A large quantity of drilling core, paleontology, geochemistry and geophysics data revealed several features of the Jiyang subbasin during the deposition of the Ekl-ES4x members: (1) the paleotopography of the gentl...A large quantity of drilling core, paleontology, geochemistry and geophysics data revealed several features of the Jiyang subbasin during the deposition of the Ekl-ES4x members: (1) the paleotopography of the gentle slope belt had an extremely low gradient; (2) the paleoclimate frequently alternated between dry and wet periods in a generally arid setting; (3) there was strong weathering around the periphery of the basin; (4) the lake was very shallow; (5) the lake level frequently rose and fell; and (6) the sedimentary environment of the gentle slope belt was an over- flooding lake. All of these factors provided favorable geological conditions for the development of an over-flooding lake delta. The lithologies of the continental over-flooding lake delta deposits are complex and diverse. The compositional maturity is moderate to low, and the grain size distribution curves and sedimentary structures indicate the presence of both gravity and traction currents. The sedimentary microfacies associations consist of a combination of ordered superposition of flood channels, distributary channels and sheet sands. The delta exhibits a weak foreset seismic reflection. The over-flooding lake delta deposits are laterally extensive. The sandstone content is high, and the individual sandstone beds are thin. The flood channel and distributary channel deposits exhibit evidence of bifurcation and lateral migration. The distribution of the sandbodies and the oxidation color of the mudstones provide evidence of cyclic deposition. The paleoclimate was the dominant factor controlling the development of the over-flooding lake delta. Due to the frequently alternating wet and dry paleoclimates, the over-flooding lake delta is characterized by the development of a broad upper plain and a lower delta plain. The upper delta plain is characterized by flood channel deposits, whereas the lower delta plain is represented by distributary channel deposits. The transition zone is characterized by the interaction of flood channels and distributary channels. Due to fault activity, the sandbodies of the over-flooding lake delta were juxtaposed against hydrocarbon source rocks, which was favorable for the development of lithologic reservoirs or structural-lithologic reservoirs. The lower delta plain deposits comprise the most favorable reservoirs.展开更多
According to the characteristics of sedimentary facies and their vertical associations, sequence association of sedimentary facies can be divided into 2 types and 28 subtypes. The first type(type A)is a sedimentary se...According to the characteristics of sedimentary facies and their vertical associations, sequence association of sedimentary facies can be divided into 2 types and 28 subtypes. The first type(type A)is a sedimentary sequence without volcanic rocks, including 18 subtypes. The second type(type B)is a volcanogenic succession including 10 subtypes. Each subtype may reflect certain filling condition under certain sedimentary environment. Time and space distribution of different types of sequence associations can reflect tectonics that controlled the basin evolution, sedimentary environments and palaeogeography.展开更多
In contrast to marine deposits, continental deposits in China are characterized by diverse sedimentary types, rapid changes in sedimentary facies, complex lithology, and thin, small sand bodies. In seismic sedimentolo...In contrast to marine deposits, continental deposits in China are characterized by diverse sedimentary types, rapid changes in sedimentary facies, complex lithology, and thin, small sand bodies. In seismic sedimentology studies on continental lacustrine basins, new thinking and more detailed and effective technical means are needed to generate lithological data cubes and conduct seismic geo- morphologic analyses. Based on a series of tests and studies, this paper presents the concepts of time-equivalent seismic attributes and seismic sedimentary bodies and a "four-step approach" for the seismic sedimentologic study of conti- nental basins: Step 1, build a time-equivalent stratigraphic framework based on vertical analysis and horizontal corre- lation of lithofacies, electrofacies, seismic facies, and pale- ontological combinations; Step 2, further build a sedimentary facies model based on the analysis of single- well facies with outcrop, coring, and lab test data; Step 3, convert the seismic data into a lithological data cube reflecting different lithologies by means of seismic tech- niques; and Step 4, perform a time-equivalent attribute analysis and convert the planar attribute into a sedimentary facies map under the guidance of the sedimentary facies model. The whole process, highlighting the verification and calibration of geological data, is an iteration and feedback procedure of geoseismic data. The key technologies include the following: (1) a seismic data-lithology conversion technique applicable to complex lithology, which can convert the seismic reflection from interface types to rock layers; and (2) time-equivalent seismic unit analysis and a time- equivalent seismic attribute extraction technique. Finally, this paper demonstrates the validity of the approach with an example from the Qikou Sag in the Bohai Bay Basin and subsequent drilling results.展开更多
The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data an...The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data and a large number of published research results, the basement constitutions and evolutions of tectonic-sedimentary of sedimentary basins, the main border fault belts and the orogenesis of their peripheries of the basins are analyzed. Especially, the main typical basins in the eight divisions in the continent of China are analyzed in detail, including the Tarim, Ordos, Sichuan, Songliao, Bohai Bay, Junggar, Qiadam and Qiangtang basins. The main five stages of superimposed evolutions processes of basins revealed, which accompanied with the tectonic processes of the Paleo-Asian Ocean, Tethyan and Western Pacific domains. They contained the formations of main Cratons (1850-800 Ma), developments of marine basins (800-386 Ma), developments of Marine- continental transition basins and super mantle plumes (386-252 Ma), amalgamation of China Continent and developments of continental basins (252-205 Ma) and development of the foreland basins in the western and extensional faulted basin in the eastern of China (205~0 Ma). Therefore, large scale marine sedimentary basins existed in the relatively stable continental blocks of the Proterozoic, developed during the Neoproterozoic to Paleozoic, with the property of the intracontinental cratons and peripheral foreland basins, the multistage superimposing and late reformations of basins. The continental basins developed on the weak or preexisting divisional basements, or the remnant and reformed marine basins in the Meso-Cenozoic, are mainly the continental margins, back-arc basins, retroarc foreland basins, intracontinental rifts and pull-apart basins. The styles and intensity deformation containing the faults, folds and the structural architecture of regional unconformities of the basins, responded to the openings, subductions, closures of oceans, the continent-continent collisions and reactivation of orogenies near the basins in different periods. The evolutions of the Tianshan-Mongol-Hinggan, Kunlun-Qilian-Qinling-Dabie-Sulu, Jiangshao-Shiwandashan, Helanshan-Longmengshan, Taihang-Wuling orogenic belts, the Tibet Plateau and the Altun and Tan- Lu Fault belts have importantly influenced on the tectonic-sedimentary developments, mineralization and hydrocarbon reservoir conditions of their adjacent basins in different times. The evolutions of basins also rely on the deep structures of lithosphere and the rheological properties of the mantle. The mosaic and mirroring geological structures of the deep lithosphere reflect the pre-existed divisions and hot mantle upwelling, constrain to the origins and transforms dynamics of the basins. The leading edges of the basin tectonic dynamics will focus on the basin and mountain coupling, reconstruction of the paleotectonic-paleogeography, establishing relationship between the structural deformations of shallow surface to the deep lithosphere or asthenosphere, as well as the restoring proto-basin and depicting residual basin of the Paleozoic basin, the effects of multiple stages of volcanism and paleo- earthquake events in China.展开更多
This paper systematically discusses the multiple source characteristics and formation mechanisms of carbonate-rich fine-grained sedimentary rocks through the analysis of material source and rock formation.The hydrocar...This paper systematically discusses the multiple source characteristics and formation mechanisms of carbonate-rich fine-grained sedimentary rocks through the analysis of material source and rock formation.The hydrocarbon accumulation characteristics of carbonate-rich fine-grained sedimentary rocks are also summarized.The results show that the main reason for the enrichment of fine-grained carbonate materials in rift lake basins was the supply of multiple material sources,including terrestrial material input,formation of intrabasinal authigenic carbonate,volcanic-hydrothermal material feeding and mixed source.The development of carbonate bedrock in the provenance area controlled the filling scale of carbonate materials in rift lake basins.The volcanic-hydrothermal activity might provide an alkaline fluid to the lake basins to strengthen the material supply for the formation of carbonate crystals.Authigenic carbonate crystals induced by biological processes were the main source of long-term accumulation of fine-grained carbonate materials in the lake basins.Carbonate-rich fine-grained sedimentary rocks with multiple features were formed through the interaction of physical,biochemical and chemical processes during the deposition and post-deposition stages.The source and sedimentary origin of the fine-grained carbonate rock controlled the hydrocarbon accumulation in it.In the multi-source system,the types of"sweet spots"of continental shale oil and gas include endogenous type,terrigenous type,volcanic-hydrothermal type and mixed source type.展开更多
The uplift is a positive structural unit of the crust. It is an important window for continental dynamics owing to its abundant structural phenomena, such as fault, fold, unconformity and denudation of strata. Meanwhi...The uplift is a positive structural unit of the crust. It is an important window for continental dynamics owing to its abundant structural phenomena, such as fault, fold, unconformity and denudation of strata. Meanwhile, it is the very place to store important minerals like oil, natural gas, coal and uranium. Giant and large-scale oil and gas fields in China, such as the Daqing Oilfield, Lunnan-Tahe Oilfield, Penglai 19-3 Oilfield, Puguang Gas Field and Jingbian Gas Field, are developed mainly on uplifts. Therefore, it is the main target both for oil and gas exploration and for geological study. The uplift can be either a basement uplift, or one developed only in the sedimentary cover. Extension, compression and wrench or their combined forces may give rise to uplifts. The development process of uplifting, such as formation, development, dwindling and destruction, can be taken as the uplifting cycle. The uplifts on the giant Precambrian cratons are large in scale with less extensive structural deformation. The uplifts on the medium- and small-sized cratons or neo-cratons are formed in various shapes with strong structural deformation and complicated geological structure. Owing to changes in the geodynamic environment, uplift experiences a multi-stage or multi-cycle development process. Its geological structure is characterized in superposition of multi-structural layers. Based on the basement properties, mechanical stratigraphy and development sequence, uplifts can be divided into three basic types-the succession, superposition and destruction ones. The succession type is subdivided into the maintaining type and the lasting type. The superposition type can be subdivided into the composite anticlinal type, the buried-hill draped type, the faulted uplift type and the migration type according to the different scales and superimposed styles of uplifts in different cycles. The destruction type is subdivided into the tilting type and the negative inverted type. The development history of uplifts and their controlling effects on sedimentation and fluids are quite different from one another, although the uplifts with different structural types store important minerals. Uplifts and their slopes are the main areas for oil and gas accumulation. They usually become the composite oil and gas accumulation zones (belts) with multiple productive formations and various types of oil and gas reservoirs.展开更多
In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedi...In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedimentary associations, which is referred to as U-bearing rock series. This study describes the structural features of U-bearing rock series within the main Mesozoic-Cenozoic U-producing continental basins in Kazakhstan, Uzbekistan, and Russia in the western segment of the Central Asian Metallogenic Belt (CAMB), and Northern China in the eastern segment of the CAMB. We analyze the basic structural conditions and sedimentary environments of U-bearing rock series in Northern China and classify their structural styles in typical basins into river valley, basin margin, and intrabasin uplift margin types. The intrabasin uplift margin structural style proposed in this study can be used to indicate directions for the exploration of sandstone-type U deposits hosted in the center of a basin. At the same time, the study of structural style provides a new idea for exploring sandstone-type U deposits in Mesozoic-Cenozoic basins and it is of great significance to prospecting of sandstone-type uranium deposits.展开更多
Based on the interpretations of three seismic profiles and one wide-angle seismic profile across the Northwest Sub-basin,South China Sea.stratigraphic sequences,deformation characteristics and an extension model for t...Based on the interpretations of three seismic profiles and one wide-angle seismic profile across the Northwest Sub-basin,South China Sea.stratigraphic sequences,deformation characteristics and an extension model for this sub-basin have been worked out.Three tectonic-stratigraphic units are determined.Detailed analyses of extension show that the event occurred mainly during the Paleogene and resulted in the formation of half-grabens or grabens distributed symmetrically around the spreading center.Sediments are characterized by chaotic and discontinuous reflectors,indicating clastic sediments. Farther to the southwest,the sub-basin features mainly continental rifting instead of sea-floor spreading. The rifting would have been controlled by the shape of the massif and developed just along the northern edge of the Zhongsha-Xisha Block,rather than joined the Xisha Trough.After 25 Ma.a southward ridge jump triggered the opening of the Southwest Sub-basin.The NW-directed stress caused by the sea-floor spreading of the Northwest Sub-basin may have prevented the continuous opening of the sub-basin.After that the Northwest Sub-basin experienced thermal cooling and exhibited broad subsidence.The deep crustal structure shown by the velocity model from a wide-angle seismic profile is also symmetrical around the spreading center,which indicates that the Northwest Sub-basin might have opened in a pure shear model.展开更多
Magmatism in the Cretaceous sedimentary basins of the Figuil and Léré regions constitutes one of the fundamental parameters in the reconstruction of the history of the Cretaceous sedimentary basins. The main...Magmatism in the Cretaceous sedimentary basins of the Figuil and Léré regions constitutes one of the fundamental parameters in the reconstruction of the history of the Cretaceous sedimentary basins. The main objective of this paper is to constrain the petrogenetic processes of hypovolcanic rocks and to determine their geodynamic context of emplacement. The petrographic study of mafic hypovolcanic and trachytic rocks was carried out under a polarizing microscope on thin sections. For the geochemical study, the major oxides and some trace elements were analyzed by ICP-AES. Trace and rare earth elements were analyzed by ICP-MS. The dolerites of the Cretaceous sedimentary basins are composed of dykes of amphibole bearing dolerites, biotite and pyroxene bearing dolerite, pyroxene bearing dolerites and trachytes. The dykes are in the order of 20 to 100 m wide by several kilometers long and oriented from N23<span style="white-space:normal;"><span style="white-space:normal;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span></span></span>E to N90<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>E. The textures of these rocks are sub-ophitic to intergranular for dolerites and trachytic for evolved rocks (trachytes). The geochemical study shows that the dolerites are basaltic in composition with alkaline to subalkaline character. The sampled dykes have an evolution dominated by fractional with the minor impact of the crustal assimilation characterized by low Rb/Y ratios for dolerites (0.36 - 0.97) and high values of Rb/Y for the Pan-African granitoid<span style="font-size:10.0pt;font-family:;" "="">s’</span><span style="font-size:10.0pt;font-family:;" "=""> samples (1.95 - 4.01).</span><span style="font-size:10.0pt;font-family:;" "=""> </span><span style="font-size:10.0pt;font-family:;" "="">The nature of doleritic and trachytic magma sources is supported by their (Tb/Yb)N > 1.9 (1.91 - 3.79) and Dy/Yb > 2 (2.32 - 3.50) ratios of most samples, which suggests melting in a garnet-bearing mantle. Concerning the geodynamic context of the studied rocks, doleritic samples are classified as within-plate tholeiite and volcanic arc basalt, and within-plate alkali basalts.</span>展开更多
According to the ideas and concepts of systems dynamic of continent structure, using previous information related to the study area, combining analyses on orogenic belt, basin and magmatic rock, the present paper synt...According to the ideas and concepts of systems dynamic of continent structure, using previous information related to the study area, combining analyses on orogenic belt, basin and magmatic rock, the present paper synthesizes the tectono - sedimentary development of southeastern coast region, China, with special emphasis on the mountain making, basining and magmatic activity. The tectonic evolution after Late Caledonian orogeny was dominated by alternating rifting and converging, subsiding and uplifting, mountain making and basining in central and southern parts of southeastern China and the adjacent regions to the east and west. Seventeen geologic events , nine events of plate or terrain convergence , and continental crust accretion , as well as eight events of intracontinental rifting and basin faulting , are closely related to the tectonic and sedimentary evolution of the study area . The accompanied intense and frequent sedimentation , folding , faulting , magmatism and ore- forming process allowed huge coal , multimetal and potential petroleum source rocks to form in local depressions throughout the Caledonian to Himalavan time .展开更多
基金jointly supported by the National Nature Science Foundation of China(No.41402095)the Chinese Postdoctoral Science Foundation(No.2014M550380)+1 种基金National Nature Science Foundation of China(No.U1262203)the Special Foundation of Postdoctoral Innovation Project of Shandong Province
文摘A large quantity of drilling core, paleontology, geochemistry and geophysics data revealed several features of the Jiyang subbasin during the deposition of the Ekl-ES4x members: (1) the paleotopography of the gentle slope belt had an extremely low gradient; (2) the paleoclimate frequently alternated between dry and wet periods in a generally arid setting; (3) there was strong weathering around the periphery of the basin; (4) the lake was very shallow; (5) the lake level frequently rose and fell; and (6) the sedimentary environment of the gentle slope belt was an over- flooding lake. All of these factors provided favorable geological conditions for the development of an over-flooding lake delta. The lithologies of the continental over-flooding lake delta deposits are complex and diverse. The compositional maturity is moderate to low, and the grain size distribution curves and sedimentary structures indicate the presence of both gravity and traction currents. The sedimentary microfacies associations consist of a combination of ordered superposition of flood channels, distributary channels and sheet sands. The delta exhibits a weak foreset seismic reflection. The over-flooding lake delta deposits are laterally extensive. The sandstone content is high, and the individual sandstone beds are thin. The flood channel and distributary channel deposits exhibit evidence of bifurcation and lateral migration. The distribution of the sandbodies and the oxidation color of the mudstones provide evidence of cyclic deposition. The paleoclimate was the dominant factor controlling the development of the over-flooding lake delta. Due to the frequently alternating wet and dry paleoclimates, the over-flooding lake delta is characterized by the development of a broad upper plain and a lower delta plain. The upper delta plain is characterized by flood channel deposits, whereas the lower delta plain is represented by distributary channel deposits. The transition zone is characterized by the interaction of flood channels and distributary channels. Due to fault activity, the sandbodies of the over-flooding lake delta were juxtaposed against hydrocarbon source rocks, which was favorable for the development of lithologic reservoirs or structural-lithologic reservoirs. The lower delta plain deposits comprise the most favorable reservoirs.
文摘According to the characteristics of sedimentary facies and their vertical associations, sequence association of sedimentary facies can be divided into 2 types and 28 subtypes. The first type(type A)is a sedimentary sequence without volcanic rocks, including 18 subtypes. The second type(type B)is a volcanogenic succession including 10 subtypes. Each subtype may reflect certain filling condition under certain sedimentary environment. Time and space distribution of different types of sequence associations can reflect tectonics that controlled the basin evolution, sedimentary environments and palaeogeography.
基金supported by the Key Scientific and Technological Project‘‘Seismic-Sedimentology Software System Investigation and Application’’of Petro China Company Limited(2012B-3709)
文摘In contrast to marine deposits, continental deposits in China are characterized by diverse sedimentary types, rapid changes in sedimentary facies, complex lithology, and thin, small sand bodies. In seismic sedimentology studies on continental lacustrine basins, new thinking and more detailed and effective technical means are needed to generate lithological data cubes and conduct seismic geo- morphologic analyses. Based on a series of tests and studies, this paper presents the concepts of time-equivalent seismic attributes and seismic sedimentary bodies and a "four-step approach" for the seismic sedimentologic study of conti- nental basins: Step 1, build a time-equivalent stratigraphic framework based on vertical analysis and horizontal corre- lation of lithofacies, electrofacies, seismic facies, and pale- ontological combinations; Step 2, further build a sedimentary facies model based on the analysis of single- well facies with outcrop, coring, and lab test data; Step 3, convert the seismic data into a lithological data cube reflecting different lithologies by means of seismic tech- niques; and Step 4, perform a time-equivalent attribute analysis and convert the planar attribute into a sedimentary facies map under the guidance of the sedimentary facies model. The whole process, highlighting the verification and calibration of geological data, is an iteration and feedback procedure of geoseismic data. The key technologies include the following: (1) a seismic data-lithology conversion technique applicable to complex lithology, which can convert the seismic reflection from interface types to rock layers; and (2) time-equivalent seismic unit analysis and a time- equivalent seismic attribute extraction technique. Finally, this paper demonstrates the validity of the approach with an example from the Qikou Sag in the Bohai Bay Basin and subsequent drilling results.
基金supported by the work project of China Geological Survey(No.12120115002001-4,12120115026901)the Science Research from the Northwest Oilfield Sub–company of SINOPEC(No:KY2013–S–024)+1 种基金a Special Research Grant from Ministry of Land and Resources of the People’s Republic of China(No.201011034)the Innovation Group of National Natural Science Foundation of China(No.40921001)
文摘The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data and a large number of published research results, the basement constitutions and evolutions of tectonic-sedimentary of sedimentary basins, the main border fault belts and the orogenesis of their peripheries of the basins are analyzed. Especially, the main typical basins in the eight divisions in the continent of China are analyzed in detail, including the Tarim, Ordos, Sichuan, Songliao, Bohai Bay, Junggar, Qiadam and Qiangtang basins. The main five stages of superimposed evolutions processes of basins revealed, which accompanied with the tectonic processes of the Paleo-Asian Ocean, Tethyan and Western Pacific domains. They contained the formations of main Cratons (1850-800 Ma), developments of marine basins (800-386 Ma), developments of Marine- continental transition basins and super mantle plumes (386-252 Ma), amalgamation of China Continent and developments of continental basins (252-205 Ma) and development of the foreland basins in the western and extensional faulted basin in the eastern of China (205~0 Ma). Therefore, large scale marine sedimentary basins existed in the relatively stable continental blocks of the Proterozoic, developed during the Neoproterozoic to Paleozoic, with the property of the intracontinental cratons and peripheral foreland basins, the multistage superimposing and late reformations of basins. The continental basins developed on the weak or preexisting divisional basements, or the remnant and reformed marine basins in the Meso-Cenozoic, are mainly the continental margins, back-arc basins, retroarc foreland basins, intracontinental rifts and pull-apart basins. The styles and intensity deformation containing the faults, folds and the structural architecture of regional unconformities of the basins, responded to the openings, subductions, closures of oceans, the continent-continent collisions and reactivation of orogenies near the basins in different periods. The evolutions of the Tianshan-Mongol-Hinggan, Kunlun-Qilian-Qinling-Dabie-Sulu, Jiangshao-Shiwandashan, Helanshan-Longmengshan, Taihang-Wuling orogenic belts, the Tibet Plateau and the Altun and Tan- Lu Fault belts have importantly influenced on the tectonic-sedimentary developments, mineralization and hydrocarbon reservoir conditions of their adjacent basins in different times. The evolutions of basins also rely on the deep structures of lithosphere and the rheological properties of the mantle. The mosaic and mirroring geological structures of the deep lithosphere reflect the pre-existed divisions and hot mantle upwelling, constrain to the origins and transforms dynamics of the basins. The leading edges of the basin tectonic dynamics will focus on the basin and mountain coupling, reconstruction of the paleotectonic-paleogeography, establishing relationship between the structural deformations of shallow surface to the deep lithosphere or asthenosphere, as well as the restoring proto-basin and depicting residual basin of the Paleozoic basin, the effects of multiple stages of volcanism and paleo- earthquake events in China.
基金Supported by National Major Research Program for Science and Technology of China(2017ZX05009-002)the National Natural Science Foundation of China(41772090)Postdoctoral Science Foundation of China(2020M680624)。
文摘This paper systematically discusses the multiple source characteristics and formation mechanisms of carbonate-rich fine-grained sedimentary rocks through the analysis of material source and rock formation.The hydrocarbon accumulation characteristics of carbonate-rich fine-grained sedimentary rocks are also summarized.The results show that the main reason for the enrichment of fine-grained carbonate materials in rift lake basins was the supply of multiple material sources,including terrestrial material input,formation of intrabasinal authigenic carbonate,volcanic-hydrothermal material feeding and mixed source.The development of carbonate bedrock in the provenance area controlled the filling scale of carbonate materials in rift lake basins.The volcanic-hydrothermal activity might provide an alkaline fluid to the lake basins to strengthen the material supply for the formation of carbonate crystals.Authigenic carbonate crystals induced by biological processes were the main source of long-term accumulation of fine-grained carbonate materials in the lake basins.Carbonate-rich fine-grained sedimentary rocks with multiple features were formed through the interaction of physical,biochemical and chemical processes during the deposition and post-deposition stages.The source and sedimentary origin of the fine-grained carbonate rock controlled the hydrocarbon accumulation in it.In the multi-source system,the types of"sweet spots"of continental shale oil and gas include endogenous type,terrigenous type,volcanic-hydrothermal type and mixed source type.
基金co-supported by the National Key Basic Research and Development Program of China(No.2006CB202300)the National Natural Science Foundation Important Project(No.40739906).
文摘The uplift is a positive structural unit of the crust. It is an important window for continental dynamics owing to its abundant structural phenomena, such as fault, fold, unconformity and denudation of strata. Meanwhile, it is the very place to store important minerals like oil, natural gas, coal and uranium. Giant and large-scale oil and gas fields in China, such as the Daqing Oilfield, Lunnan-Tahe Oilfield, Penglai 19-3 Oilfield, Puguang Gas Field and Jingbian Gas Field, are developed mainly on uplifts. Therefore, it is the main target both for oil and gas exploration and for geological study. The uplift can be either a basement uplift, or one developed only in the sedimentary cover. Extension, compression and wrench or their combined forces may give rise to uplifts. The development process of uplifting, such as formation, development, dwindling and destruction, can be taken as the uplifting cycle. The uplifts on the giant Precambrian cratons are large in scale with less extensive structural deformation. The uplifts on the medium- and small-sized cratons or neo-cratons are formed in various shapes with strong structural deformation and complicated geological structure. Owing to changes in the geodynamic environment, uplift experiences a multi-stage or multi-cycle development process. Its geological structure is characterized in superposition of multi-structural layers. Based on the basement properties, mechanical stratigraphy and development sequence, uplifts can be divided into three basic types-the succession, superposition and destruction ones. The succession type is subdivided into the maintaining type and the lasting type. The superposition type can be subdivided into the composite anticlinal type, the buried-hill draped type, the faulted uplift type and the migration type according to the different scales and superimposed styles of uplifts in different cycles. The destruction type is subdivided into the tilting type and the negative inverted type. The development history of uplifts and their controlling effects on sedimentation and fluids are quite different from one another, although the uplifts with different structural types store important minerals. Uplifts and their slopes are the main areas for oil and gas accumulation. They usually become the composite oil and gas accumulation zones (belts) with multiple productive formations and various types of oil and gas reservoirs.
基金supported by the undertaken units of subprojects of the Program of Survey on Sandstone-Type Uranium Deposits in Northern Chinathe Ministry of Science and Technology of China(Grant 2015CB453000)the Geological Survey project of China(Grant No.DD20160128)
文摘In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedimentary associations, which is referred to as U-bearing rock series. This study describes the structural features of U-bearing rock series within the main Mesozoic-Cenozoic U-producing continental basins in Kazakhstan, Uzbekistan, and Russia in the western segment of the Central Asian Metallogenic Belt (CAMB), and Northern China in the eastern segment of the CAMB. We analyze the basic structural conditions and sedimentary environments of U-bearing rock series in Northern China and classify their structural styles in typical basins into river valley, basin margin, and intrabasin uplift margin types. The intrabasin uplift margin structural style proposed in this study can be used to indicate directions for the exploration of sandstone-type U deposits hosted in the center of a basin. At the same time, the study of structural style provides a new idea for exploring sandstone-type U deposits in Mesozoic-Cenozoic basins and it is of great significance to prospecting of sandstone-type uranium deposits.
基金supported by the National Basic Research Program(973) of China (No.2007CB41170403)the National Natural Science Foundation of China(No.40806023)the Scientific Research Fund of the SIO,SOA(No.1404-10)
文摘Based on the interpretations of three seismic profiles and one wide-angle seismic profile across the Northwest Sub-basin,South China Sea.stratigraphic sequences,deformation characteristics and an extension model for this sub-basin have been worked out.Three tectonic-stratigraphic units are determined.Detailed analyses of extension show that the event occurred mainly during the Paleogene and resulted in the formation of half-grabens or grabens distributed symmetrically around the spreading center.Sediments are characterized by chaotic and discontinuous reflectors,indicating clastic sediments. Farther to the southwest,the sub-basin features mainly continental rifting instead of sea-floor spreading. The rifting would have been controlled by the shape of the massif and developed just along the northern edge of the Zhongsha-Xisha Block,rather than joined the Xisha Trough.After 25 Ma.a southward ridge jump triggered the opening of the Southwest Sub-basin.The NW-directed stress caused by the sea-floor spreading of the Northwest Sub-basin may have prevented the continuous opening of the sub-basin.After that the Northwest Sub-basin experienced thermal cooling and exhibited broad subsidence.The deep crustal structure shown by the velocity model from a wide-angle seismic profile is also symmetrical around the spreading center,which indicates that the Northwest Sub-basin might have opened in a pure shear model.
文摘Magmatism in the Cretaceous sedimentary basins of the Figuil and Léré regions constitutes one of the fundamental parameters in the reconstruction of the history of the Cretaceous sedimentary basins. The main objective of this paper is to constrain the petrogenetic processes of hypovolcanic rocks and to determine their geodynamic context of emplacement. The petrographic study of mafic hypovolcanic and trachytic rocks was carried out under a polarizing microscope on thin sections. For the geochemical study, the major oxides and some trace elements were analyzed by ICP-AES. Trace and rare earth elements were analyzed by ICP-MS. The dolerites of the Cretaceous sedimentary basins are composed of dykes of amphibole bearing dolerites, biotite and pyroxene bearing dolerite, pyroxene bearing dolerites and trachytes. The dykes are in the order of 20 to 100 m wide by several kilometers long and oriented from N23<span style="white-space:normal;"><span style="white-space:normal;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span></span></span>E to N90<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>E. The textures of these rocks are sub-ophitic to intergranular for dolerites and trachytic for evolved rocks (trachytes). The geochemical study shows that the dolerites are basaltic in composition with alkaline to subalkaline character. The sampled dykes have an evolution dominated by fractional with the minor impact of the crustal assimilation characterized by low Rb/Y ratios for dolerites (0.36 - 0.97) and high values of Rb/Y for the Pan-African granitoid<span style="font-size:10.0pt;font-family:;" "="">s’</span><span style="font-size:10.0pt;font-family:;" "=""> samples (1.95 - 4.01).</span><span style="font-size:10.0pt;font-family:;" "=""> </span><span style="font-size:10.0pt;font-family:;" "="">The nature of doleritic and trachytic magma sources is supported by their (Tb/Yb)N > 1.9 (1.91 - 3.79) and Dy/Yb > 2 (2.32 - 3.50) ratios of most samples, which suggests melting in a garnet-bearing mantle. Concerning the geodynamic context of the studied rocks, doleritic samples are classified as within-plate tholeiite and volcanic arc basalt, and within-plate alkali basalts.</span>
文摘According to the ideas and concepts of systems dynamic of continent structure, using previous information related to the study area, combining analyses on orogenic belt, basin and magmatic rock, the present paper synthesizes the tectono - sedimentary development of southeastern coast region, China, with special emphasis on the mountain making, basining and magmatic activity. The tectonic evolution after Late Caledonian orogeny was dominated by alternating rifting and converging, subsiding and uplifting, mountain making and basining in central and southern parts of southeastern China and the adjacent regions to the east and west. Seventeen geologic events , nine events of plate or terrain convergence , and continental crust accretion , as well as eight events of intracontinental rifting and basin faulting , are closely related to the tectonic and sedimentary evolution of the study area . The accompanied intense and frequent sedimentation , folding , faulting , magmatism and ore- forming process allowed huge coal , multimetal and potential petroleum source rocks to form in local depressions throughout the Caledonian to Himalavan time .