The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South...The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South China Block(SCB).In the Late Mesozoic,several shear zones evolved along the SDZ boundary that helps us comprehend the collisional deformation between the NCB and SCB,which was neglected in previous studies.These shear zones play an essential role in the tectonic evolution of the East Asia continents.This study focuses on the deformation and geochronology of two shear zones distributed along the SDZ,identified in the Shaliangzi and Maanqiao areas.The shear sense indicators and kinematic vorticity numbers(0.54–0.90)suggest these shear zones have sinistral shear and sub-simple shear deformation kinematics.The quartz’s dynamic recrystallization and c-axis fabric analysis in the Maanqiao shear zone(MSZ)revealed that the MSZ experienced deformation under green-schist facies conditions at∼400–500℃.The Shaliangzi shear zone deformed under amphibolite facies at∼500–700℃.The^(40)Ar/^(39)Ar(muscovite-biotite)dating of samples provided a plateau age of 121–123 Ma.Together with previously published data,our results concluded that QOB was dominated by compressional tectonics during the Late Early Cretaceous.Moreover,we suggested that the Siberian Block moved back to the south and Lhasa-Qiantang-Indochina Block to the north,which promoted intra-continental compressional tectonics.展开更多
The Helan-Chuandian N-S Tectonic Belt is a mantle transitional belt in China. The southem part, forming the Chuandian N-S Tectonic Belt, comprises several tectonic systems, each displaying different characteristics. T...The Helan-Chuandian N-S Tectonic Belt is a mantle transitional belt in China. The southem part, forming the Chuandian N-S Tectonic Belt, comprises several tectonic systems, each displaying different characteristics. The Chuandian N-S Tectonic Belt along the western margin of yangtze Block is a strike-slip tectonic belt with a series of echelon left-lateral slip faults. The strike-slip fault systems experienced two stages of structural deformation: early NW-SE striking thrust faults formed under a NE-SW compression stress field, and later sinistral strike-slip structures formed along thrust faults under a NW-SE compression stress field. Mesozoic basins developed between the left-lateral slip faults. Sedimentary facies and paleocurrent directions indicate that basin development was controlled by the strike-slip faults. The oldest strata in the Chuandian N-S Tectonic Belt constrain its formation to early Mesozoic. In fact, The slip tectonic belt formed by clockwise rotation and north-directed subduction-collision of the Yangtze Block in Late Triassic-Jurassic. The strike-slip faults that developed within the belt also formed at this time.展开更多
Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones an...Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones and thrust sheets among them. Sinian, Cambrian, Ordovician, Devonian, Carboniferous,Triassic, Jurassic and Cretaceous strata are involved in the thrust nappe system. The nappe structure is of the type of duplex structures formed as a result of the earlier stage migration from SE to NW and late stage migration from E to W of sedimentary cover or basement strata. Formation of the nappe structure in the studied area involves two main epochs: Early Yanshanian and Late Yanshanian to Early Himalayan. The mineral deposits and the buried coalfields in the area, especially the latter, are extensively controlled by the nappe structure.展开更多
基金the National Natural Science Foundation of China who provided necessary financial support for this study(Nos.41872218,41572179,and 41372204)the State Key Laboratory of Continental Dynamics,Northwest University,Xi’an for providing a special fund to accomplish this study.
文摘The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South China Block(SCB).In the Late Mesozoic,several shear zones evolved along the SDZ boundary that helps us comprehend the collisional deformation between the NCB and SCB,which was neglected in previous studies.These shear zones play an essential role in the tectonic evolution of the East Asia continents.This study focuses on the deformation and geochronology of two shear zones distributed along the SDZ,identified in the Shaliangzi and Maanqiao areas.The shear sense indicators and kinematic vorticity numbers(0.54–0.90)suggest these shear zones have sinistral shear and sub-simple shear deformation kinematics.The quartz’s dynamic recrystallization and c-axis fabric analysis in the Maanqiao shear zone(MSZ)revealed that the MSZ experienced deformation under green-schist facies conditions at∼400–500℃.The Shaliangzi shear zone deformed under amphibolite facies at∼500–700℃.The^(40)Ar/^(39)Ar(muscovite-biotite)dating of samples provided a plateau age of 121–123 Ma.Together with previously published data,our results concluded that QOB was dominated by compressional tectonics during the Late Early Cretaceous.Moreover,we suggested that the Siberian Block moved back to the south and Lhasa-Qiantang-Indochina Block to the north,which promoted intra-continental compressional tectonics.
基金supported by National Natural Science Foundation of China (Grant Nos. 40872135 and 40830314)
文摘The Helan-Chuandian N-S Tectonic Belt is a mantle transitional belt in China. The southem part, forming the Chuandian N-S Tectonic Belt, comprises several tectonic systems, each displaying different characteristics. The Chuandian N-S Tectonic Belt along the western margin of yangtze Block is a strike-slip tectonic belt with a series of echelon left-lateral slip faults. The strike-slip fault systems experienced two stages of structural deformation: early NW-SE striking thrust faults formed under a NE-SW compression stress field, and later sinistral strike-slip structures formed along thrust faults under a NW-SE compression stress field. Mesozoic basins developed between the left-lateral slip faults. Sedimentary facies and paleocurrent directions indicate that basin development was controlled by the strike-slip faults. The oldest strata in the Chuandian N-S Tectonic Belt constrain its formation to early Mesozoic. In fact, The slip tectonic belt formed by clockwise rotation and north-directed subduction-collision of the Yangtze Block in Late Triassic-Jurassic. The strike-slip faults that developed within the belt also formed at this time.
基金supported by a grant from the Ministry of Land and Resources(Project No:19961300002011)for the regional geological survey of the Jinggangshan City section,Yaqian section,Tianhe section,Nashan section of the 1:50,000 geologic mapa key orientation grant(No.KZCXZ-SW-117)of CAS Knowledge Innovation Project for the constitution,structure and evolution of the geotectonic systems of South China Sea and its adjacent regions.
文摘Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones and thrust sheets among them. Sinian, Cambrian, Ordovician, Devonian, Carboniferous,Triassic, Jurassic and Cretaceous strata are involved in the thrust nappe system. The nappe structure is of the type of duplex structures formed as a result of the earlier stage migration from SE to NW and late stage migration from E to W of sedimentary cover or basement strata. Formation of the nappe structure in the studied area involves two main epochs: Early Yanshanian and Late Yanshanian to Early Himalayan. The mineral deposits and the buried coalfields in the area, especially the latter, are extensively controlled by the nappe structure.