYCLOGENESIS AND ITS SENSITIVITY TO COASTAL INITIAL CONDITIONS 被引量:1
13
作者 王建捷 《Acta meteorologica Sinica》 SCIE 2000年第2期173-192,共20页
In this study,the predictability and physical processes leading to the rapid frontal cyclogenesis, that took place in the east coast of the U.S.during 3—4 October 1987,are examined using a nested- grid.mesoscale mode... In this study,the predictability and physical processes leading to the rapid frontal cyclogenesis, that took place in the east coast of the U.S.during 3—4 October 1987,are examined using a nested- grid.mesoscale model with a fine-mesh grid size of 25km.It is shown that the model reproduces reasonably well the cyclogenesis in a coastal baroclinic zone.its subsequent deepening and movement as well as the pertinent precipitation.It is found that the frontal cyclogenesis occurs in a favorable large-scale environment with pronounced thermal advection in the lower troposphere and marked potential vorticity(PV)concentration aloft associated with the tropopause depression.The transport of warm and moist air from the marine boundary layer by the low-level in-shore flow provides the necessary energy source for the observed heavy precipitation and a variety of weather phenomena reported in the cold sector. Several 24-h sensitivity simulations are performed to examine the relative importance of diabatic heating,adiabatic dynamics and various initial conditions in the frontal cyclogenesis.It is found that latent heat release,even though quite intense,accounts for only 25% of the cyclone's total deepening in this case:the weak impact seems due to the occurrence of latent heating in the cold sector and the upward lifting of the dynamical tropopause by diabatic updrafts.Vorticity budgets show that the low- level thermal advection dominates the incipient stage,whereas the vorticity advection determines the rapid deepening rate at the mature stage.The results reveal that the predictability of the present storm is closely related to the vertical coupling between the surface cyclone and the upper-level PV core,which is in turn determined by initial offshore perturbations in the lower troposphere. 展开更多
关键词 mesoscale simulation frontal cyclogenesis numerical predictability
原文传递
Modeling the Wettability of Microstructured Hydrophobic Surface Using Multiple-relaxation-time Lattice Boltzmann Method
14
作者 Lei Tian Liuchao Qiu 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第5期1460-1471,共12页
Wetting properties are significant for a hydrophobic surface and normally characterized by the equilibrium contact angle.In this manuscript,a mesoscopic method based on multiphase multiple-relaxation-time Lattice Bolt... Wetting properties are significant for a hydrophobic surface and normally characterized by the equilibrium contact angle.In this manuscript,a mesoscopic method based on multiphase multiple-relaxation-time Lattice Boltzmann method has been presented and applied to simulate the contact angle at three-phase interfaces of a solid surface with micro-pillar structure.The influence of different parameters including pillar height,pillar width,inter-pillar spacing,intrinsic contact angle and the volume of the liquid drop on the equilibrium contact angle has been comprehensively investigated.The effect of geometry parameters of the micro-pillar structure on the wetting transition from Cassie–Baxter state to Wenzel state has also been studied.The results indicate that when the inter-pillar spacing is less than a certain value or the pillar height is greater than a certain value,the contact form between the droplet and the surface satisfies the Cassie–Baxter state.When the contact form satisfies the Cassie–Baxter state,the contact angle gradually increases with the increase of the inter-pillar spacing;the contact angle does not change significantly with the pillar height;the contact angle gradually decreases and approaches the intrinsic contact angle with the pillar width increases.Moreover,the contact angle increases with the increase of the intrinsic contact angle,and the contact angle is not sensitive to the change of droplet volume when the droplet volume is between 0.5 and10μl. 展开更多
关键词 Bioinspired hydrophobic surface WETTABILITY Cassie-Baxter state Wenzel state Lattice Boltzmann method mesoscale simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部