期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Synthesis and characterization of mesostructured ceria-zirconia solid solution 被引量:3
1
作者 李常林 辜辛 +4 位作者 王艳芹 王遥俊 王燕刚 刘晓晖 卢冠忠 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第2期211-215,共5页
Mesostructured Ce0.6Zr0.4O2 solid solutions were synthesized by coprecipitation combined with evaporation-induced self-assembly process. The obtained materials were characterized by X-ray diffractometer (XRD), Raman... Mesostructured Ce0.6Zr0.4O2 solid solutions were synthesized by coprecipitation combined with evaporation-induced self-assembly process. The obtained materials were characterized by X-ray diffractometer (XRD), Raman, transmission electron microscopy (TEM), N2 sorption, and hydrogen temperature programmed reduction (H2-TPR). The results showed that the solid solutions consisted of uniform nanocrystals, which piled homogeneous mesopores of about 4 nm. Furthermore, different surfactants had little influence on the mesoporous structures. All these samples exhibited high thermal stability. 展开更多
关键词 mesostructureD ceria-zirconia solid solution NANOCRYSTALS rare earths
下载PDF
Effects of pore size,mesostructure and aluminum modification on FDU-12 supported NiMo catalysts for hydrodesulfurization 被引量:2
2
作者 Pei Yuan Xue-Qin Lei +6 位作者 Hong-Ming Sun Hong-Wei Zhang Chun-Sheng Cui Yuan-Yuan Yue Hai-Yan Liu Xiao-Jun Bao Ting-Hai Wang 《Petroleum Science》 SCIE CAS CSCD 2020年第6期1737-1751,共15页
A series of NiMo/FDU-12 catalysts with tunable pore diameters and mesostructures have been controllably synthesized by adjusting the synthetic hydrothermal temperature and applied for the hydrodesulfurization of diben... A series of NiMo/FDU-12 catalysts with tunable pore diameters and mesostructures have been controllably synthesized by adjusting the synthetic hydrothermal temperature and applied for the hydrodesulfurization of dibenzothiophene and its derivative.The state-of-the-art electron tomography revealed that the pore sizes of FDU-12 supports were enlarged with the increase in the hydrothermal temperature and the mesostructures were transformed from ordered cage-type pores to locally disordered channels.Meanwhile,the MoS2 morphology altered from small straight bar to semibending arc to spherical shape and finally to larger straight bar with the change of support structures.Among them,FDU-12 hydrothermally treated at 150℃possessed appropriate pore diameter and connected pore structure and was favorable for the formation of highly active MoS2 with curved morphology;thus,its corresponding catalyst exhibited the best HDS activity.Furthermore,it was indicated that the isomerization pathway could be significantly improved for HDS of 4,6-dimethyldibenzothiophene after the addition of aluminum,which was expected to be applied to the removal of the macromolecular sulfur compounds.Our study sheds lights on the relationship between support effect,active sites morphology and HDS performance,and also provides a guidance for the development of highly active HDS catalysts. 展开更多
关键词 mesostructure FDU-12 NiMo catalysts HYDRODESULFURIZATION Al modification
下载PDF
Recent progress of morphable 3D mesostructures in advanced materials 被引量:2
3
作者 Haoran Fu Ke Bai +1 位作者 Yonggang Huang Yihui Zhang 《Journal of Semiconductors》 EI CAS CSCD 2020年第4期53-65,共13页
Soft robots complement the existing efforts of miniaturizing conventional,rigid robots,and have the potential to revolutionize areas such as military equipment and biomedical devices.This type of system can accomplish... Soft robots complement the existing efforts of miniaturizing conventional,rigid robots,and have the potential to revolutionize areas such as military equipment and biomedical devices.This type of system can accomplish tasks in complex and time-varying environments through geometric reconfiguration induced by diverse external stimuli,such as heat,solvent,light,electric field,magnetic field,and mechanical field.Approaches to achieve reconfigurable mesostructures are essential to the design and fabrication of soft robots.Existing studies mainly focus on four key aspects:reconfiguration mechanisms,fabrication schemes,deformation control principles,and practical applications.This review presents a detailed survey of methodologies for morphable mesostructures triggered by a wide range of stimuli,with a number of impressive examples,demonstrating high degrees of deformation complexities and varied multi-functionalities.The latest progress based on the development of new materials and unique design concepts is highlighted.An outlook on the remaining challenges and open opportunities is provided. 展开更多
关键词 morphable mesostructureS RECONFIGURATION stimuli
下载PDF
Cationic and Anionic Antimicrobial Agents Co‑Templated Mesostructured Silica Nanocomposites with a Spiky Nanotopology and Enhanced Biofilm Inhibition Performance 被引量:2
4
作者 Yaping Song Qiang Sun +5 位作者 Jiangqi Luo Yueqi Kong Bolin Pan Jing Zhao Yue Wang Chengzhong Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第5期181-191,共11页
Silica-based materials are usually used as delivery systems for antibacterial applications.In rare cases,bactericidal cationic surfactant templated silica composites have been reported as antimicrobial agents.However,... Silica-based materials are usually used as delivery systems for antibacterial applications.In rare cases,bactericidal cationic surfactant templated silica composites have been reported as antimicrobial agents.However,their antibacterial efficacy is limited due to limited control in content and structure.Herein,we report a“dual active templating”strategy in the design of nanostructured silica composites with intrinsic antibacterial performance.This strategy uses cationic and anionic structural directing agents as dual templates,both with active antibacterial property.The cationic-anionic dual active templating strategy further contributes to antibacterial nanocomposites with a spiky surface.With controllable release of dual active antibacterial agents,the spiky nanocomposite displays enhanced anti-microbial and anti-biofilm properties toward Staphylococcus epidermidis.These findings pave a new avenue toward the designed synthesis of novel antibacterial nanocomposites with improved performance for diverse antibacterial applications. 展开更多
关键词 Antibacterial surfactants Spiky nanoparticles ANTIBACTERIAL Anti-biofilm mesostructured nanocomposites
下载PDF
Mechanical Properties of Soil-Rock Mixture Filling in Fault Zone Based on Mesostructure
5
作者 Mei Tao Qingwen Ren +2 位作者 Hanbing Bian Maosen Cao Yun Jia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第8期681-705,共25页
Soil-rock mixture(SRM)filling in fault zone is an inhomogeneous geomaterial,which is composed of soil and rock block.It controls the deformation and stability of the abutment and dam foundation,and threatens the long-... Soil-rock mixture(SRM)filling in fault zone is an inhomogeneous geomaterial,which is composed of soil and rock block.It controls the deformation and stability of the abutment and dam foundation,and threatens the long-term safety of high arch dams.To study the macroscopic and mesoscopic mechanical properties of SRM,the development of a viable mesoscopic numerical simulation method with a mesoscopic model generation technology,and a reasonable parametric model is crucially desired to overcome the limitations of experimental conditions,specimen dimensions,and experiment fund.To this end,this study presents a mesoscopic numerical method for simulating the mechanical behavior of SRM by proposing mesoscopic model generation technology based on its mesostructure features,and a rock parameter model considering size effect.The validity and rationality of the presented mesoscopic numerical method is experimentally verified by the triaxial compression tests with different rock block contents(RBC).The results indicate that the rock block can increase the strength of SRM,and it is proved that the random generation technique and the rock parameter model considering size effect are validated.Furthermore,there are multiple failure surfaces for inhomogeneous geomaterial of SRM,and the angle of the failure zone is no longer 45◦.The yielding zones of the specimen are more likely to occur in thin sections of soil matrix isolated by blocks with the failure path avoiding the rock block.The proposed numerical method is effective to investigate the meso-damage mechanism of SRM. 展开更多
关键词 Soil-rock mixture(SRM) triaxial compression tests random generation technique mesostructure rock parameter model size effect finite element method
下载PDF
Advances in Synthesis of Mesostructured Aluminophosphates
6
作者 BenjingXu ChenxiZhao ZifengYan 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第2期65-76,共12页
More and more attention has been paid to the synthesis of mesostructuredaluminophosphates for many years. A lot of valuable research results, including various syntheticapproaches and structural materials, have been o... More and more attention has been paid to the synthesis of mesostructuredaluminophosphates for many years. A lot of valuable research results, including various syntheticapproaches and structural materials, have been obtained. This paper reviews the progress in thesynthesis of mesostructured aluminophosphates over the past few years, with the hope of revealingopportunities for future work. 展开更多
关键词 mesostructured aluminophosphate SURFACTANT TEMPLATE synthesis
下载PDF
Synthesis of Mesostructured Iron Oxides with Potential As(V) Adsorption Application
7
作者 LI Fei-hu FU Xiao-ru +1 位作者 HUANG Jie ZHAI Jian-ping 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第4期559-562,共4页
Mesostructured iron oxides(MIOs) were nanocasted from a plugged hexagonal templated silica(PHTS) with a Brunauer-Emmett-Teller(BET) surface area of 694 m 2 /g.Results of X-ray diffraction(XRD),transmission ele... Mesostructured iron oxides(MIOs) were nanocasted from a plugged hexagonal templated silica(PHTS) with a Brunauer-Emmett-Teller(BET) surface area of 694 m 2 /g.Results of X-ray diffraction(XRD),transmission electron microscopy(TEM) and N 2 adsorption-desorption suggest that the nanocasted MIOs are synthetic hematite(α-Fe2O3) with a wormhole-like mesoporous network.As(V) adsorption test shows that the selected MIO—MIO-500(calcinated at 500 °C) with a BET surface area of 82 m^ 2 /g has a maximum adsorption capacity of 5.39 mg/g for As(V),which is 2.5 times as large as that of natural hematite adsorbent.The study suggests that MIOs could be potentially used as the adsorbent of As(V) in wastewater. 展开更多
关键词 mesostructured iron oxide Plugged hexagonal templated silica(PHTS) NANOCASTING ARSENATE ADSORPTION
下载PDF
Synthesis and Characterization of Mesostructured Cellular Foam (MCF) Silica Loaded with Nickel Nanoparticles as a Novel Catalyst
8
作者 Lilis Hermida Ahmad Zuhairi Abdullah Abdul Rahman Mohamed 《Materials Sciences and Applications》 2013年第1期52-62,共11页
This work investigated the possibility of incorporation of nickel into several mesostructured cellular foam (MCF) silica supports prepared at various aging times (1, 2, and 3 days) by using deposition-precipitation me... This work investigated the possibility of incorporation of nickel into several mesostructured cellular foam (MCF) silica supports prepared at various aging times (1, 2, and 3 days) by using deposition-precipitation method followed by reducetion process and to look for the best support to obtain supported nickel catalyst with highest nickel loading and smallest size of nickel nanoparticles. Analyses using nitrogen adsorption-desorption, transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) showed that MCF silica prepared at aging time of 3 days was the best support as the corresponding nickel functionalized MCF catalyst had the highest nickel content (17.57 wt%) and the smallest size of nickel nanoparticles (1 - 2 nm) together with high porosity (window pore size of 90A). The result was attributed to the highest window pore size in the MCF support which allowed more nickel nanoparticles to be incorporated. 展开更多
关键词 mesostructureD CELLULAR Foam AMORPHOUS Materials NANOSTRUCTURES SOL-GEL Growth Surface Properties
下载PDF
Synthesis of Si-and Ti-MCM-41 Mesostructures via a Novel S^+X^-I^+ Assembly 被引量:1
9
作者 Zhao Rong ZHANQ Ji Shuan SUO +1 位作者 Xiao Ming ZHANG Shu Ben LI(State Key Laboratory for Oxo Synthesis and Selective oxidation, Lanzhou Institute of ChemicalPhysics, CAS, 342 Tianshui Road, Lanzhou 730000) 《Chinese Chemical Letters》 SCIE CAS CSCD 1998年第5期487-490,共4页
Well-defined Si- and Ti-MCM-41 mesoporous molecular sieves were synthesized in high yields through the halogen anion mediated S(+)X(-)I(+) assembly in the presence of cetylpyridinium bromide as template. The spectrosc... Well-defined Si- and Ti-MCM-41 mesoporous molecular sieves were synthesized in high yields through the halogen anion mediated S(+)X(-)I(+) assembly in the presence of cetylpyridinium bromide as template. The spectroscopy characterization of the as-synthesized samples confirmed that Ti (IV) could be isolated in the lattice positions of the MCM-41 mesostructure by this method. 展开更多
关键词 Si-MCM-41 TI-MCM-41 mesostructure cetylpyridinium bromide S(+)X(-)I(+) assembly
全文增补中
Effects of Initial Defects on Effective Elastic Modulus of Concrete with Mesostructure
10
作者 LI Xinxin DU Cheng +2 位作者 LI Chengyu XU Yi GONG Wenping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2024年第6期1484-1495,共12页
An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interf... An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interfacial transition zone(ITZ),and initial defects.With the three-dimensional(3D)finite element(FE)simulation,the highly heterogeneous composite elastic behavior of concrete was modeled,and the predicted results were compared with theoretical estimations for validation.Monte Carlo(MC)simulations were performed with the proposed mesostructure model to investigate the various factors of initial defects influencing the elastic modulus of concrete,such as the shape and concentration(pore volume fraction or crack density)of microspores and microcracks.It is found that the effective elastic modulus of concrete decreases with the increase of initial defects concentration,while the distribution and shape characteristics also exert certain influences due to the stress concentration caused by irregular inclusion shape. 展开更多
关键词 concrete initial defects effective elastic modulus mesostructure model FEM
下载PDF
Chiral mesostructured hematite with temperature-independent magnetism due to spin confinement 被引量:1
11
作者 Baiwen Zhang Jing Ai +3 位作者 Yingying Duan Te Bai Lu Han Shunai Che 《Nano Research》 SCIE EI CSCD 2024年第3期2019-2024,共6页
Hematite(α-Fe_(2)O_(3))is known to undergo conversion from weak ferromagnetic to antiferromagnetic as the temperature decreases below the Morin temperature(TM=250 K)due to spin moment rotation occurring during the Mo... Hematite(α-Fe_(2)O_(3))is known to undergo conversion from weak ferromagnetic to antiferromagnetic as the temperature decreases below the Morin temperature(TM=250 K)due to spin moment rotation occurring during the Morin transition(MT).Herein,we endowed hematite with mesostructured chirality to maintain weak ferromagnetism without MT.Chiral mesostructured hematite(CMH)nanoparticles were prepared by a hydrothermal method with glutamic acid(Glu)as the symmetry-breaking agent.The triangular bipyramidal CMH nanoparticles were composed of helically cleaved nanoflakes with twisted crystal lattice.Field-cooled(FC)magnetization measurements showed that the magnetic moments of CMH were stabilized without MT within the temperature range of 10–300 K.Hysteresis loop measurements confirmed the weak ferromagnetism of CMH.The enhanced Dzyaloshinskii–Moriya interaction(DMI)was speculated to be responsible for the temperature-independent weak ferromagnetism,in which the spin configuration would be confined with canted antiferromagnetic coupling due to the mesostructured chirality of CMH. 展开更多
关键词 HEMATITE chiral mesostructure Dzyaloshinskii–Moriya interaction weak ferromagnetism antiferromagnetic material temperature-independent magnetism
原文传递
Spin chiral anisotropy of diamagnetic chiral mesostructured In_(2)O_(3) films
12
作者 Ting Ji Quanzheng Deng +4 位作者 Hao Chen Lu Han Zhibei Qu Shunai Che Yingying Duan 《Nano Research》 SCIE EI CSCD 2024年第8期7756-7761,共6页
Spin chiral anisotropy(SChA)refers to the occurrence of different spin polarization in antipodal chiral structures.Herein,we report the SChA in diamagnetic chiral mesostructured In2O3 films(CMIFs)with manifestation of... Spin chiral anisotropy(SChA)refers to the occurrence of different spin polarization in antipodal chiral structures.Herein,we report the SChA in diamagnetic chiral mesostructured In2O3 films(CMIFs)with manifestation of chirality-dependent magnetic circular dichroism(MCD)signals.CMIFs were grown on fluorine-doped tin dioxide conductive glass(FTO)substrates,which were synthesized via a hydrothermal route,with malic acid used as the symmetry-breaking agent.Two levels of chirality have been identified in CMIFs:primary nanoflakes with atomically twisted crystal lattices and secondary helical stacking of the nanoflakes.CMIFs exhibit chirality-dependent asymmetric MCD signals due to the different interactions of chirality-induced effective magnetic field and external magnetic field,which distinguish from the commonly observed external magnetic fielddependent symmetric MCD signals.These findings provide insights into spin manipulation of spin-paired diamagnets. 展开更多
关键词 chiral inorganics mesostructure diamagnet spin chiral anisotropy(SChA) magnetic circular dichroism(MCD)
原文传递
A multiphase mesostructure mechanics approach to the study of the fracture-damage behavior of concrete 被引量:8
13
作者 TANG XinWei1,ZHANG ChuHan1 & SHI JianJun2 1 State Key Laboratory of Hydroscience and Engineering,Tsinghua University,Beijing 100084,China 2 Department of Urban Construction,Nanhua University,Hengyang 421001,China 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第S2期8-24,共17页
A multiphase mesostructure mechanical model is proposed to study the deformation and failure process of concrete considering its heterogeneity at the meso scopic level.Herein,concrete is taken as a type of three-compo... A multiphase mesostructure mechanical model is proposed to study the deformation and failure process of concrete considering its heterogeneity at the meso scopic level.Herein,concrete is taken as a type of three-component composite material composed of mortar matrix,aggregates and interfaces on the meso-scale.First,an efficient approach to the disposition of aggregates of concrete and a state matrix method to generate mesh coordinates for aggregates are proposed.Secondly,based on the nonlinear continuum damage mechanics,a meso-scale finite element model is presented with damage softening stress-strain relationship for describing the mechanical behavior of different components of concrete.In this method,heterogeneities of each component in the concrete are considered by assuming the material properties of three components conform to the Weibull distribution law.Finally,based on this multiphase meso-mechanics model,a simulation analysis of fracture behavior of a rock-fill concrete(RFC) beam is accomplished.The study includes experimental tests for determining basic mechanical parameters of three components of RFC and four-point flexural beam tests for verification of the model.It is preliminarily shown that the numerical model is applicable to studying failure mechanisms and process of concrete type material. 展开更多
关键词 concrete MULTIPHASE mesostructure MECHANICS numerical simulation experimental research
原文传递
Aqueous Synthesis of Mesostructured BiVO_(4) Quantum Tubes with Excellent Dual Response to Visible Light and Temperature 被引量:4
14
作者 Yongfu Sun Yi Xie +2 位作者 Changzheng Wu Shudong Zhang Shishi Jiang 《Nano Research》 SCIE EI CSCD 2010年第9期620-631,共12页
Analysis of the atomic structure of monoclinic BiVO4 reveals its fascinating structure-related dual response to visible light and temperature.Although there have been a few reported studies of its responses to visible... Analysis of the atomic structure of monoclinic BiVO4 reveals its fascinating structure-related dual response to visible light and temperature.Although there have been a few reported studies of its responses to visible light and temperature,an understanding of the effects of quantum size,particle shape or specific exposed facets on its dual responsive properties remains elusive;this is primarily due to the limited availability of high-quality monodisperse nanocrystals with extremely small sizes and specific_(4)exposed facets.Herein,we describe a novel assembly-fusion strategy for the synthesis of mesostructured monoclinic BiVO_(4)quantum tubes with ultranarrow diameter of 5 nm,ultrathin wall thickness down to 1 nm and exposed{020}facets,via a convenient hydrothermal method at temperatures as low as 100℃.Notably,the resulting high-quality quantum tubes possess significantly superior dual-responsive properties compared with bulk BiVO_(4)or even BiVO4 nanoellipsoids,and thus,show high promise for applications as visible-light photocatalysts and temperature indicators offering improved environmental quality and safety.This mild and facile methodology should be capable of extension to the preparation of other mesostructured inorganic quantum tubes with similar characteristics,giving a range of materials with enhanced dual-responsive properties. 展开更多
关键词 mesostructure BiVO_(4) quantum tubes visible light temperature
原文传递
Mesostructured carbon-based nanocages: an advanced platform for energy chemistry 被引量:5
15
作者 Qiang Wu Lijun Yang +1 位作者 Xizhang Wang Zheng Hu 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第5期665-681,共17页
The electrochemistry in energy conversion and storage(ECS) not only relies on the active species in catalysts or energy-storage materials, but also involves mass/ion transport around the active species and electron tr... The electrochemistry in energy conversion and storage(ECS) not only relies on the active species in catalysts or energy-storage materials, but also involves mass/ion transport around the active species and electron transfer to the external circuit. To realize high-rate ECS process, new architectures for catalysts or energy-storage electrodes are required to ensure more efficient mass/charge transport. 3 D porous mesostructured materials constructed by nanoscale functional units can form a continuous conductive network for electron transfer and an interconnected multiscale pores for mass/ion transport while maintaining the high surface area, showing great promise in boosting the ECS process. In this review, we summarize the recent progress on the design,construction and applications of 3 D mesostructured carbon-based nanocages for ECS. The role of the hierarchical architectures to the high rate performance is discussed to highlight the merits of the mesostructured materials. The perspective on future opportunities and challenges is also outlined for deepening and extending the related studies and applications. 展开更多
关键词 carbon-based nanocages mesostructureS energy conversion and storage enhanced mass/charge transport multifunction platform
原文传递
Formation of Lamellar Mesostructured Crystalline Silica by Self-assembly of CTAB 被引量:2
16
作者 CUI Kai FANG Yuxi +3 位作者 XU Dongdong ZHANG Yunjuan HAN Lu CHE Shunai 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2019年第3期359-362,共4页
Controlling organic-inorganic liquid crystal structures to form lamellar mesostructured crystalline silica nanosheets(LCS) was achieved by using the simple cationic surfactant cetyl trimethyl ammonium bromide(CTAB). T... Controlling organic-inorganic liquid crystal structures to form lamellar mesostructured crystalline silica nanosheets(LCS) was achieved by using the simple cationic surfactant cetyl trimethyl ammonium bromide(CTAB). The organic-inorganic interaction under the condtions of a high surfactant concentration and suitable synthesis temperature played an important role in the construction of mesostructured crystalline silica. 展开更多
关键词 LAMELLAR mesostructure Crystalline silica SELF-ASSEMBLY Cetyl trimethyl AMMONIUM BROMIDE Liquid crystal
原文传递
Reprogrammable 3D Mesostructures Through Compressive Buckling of Thin Films with Prestrained Shape Memory Polymer 被引量:4
17
作者 Xiaogang Guo Zheng Xu +5 位作者 Fan Zhang Xueju Wang Yanyang Zi John A. Rogers Yonggang Huang Yihui Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第5期589-598,共10页
The mechanically guided assembly that relies on the compressive buckling of strate- gically patterned 2D thin films represents a robust route to complex 3D mesostructures in advanced materials and even functional micr... The mechanically guided assembly that relies on the compressive buckling of strate- gically patterned 2D thin films represents a robust route to complex 3D mesostructures in advanced materials and even functional micro-devices. Based on this approach, formation of complex 3D configurations with suspended curvy features or hierarchical geometries remains a challenge. In this paper, we incorporate the prestrained shape memory polymer in the 2D precur- sor design to enable local rolling deformations after the mechanical assembly through compressive buckling. A theoretical model captures quantitatively the effect of key design parameters on local rolling deformations. The combination of precisely controlled global buckling and local rolling expands substantially the range of accessible 3D configurations. The combined experimental and theoretical studies over a dozen of examples demonstrate the utility of the proposed strategy in achieving complex reprogrammable 3D mesostructures. 展开更多
关键词 Mechanically guided 3D assembly Reprogrammable 3D mesostructures Shapememory polymer BUCKLING ROLLING
原文传递
Spin selectivity of chiral mesostructured diamagnetic BiOBr films 被引量:2
18
作者 Kun Ding Jing Ai +5 位作者 Hao Chen Zhibei Qu Peizhao Liu Lu Han Shunai Che Yingying Duan 《Nano Research》 SCIE EI CSCD 2023年第8期11444-11449,共6页
The chirality-induced spin selectivity(CISS)has been found in the antiferromagnetic and paramagnetic chiral inorganic materials with unpaired electrons,while rarely reported in the spin-paired diamagnetic inorganic ma... The chirality-induced spin selectivity(CISS)has been found in the antiferromagnetic and paramagnetic chiral inorganic materials with unpaired electrons,while rarely reported in the spin-paired diamagnetic inorganic materials with spin-pairing energy.Here,we report the CISS in the spin-paired diamagnetic BiOBr endowed with three levels of chiral mesostructures.Chiral mesostructured BiOBr films(CMBFs)were fabricated through a sugar alcohol-induced hydrothermal route.The antipodal CMBFs exhibited chirality-dependent,magnetic field-independent magnetic circular dichroism(MCD)signals,which indicates the existence of spin selectivity.The spin selectivity of CMBFs was speculated to be the result of the competing effect between the externally applied magnetic field and the effective magnetic field arisen from the spin electron motions in chiral potential.The chirality-induced effective magnetic field acts on the magnetic moment of electrons,potentially overcoming the spin-pairing energy and producing opposite energy changes for spin-down and spin-up electrons. 展开更多
关键词 chiral mesostructures diamagnetic material chiral-induced spin selectivity(CISS) magnetic circular dichroism(MCD)
原文传递
Probability-Based Analyses of the Snap-Through in Cage-Shaped Mesostructures Under Out-of-Plane Compressions 被引量:1
19
作者 Qing Liu Zhangming Shen +5 位作者 Zhi Liu Yumeng Shuai Zengyao Lv Tianqi Jin Xu Cheng Yihui Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2023年第4期569-581,共13页
Three-dimensional(3D)mesostructures with distinct compressive deformation behaviors and tunable mechanical responses have gained increasing interest in recent years.3D cage-shaped mesostructures are representative fra... Three-dimensional(3D)mesostructures with distinct compressive deformation behaviors and tunable mechanical responses have gained increasing interest in recent years.3D cage-shaped mesostructures are representative framework structures widely exploited in 3D flexible electronics,owing to their unique cellular geometry and unusual mechanical responses.The snap-through behavior of cage-shaped mesostructures could potentially result in the performance degradation of electronics,while it could also be harnessed to design reconfigurable electronics.Due to the complicated deformation modes and random characteristics in experiments,the snap-through behavior of cage-shaped mesostructures remains largely unexplored,espe-cially in terms of probability-based analyses.In this work,we present a systematic study on the configuration evolution and snap-through of 3D cage-shaped mesostructures under out-of-plane compressions.Experimental and computational studies show the existence of two distinct deformation modes associated with the snap-through,which is controlled by the energy barrier based on the energetic analyses.Phase diagrams of the deformation modes decode how key geometric parameters and assembly strain affect the snap-through.Compressive experiments based on periodic arrays(10 × 10)of mesostructures provided a large amount of deformation data,allowing for statistical analyses of the snap-through behavior.These results provide new insights and useful guidelines for the design of 3D reconfigurable devices and multistable metamaterials based on 3D cage-shaped mesostructures. 展开更多
关键词 3D cage-shaped mesostructures SNAP-THROUGH Probability-based analyses 3D assembly Out-of-plane compression
原文传递
Influence of Preparation Conditions on Structural Stability of Ordered Mesoporous Carbons Synthesized by Evaporation-induced Triconstituent Co-assembly Method 被引量:1
20
作者 游波 杨俊 +3 位作者 雍国平 刘少民 谢卫 苏庆德 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第3期365-372,I0004,共9页
Various ordered mesoporous carbons (OMCs) have been prepared by evaporation-induced trieonstituent co-assembly method. Their mesostructural stability under different carbon content, aging time and acidity were conve... Various ordered mesoporous carbons (OMCs) have been prepared by evaporation-induced trieonstituent co-assembly method. Their mesostructural stability under different carbon content, aging time and acidity were conveniently monitored by X-ray diffraction, transmission electron microscopy, and N2 sorption isotherms techniques. The results show mesostruetural stability of OMCs is enhanced as the carbon content increases from 36% to 46%, further increasing carbon content deteriorates the mesostructural stability. Increasing aging time from 0.5 h to 5.0 h make the mesostructural stability go through an optimum (2.0 h) and gradually reduce framework shrinkage of the OMCs. Highly OMCs can only be obtained in the acidity range of 0.2-1.2 mol/L HC1, when the acidity is near the isoelectrie point of silica, the resulting OMCs have the best mesostructure stability. Under the optimum condition, the carbon content of 46%, aging time of 2.0 h, and 0.2 mol/L HCl, the resulting OMCs have the best mesostrueture stability and the highest BET surface areas of 2281 m2/g. 展开更多
关键词 Triblock copolymer Mesostructural stability SELF-ASSEMBLY Ordered mesoporous carbon
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部