A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45...A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters.展开更多
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
An implicit solvent coarse-grained (CG) lipid model using three beads to reflect the basically molecular structure of two-tailed lipid is developed. In this model, the nonbonded interaction employs a variant MIE pot...An implicit solvent coarse-grained (CG) lipid model using three beads to reflect the basically molecular structure of two-tailed lipid is developed. In this model, the nonbonded interaction employs a variant MIE potential and the bonded interaction utilizes a Harmonic potential form. The CG force field parameters are achieved by matching the structural and mechan-ical properties of dipalmitoylphosphatidylcholine (DPPC) bilayers. The model successfully reproduces the formation of lipid bilayer from a random initial state and the spontaneous vesiculation of lipid bilayer from a disk-like structure. After that, the model is used to sys-tematically study the vesiculation processes of spherical and cylindrical lipid droplets. The results show that the present CG model can effectively simulate the formation and evolution of mesoscale complex vesicles.展开更多
Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the...Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the randomly normal distribution of real Al particles size is developed.The dynamic compressive process of Al-PTFE composites with varied Al mass fraction is simulated and validated against the experiments.The results indicate that,force chains behavior governed by the number and the size of agglomerated Al particles,significantly affects the impact response of the material.The failure mode of the material evolves from shear failure of matrix to debonding failure of particles with increasing density.A high crack area of the material is critical mechanism to arouse the initiation reaction.The damage maintained by force chains during large plastic strain builds up more local stresses concentration to enhance a possible reaction performance.In addition,simulation is performed with identical mass fraction but various Al size distribution to explore the effects of size centralization and dispersion on the mechanical properties of materials.It is found that smaller sized Al particle of composites are more preferred than its bulky material in ultimate strength.Increasing dispersed degree is facilitated to create stable force chains in samples with comparable particle number.The simulation studies provide further insights into the plastic deformation,failure mechanism,and possible energy release capacity for Al-PTFE composites,which is helpful for further design and application of reactive materials.展开更多
The flow field over Hainan Island and the Leizhou Peninsula in summer and winter is discussed with three-dimensional mesoscale model developed in the University of Virginia and using the representative meteorological ...The flow field over Hainan Island and the Leizhou Peninsula in summer and winter is discussed with three-dimensional mesoscale model developed in the University of Virginia and using the representative meteorological data of January and July.Simulation results indicate that the local weather characteristics over the Hainan Island are distinctly influenced by theWuzhi Mountain terrain. The cloudy or rainfall weather over the northeast of the Wuzhi Mountain occurs easily, under proper large-scale conditions of flow, temperature and humidity. while west wind prevails. The overcast or rainfall weather is often induced by strong convection in the afternoon over west of the Hainan Island under easterly prevailing wind.展开更多
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulate...The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.展开更多
In this study,fog simulations were conducted using the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) in and around the Yodo River Basin,Japan.The purpose is to investigate the MM5 performance of fog simulatio...In this study,fog simulations were conducted using the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) in and around the Yodo River Basin,Japan.The purpose is to investigate the MM5 performance of fog simulation for long-term periods.The simulations were performed for January,February,March,and July,2005 with a coarse 3-kin and a nested fine 1-km grid domains. Results of the simulations were compared with data from ten meteorological observatories,fog sampling site in Mt.Rokko,and visibility measurem...展开更多
Mesoscale coupling between perturbations of mesoscale sea surface temperature (SST) and lowlevel winds has been extensively studied using available high-resolution satellite observations. However, the climatological i...Mesoscale coupling between perturbations of mesoscale sea surface temperature (SST) and lowlevel winds has been extensively studied using available high-resolution satellite observations. However, the climatological impacts of mesoscale SST perturbations (SST meso ) on the free atmosphere have not been fully understood. In this study, the rectified eff ect of SSTmeso on local climatological precipitation in the Kuroshio- Oyashio Extension (KOE) region is investigated using the Weather Research and Forecasting (WRF) Model;two runs are performed, one forced by low-resolution SST fields (almost no mesoscale signals) and another by additional high-resolution SSTmeso fields extracted from satellite observations. Climatological precipitation response to SST meso is characterized mainly by enhanced precipitation on the warmer flank of three oceanic SST fronts in this region. The results show that the positive correlation between the 10-m wind speed perturbations and SSTmeso is well captured by the WRF model with a reasonable spatial pattern but relatively weak strength. The addition of SSTmeso improves the climatological precipitation simulated by WRF with a better representation of fine-scale structures compared with satellite observations. A closer examination on the underlying mechanism suggests that while the pressure adjustment mechanism can explain the climatological precipitation enhancement along the fronts and the relatively high contribution of the convective precipitation, other factors such as synoptic events should also be taken into consideration to account for the seasonality of the precipitation response.展开更多
Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system ...Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.展开更多
Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic...Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic vorticity equation model with initial fields where mesoscale vortices were generated stochastically. Results of these simulations indicate that the deflection of the TC track derived from the initial mesoscale vortices was clearly smaller than that from the beta effect in 60% of the cases. However, they may have a more significant impact on the TC track under the following circumstances. First, the interaction between an adjacent mesoscale vortex and the TC causes the emergence of a complicated structure with two centers in the TC inner region. This configuration may last for 8 h, and the two centers undergo a cyclonic rotation to make the change in direction of the TC motion. Second, two mesoscale vortices located in the EV circulation may merge, and the merged vortex shifts into the EV inner region, intensifying both the EV and steering flow for the TC, increasing speed of the TC.展开更多
A heavy storm rainfall caused by Typhoon Aere (No.0418) when landing at Fujian has been successfully simulated by using AREM model. The simulation result is scale-separated by spatial band-pass filtering, which reveal...A heavy storm rainfall caused by Typhoon Aere (No.0418) when landing at Fujian has been successfully simulated by using AREM model. The simulation result is scale-separated by spatial band-pass filtering, which reveals the mesoscale low pressure and convergence line that has direct impact on this rainfall process. The physical characteristics of the two mesoscale systems and their relation with rainfall are also analyzed. Study shows that there exists a well corresponding relationship between the storm rainfall and mesoscale divergence and strong updraft arising from the convergence, which is caused by the interactions between the mesoscale systems and topographic features, and is directly responsible for the rainfall.展开更多
Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model ...Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-r-scale convective phenomena arc basically unsteady under the situation of strong shear at low-levels, while the meso-β-scale convective system is maintained up to 3 hours or more. The meso -β- scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-r-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low intensifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-r-scale warm cores with peak values of 4-8 ℃ are associated with strong convective cells. The cloud top evaporation causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase mierophysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.展开更多
A three-dimensional, primitive-equation model, Blumberg's ECOMSI (Estuarine and Coastal Ocean Model with a Semi-Implicit scheme), is modified and applied to the simulation of the ocean mesoscale eddies and unstabl...A three-dimensional, primitive-equation model, Blumberg's ECOMSI (Estuarine and Coastal Ocean Model with a Semi-Implicit scheme), is modified and applied to the simulation of the ocean mesoscale eddies and unstable baroclinic waves across a density front in a channel. The model uses a semi-implicit scheme to remove the most stringent Courant-Friedriechs-Levy (CFL) constraint. We have modified this model by introducing a predictor-corrector scheme to remove the inertial instability due to the Euler forward scheme in time used in the ECOMSI. Instead, the neutral amplification of the eigenvalue is obtained for the inertial oscillation. Thus,the new version of the model (called the predictorcorrector or P-C version) is able to simulate the unstable baroclinic waves and ocean mesoscale eddies in a very low viscosity environment. Meanders of a current with some similarity to mesoscale features are well reproduced. The unstable baroclinic waves are examined for flat, positive (same sense as isopycnal tilt) and negative bottoms. The growth rates with flat, gentle, medium, and steep slopes and with different wavelength (wave number) channels are discussed. A gentle positive slope significantly suppresses the meandering wave growth rate which slightly shifts to a lower wave number coml. Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA. Email: Jia. wang rsmas. miami. edu. 2. Graduate School of Environmental Earth Science, Hokkaido University, Sapporo. Japan 060. Email: mikeda eoas. hokudai. ac. jp. pared to the flat bottom. A gentle 11egative slope, however, favors the 'va\'e growth with foe maximum shifting towardsthe higher wave number. When the negative slope becomes steeper, the growth rate slgnlflcantly reduces correspondingly.展开更多
A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed...A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed MCS, including its rainfall distribution and amounts, as well as the timing and location of leading rainbands and trailing stratiform clouds. Results show that discrete convective hot towers, shown in Vis5D at a scale of 2-5 kin, are triggered by evaporatively driven cold outflows converging with the high-θe air ahead. Then, they move rearward, with respect to the leading rainbands, to form stratiform clouds. These convective towers generate vortical tubes of opposite signs, with more intense cyclonic vorticity occurring in the leading convergence zone. The results appear to have important implications for the improvement of summertime quantitative precipitation forecasts and the understanding of vortical hot towers, as well midlevel mesoscale convective vortices.展开更多
The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameteri...The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameterization schemes (MCPSs). The simulations show that the temporal and spatial evolution and distribution of rainstorms can be modeled; however, there was incongruity between the comparative simulations of four different MCPSs and the observed data. These disparities were exhibited in the simulations of both the 24-hour surface rainfall total and the hourly precipitation rate. Further analysis revealed that the discrepancies of vertical velocity and the convective vorticity vector (CVV) between the four simulations were attributed to the deviation of rainfall values. In addition, the simulations show that the mid-scale convection, particularly the mesoscale convection system (MCS) formation, can be well simulated with the proper mesoscale convection parameterization schemes and may be a crucial factor of the mei-yu front heavy rainstorm. These results suggest that, in an effort to enhance simulation and prediction of heavy rainfall and rainstorms, subsequent studies should focus on the development and improvement of MCPS.展开更多
A heavy rainfall event caused by a mesoscale convective system(MCS),which occurred over the Yellow River midstream area during 7-9 July 2016,was analyzed using observational,high-resolution satellite,NCEP/NCAR reanaly...A heavy rainfall event caused by a mesoscale convective system(MCS),which occurred over the Yellow River midstream area during 7-9 July 2016,was analyzed using observational,high-resolution satellite,NCEP/NCAR reanalysis,and numerical simulation data.This heavy rainfall event was caused by one mesoscale convective complex(MCC)and five MCSs successively.The MCC rainstorm occurred when southwesterly winds strengthened into a jet.The MCS rainstorms occurred when low-level wind fields weakened,but their easterly components in the lower and boundary layers increased continuously.Numerical analysis revealed that there were obvious differences between the MCC and MCS rainstorms,including their three-dimensional airflow structure,disturbances in wind fields and vapor distributions,and characteristics of energy conversion and propagation.Formation of the MCC was related to southerly conveyed water vapor and energy to the north,with obvious water vapor exchange between the free atmosphere and the boundary layer.Continuous regeneration and development of the MCSs mainly relied on maintenance of an upward extension of a positive water vapor disturbance.The MCC rainstorm was triggered by large range of convergent ascending motion caused by a southerly jet,and easterly disturbance within the boundary layer.While a southerly fluctuation and easterly disturbance in the boundary layer were important triggers of the MCS rainstorms.Maintenance and development of the MCC and MCSs were linked to secondary circulation,resulting from convergence of Ekman non-equilibrium flow in the boundary layer.Both intensity and motion of the convergence centers in MCC and MCS cases were different.Clearly,sub-synoptic scale systems in the middle troposphere played a leading role in determining precipitation distribution during this event.Although mesoscale systems triggered by the sub-synoptic scale system induced the heavy rainfall,small-scale disturbances within the boundary layer determined its intensity and location.展开更多
Deep convection in the Labrador Sea is confined within a small region in the southwest part of the basin.The strength of deep convection in this region is related to the local atmospheric and ocean characteristics,whi...Deep convection in the Labrador Sea is confined within a small region in the southwest part of the basin.The strength of deep convection in this region is related to the local atmospheric and ocean characteristics,which favor processes of deep convection preconditioning and intense air-sea exchange during the winter season.In this study,we explored the effect of eddy-induced flux transport on the stratification of the Labrador Sea and the properties of deep convection.Simulations from an eddy-resolving ocean model are presented for the Labrador Sea.The general circulation was well simulated by the model,including the seasonal cycle of the deep Labrador Current.The simulated distribution of the surface eddy kinetic energy was also close to that derived from Topex-Poseidon satellite altimeter data,but with smaller magnitude.The energy transfer diagnostics indicated that Irminger rings are generated by both baroclinic and barotropic processes; however,when they propagate into the interior basin,the barotropic process also disperses them by converting the eddy energy to the mean flow.In contrast to eddy-permitting simulations,deep convection in the Labrador Sea was better represented in the eddyresolving model regarding their lateral position.Further analysis indicated that the improvement might be due to the lateral eddy flux associated with the resolved Irminger rings in the eddy-resolving model,which contributes to a realistic position of the isopycnal dome in the Labrador Sea and correspondingly a realistic site of deep convection.展开更多
A POM based three dimension baroclinic prognostic model in σ coordinate was established to simulate the eddies in the East China Seas wintertime circulation, considering the topography, inflow and outflow on the open...A POM based three dimension baroclinic prognostic model in σ coordinate was established to simulate the eddies in the East China Seas wintertime circulation, considering the topography, inflow and outflow on the open boundary, Changjiang runoff, heat, flux, and wind stress on the sea surface. The model results showed that three branches separate from the Kuroshio flow toward the interior of the Yellow Sea, and form three eddies respectively. The middle eddy is centered at 124°37′E,37°00′N,the southern eddy is centered at 124°00′E,35°30′N. The large cyclonic eddy centered at 125°06′E,30°30′N and located southwest of Cheju Island is a closed structure formed by the northeastward flowing Taiwan Warm Current, northwestward flowing Yellow Sea Warm Current and southward flowing coastal current. The Kuroshio intrusion engenders an eddy west of Kyushu Island of Japan. The branching of the Kuroshio is the direct dynamic cause of the formation of this large eddy. Moreover, both the topographic influence and the northward wind prevailing in winter affect the eddy’s formation obviously.展开更多
基金primarily supported by the Ministry of Science and Technology of the People's Republic of China (MOST)(Grant No. 2018YFC1507303)National Natural Science Foundation of China (Grant Nos. 419505044,41941007, and 42230607)+1 种基金by the Talent Research Start-Up Fund of Nanjing University of Aeronautics and Astronautics(Grant No. 1007-90YAH22046)supported by The High Performance Computing Platform of Nanjing University of Aeronautics and Astronautics。
文摘A mesoscale convective system(MCS) occurred over the East China coastal provinces and the East China Sea on 30April 2021, producing damaging surface winds near the coastal city Nantong with observed speeds reaching 45 m s^(–1). A simulation using the Weather Research and Forecasting model with a 1.5-km grid spacing generally reproduces the development and subsequent organization of this convective system into an MCS, with an eastward protruding bow segment over the sea. In the simulation, an east-west-oriented high wind swath is generated behind the gust front of the MCS. Descending dry rear-to-front inflows behind the bow and trailing gust front are found to feed the downdrafts in the main precipitation regions. The inflows help to establish spreading cold outflows and enhance the downdrafts through evaporative cooling. Meanwhile, front-to-rear inflows from the south are present, associated with severely rearward-tilted updrafts initially forming over the gust front. Such inflows descend behind(north of) the gust front, significantly enhancing downdrafts and near-surface winds within the cold pool. Consistently, calculated trajectories show that these parcels that contribute to the derecho originate primarily from the region ahead(south) of the east-west-oriented gust front, and dry southwesterly flows in the low-to-middle levels contribute to strong downdrafts within the MCS. Moreover, momentum budget analyses reveal that a large westward-directed horizontal pressure gradient force within the simulated cold pool produced rapid flow acceleration towards Nantong. The analyses enrich the understanding of damaging wind characteristics over coastal East China and will prove helpful to operational forecasters.
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
基金We thank Professor Dr. Markus Deserno (Department of Physics, Carnegie Mellon University), Jemal Guven (Institute of Nuclear Science, Universidad Nacional Autonoma de Mexico), and Zhan-chun Tu (Department of Physics, Beijing Normal University) for their valuable advice. This work is supported by the National Natural Science Foundation of China (No.20974078, No.21274107, and No.91127046). The computation and simulation are partly carried out in High Performance Computing Center of Tianjin University.
文摘An implicit solvent coarse-grained (CG) lipid model using three beads to reflect the basically molecular structure of two-tailed lipid is developed. In this model, the nonbonded interaction employs a variant MIE potential and the bonded interaction utilizes a Harmonic potential form. The CG force field parameters are achieved by matching the structural and mechan-ical properties of dipalmitoylphosphatidylcholine (DPPC) bilayers. The model successfully reproduces the formation of lipid bilayer from a random initial state and the spontaneous vesiculation of lipid bilayer from a disk-like structure. After that, the model is used to sys-tematically study the vesiculation processes of spherical and cylindrical lipid droplets. The results show that the present CG model can effectively simulate the formation and evolution of mesoscale complex vesicles.
基金the National Natural Science Foundation of China(No.U1730112).
文摘Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the randomly normal distribution of real Al particles size is developed.The dynamic compressive process of Al-PTFE composites with varied Al mass fraction is simulated and validated against the experiments.The results indicate that,force chains behavior governed by the number and the size of agglomerated Al particles,significantly affects the impact response of the material.The failure mode of the material evolves from shear failure of matrix to debonding failure of particles with increasing density.A high crack area of the material is critical mechanism to arouse the initiation reaction.The damage maintained by force chains during large plastic strain builds up more local stresses concentration to enhance a possible reaction performance.In addition,simulation is performed with identical mass fraction but various Al size distribution to explore the effects of size centralization and dispersion on the mechanical properties of materials.It is found that smaller sized Al particle of composites are more preferred than its bulky material in ultimate strength.Increasing dispersed degree is facilitated to create stable force chains in samples with comparable particle number.The simulation studies provide further insights into the plastic deformation,failure mechanism,and possible energy release capacity for Al-PTFE composites,which is helpful for further design and application of reactive materials.
文摘The flow field over Hainan Island and the Leizhou Peninsula in summer and winter is discussed with three-dimensional mesoscale model developed in the University of Virginia and using the representative meteorological data of January and July.Simulation results indicate that the local weather characteristics over the Hainan Island are distinctly influenced by theWuzhi Mountain terrain. The cloudy or rainfall weather over the northeast of the Wuzhi Mountain occurs easily, under proper large-scale conditions of flow, temperature and humidity. while west wind prevails. The overcast or rainfall weather is often induced by strong convection in the afternoon over west of the Hainan Island under easterly prevailing wind.
基金This research was supported by the National Natural Science Foundation of China under Grant Nos. 40325014, 40333031SRFDP, TRAP0YT, FANEDD 11999, and under the support of The Key Scientific and Technological Project of the Ministry of Education The State Key Basic Research Program (Grant No. 2004CB18300).
文摘The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.
文摘In this study,fog simulations were conducted using the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) in and around the Yodo River Basin,Japan.The purpose is to investigate the MM5 performance of fog simulation for long-term periods.The simulations were performed for January,February,March,and July,2005 with a coarse 3-kin and a nested fine 1-km grid domains. Results of the simulations were compared with data from ten meteorological observatories,fog sampling site in Mt.Rokko,and visibility measurem...
基金Supported by the National Key Research and Development Program of China(Nos.2017YFC1404102,2017YFC1404100)the National Natural Science Foundation of China(Nos.41490644,41490640)+2 种基金the Chinese Academy of Sciences Strategic Priority Project,the Western Pacific Ocean System(No.XDA11010105)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406402)the Taishan Scholarship and the Recruitment Program of Global Experts
文摘Mesoscale coupling between perturbations of mesoscale sea surface temperature (SST) and lowlevel winds has been extensively studied using available high-resolution satellite observations. However, the climatological impacts of mesoscale SST perturbations (SST meso ) on the free atmosphere have not been fully understood. In this study, the rectified eff ect of SSTmeso on local climatological precipitation in the Kuroshio- Oyashio Extension (KOE) region is investigated using the Weather Research and Forecasting (WRF) Model;two runs are performed, one forced by low-resolution SST fields (almost no mesoscale signals) and another by additional high-resolution SSTmeso fields extracted from satellite observations. Climatological precipitation response to SST meso is characterized mainly by enhanced precipitation on the warmer flank of three oceanic SST fronts in this region. The results show that the positive correlation between the 10-m wind speed perturbations and SSTmeso is well captured by the WRF model with a reasonable spatial pattern but relatively weak strength. The addition of SSTmeso improves the climatological precipitation simulated by WRF with a better representation of fine-scale structures compared with satellite observations. A closer examination on the underlying mechanism suggests that while the pressure adjustment mechanism can explain the climatological precipitation enhancement along the fronts and the relatively high contribution of the convective precipitation, other factors such as synoptic events should also be taken into consideration to account for the seasonality of the precipitation response.
基金supported jointly by the National Key Basic Research and Development (973) Program of China (Grant No. 2014CB441401)the National Natural Science Foundation of China (Grant Nos. 41405007, 41175043, 41475002, and 41205027)
文摘Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40775038,40875031 and 40975036)
文摘Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic vorticity equation model with initial fields where mesoscale vortices were generated stochastically. Results of these simulations indicate that the deflection of the TC track derived from the initial mesoscale vortices was clearly smaller than that from the beta effect in 60% of the cases. However, they may have a more significant impact on the TC track under the following circumstances. First, the interaction between an adjacent mesoscale vortex and the TC causes the emergence of a complicated structure with two centers in the TC inner region. This configuration may last for 8 h, and the two centers undergo a cyclonic rotation to make the change in direction of the TC motion. Second, two mesoscale vortices located in the EV circulation may merge, and the merged vortex shifts into the EV inner region, intensifying both the EV and steering flow for the TC, increasing speed of the TC.
文摘A heavy storm rainfall caused by Typhoon Aere (No.0418) when landing at Fujian has been successfully simulated by using AREM model. The simulation result is scale-separated by spatial band-pass filtering, which reveals the mesoscale low pressure and convergence line that has direct impact on this rainfall process. The physical characteristics of the two mesoscale systems and their relation with rainfall are also analyzed. Study shows that there exists a well corresponding relationship between the storm rainfall and mesoscale divergence and strong updraft arising from the convergence, which is caused by the interactions between the mesoscale systems and topographic features, and is directly responsible for the rainfall.
文摘Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-r-scale convective phenomena arc basically unsteady under the situation of strong shear at low-levels, while the meso-β-scale convective system is maintained up to 3 hours or more. The meso -β- scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-r-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low intensifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-r-scale warm cores with peak values of 4-8 ℃ are associated with strong convective cells. The cloud top evaporation causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase mierophysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.
文摘A three-dimensional, primitive-equation model, Blumberg's ECOMSI (Estuarine and Coastal Ocean Model with a Semi-Implicit scheme), is modified and applied to the simulation of the ocean mesoscale eddies and unstable baroclinic waves across a density front in a channel. The model uses a semi-implicit scheme to remove the most stringent Courant-Friedriechs-Levy (CFL) constraint. We have modified this model by introducing a predictor-corrector scheme to remove the inertial instability due to the Euler forward scheme in time used in the ECOMSI. Instead, the neutral amplification of the eigenvalue is obtained for the inertial oscillation. Thus,the new version of the model (called the predictorcorrector or P-C version) is able to simulate the unstable baroclinic waves and ocean mesoscale eddies in a very low viscosity environment. Meanders of a current with some similarity to mesoscale features are well reproduced. The unstable baroclinic waves are examined for flat, positive (same sense as isopycnal tilt) and negative bottoms. The growth rates with flat, gentle, medium, and steep slopes and with different wavelength (wave number) channels are discussed. A gentle positive slope significantly suppresses the meandering wave growth rate which slightly shifts to a lower wave number coml. Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA. Email: Jia. wang rsmas. miami. edu. 2. Graduate School of Environmental Earth Science, Hokkaido University, Sapporo. Japan 060. Email: mikeda eoas. hokudai. ac. jp. pared to the flat bottom. A gentle 11egative slope, however, favors the 'va\'e growth with foe maximum shifting towardsthe higher wave number. When the negative slope becomes steeper, the growth rate slgnlflcantly reduces correspondingly.
基金supported by Jiangsu Education Science Foundation (Grant No.07KJB170065)Chinese National Science Foundation (Grant No.40775060)U.S.National Science Foundation (Grant No.ATM0758609)
文摘A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed MCS, including its rainfall distribution and amounts, as well as the timing and location of leading rainbands and trailing stratiform clouds. Results show that discrete convective hot towers, shown in Vis5D at a scale of 2-5 kin, are triggered by evaporatively driven cold outflows converging with the high-θe air ahead. Then, they move rearward, with respect to the leading rainbands, to form stratiform clouds. These convective towers generate vortical tubes of opposite signs, with more intense cyclonic vorticity occurring in the leading convergence zone. The results appear to have important implications for the improvement of summertime quantitative precipitation forecasts and the understanding of vortical hot towers, as well midlevel mesoscale convective vortices.
基金supported jointly by the Projects of Jiangsu Key Lab of Meteorological Disaster (Grant No. Klme060207)the National Natural Science Foundation of China (Grant No. 40875031)
文摘The mei-yu front heavy rainstorms occurred over Nanjing on 3 5 and 8 9 July 2003 and were simulated in this paper using the Weather Research and Forecasting Model (WRFv3.1) with various mesoscale convection parameterization schemes (MCPSs). The simulations show that the temporal and spatial evolution and distribution of rainstorms can be modeled; however, there was incongruity between the comparative simulations of four different MCPSs and the observed data. These disparities were exhibited in the simulations of both the 24-hour surface rainfall total and the hourly precipitation rate. Further analysis revealed that the discrepancies of vertical velocity and the convective vorticity vector (CVV) between the four simulations were attributed to the deviation of rainfall values. In addition, the simulations show that the mid-scale convection, particularly the mesoscale convection system (MCS) formation, can be well simulated with the proper mesoscale convection parameterization schemes and may be a crucial factor of the mei-yu front heavy rainstorm. These results suggest that, in an effort to enhance simulation and prediction of heavy rainfall and rainstorms, subsequent studies should focus on the development and improvement of MCPS.
基金National Natural Science Foundation of China(41475050)
文摘A heavy rainfall event caused by a mesoscale convective system(MCS),which occurred over the Yellow River midstream area during 7-9 July 2016,was analyzed using observational,high-resolution satellite,NCEP/NCAR reanalysis,and numerical simulation data.This heavy rainfall event was caused by one mesoscale convective complex(MCC)and five MCSs successively.The MCC rainstorm occurred when southwesterly winds strengthened into a jet.The MCS rainstorms occurred when low-level wind fields weakened,but their easterly components in the lower and boundary layers increased continuously.Numerical analysis revealed that there were obvious differences between the MCC and MCS rainstorms,including their three-dimensional airflow structure,disturbances in wind fields and vapor distributions,and characteristics of energy conversion and propagation.Formation of the MCC was related to southerly conveyed water vapor and energy to the north,with obvious water vapor exchange between the free atmosphere and the boundary layer.Continuous regeneration and development of the MCSs mainly relied on maintenance of an upward extension of a positive water vapor disturbance.The MCC rainstorm was triggered by large range of convergent ascending motion caused by a southerly jet,and easterly disturbance within the boundary layer.While a southerly fluctuation and easterly disturbance in the boundary layer were important triggers of the MCS rainstorms.Maintenance and development of the MCC and MCSs were linked to secondary circulation,resulting from convergence of Ekman non-equilibrium flow in the boundary layer.Both intensity and motion of the convergence centers in MCC and MCS cases were different.Clearly,sub-synoptic scale systems in the middle troposphere played a leading role in determining precipitation distribution during this event.Although mesoscale systems triggered by the sub-synoptic scale system induced the heavy rainfall,small-scale disturbances within the boundary layer determined its intensity and location.
基金funded by the Canadian Foundation for Climate and Atmospheric Science through projects GOAPP and GR-631 and NSERCThe support of ACEnet (the Atlantic Computational Excellence Network), which provided the computing assistance for this work
文摘Deep convection in the Labrador Sea is confined within a small region in the southwest part of the basin.The strength of deep convection in this region is related to the local atmospheric and ocean characteristics,which favor processes of deep convection preconditioning and intense air-sea exchange during the winter season.In this study,we explored the effect of eddy-induced flux transport on the stratification of the Labrador Sea and the properties of deep convection.Simulations from an eddy-resolving ocean model are presented for the Labrador Sea.The general circulation was well simulated by the model,including the seasonal cycle of the deep Labrador Current.The simulated distribution of the surface eddy kinetic energy was also close to that derived from Topex-Poseidon satellite altimeter data,but with smaller magnitude.The energy transfer diagnostics indicated that Irminger rings are generated by both baroclinic and barotropic processes; however,when they propagate into the interior basin,the barotropic process also disperses them by converting the eddy energy to the mean flow.In contrast to eddy-permitting simulations,deep convection in the Labrador Sea was better represented in the eddyresolving model regarding their lateral position.Further analysis indicated that the improvement might be due to the lateral eddy flux associated with the resolved Irminger rings in the eddy-resolving model,which contributes to a realistic position of the isopycnal dome in the Labrador Sea and correspondingly a realistic site of deep convection.
文摘A POM based three dimension baroclinic prognostic model in σ coordinate was established to simulate the eddies in the East China Seas wintertime circulation, considering the topography, inflow and outflow on the open boundary, Changjiang runoff, heat, flux, and wind stress on the sea surface. The model results showed that three branches separate from the Kuroshio flow toward the interior of the Yellow Sea, and form three eddies respectively. The middle eddy is centered at 124°37′E,37°00′N,the southern eddy is centered at 124°00′E,35°30′N. The large cyclonic eddy centered at 125°06′E,30°30′N and located southwest of Cheju Island is a closed structure formed by the northeastward flowing Taiwan Warm Current, northwestward flowing Yellow Sea Warm Current and southward flowing coastal current. The Kuroshio intrusion engenders an eddy west of Kyushu Island of Japan. The branching of the Kuroshio is the direct dynamic cause of the formation of this large eddy. Moreover, both the topographic influence and the northward wind prevailing in winter affect the eddy’s formation obviously.