Recombinant Escherichia coli BL21 is used to produce human-like collagen. The key constituents of media are optimized using response surface methodology (RSM). Before thermal induction, the highest biomass production ...Recombinant Escherichia coli BL21 is used to produce human-like collagen. The key constituents of media are optimized using response surface methodology (RSM). Before thermal induction, the highest biomass production and the lowest production of some hazardous by-products, especially acetic acid, were obtained in the media containing 0.085 mol·L-1 glucose and 0.019 mol·L-1 nitrogen (carbon-nitrogen ratio, 4.47:1). After thermal induction, when the concentrations of glucose and nitrogen in the media were 0.065 mol·L-1 and 0.017 mol·L-1 , respectively (carbon-nitrogen ratio, 3.82:1), the productivity of human-like collagen per cell was the highest while that of acetic acid was the lowest. The extended analysis showed that the production of lactic acid and propionic acid increased while that of some intermediate acids of the tricarboxylic acid cycle decreased if the dose of glucose increased.展开更多
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ...Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource.展开更多
Variations in soil organic matter accumulation across an elevation can be used to explain the control of substrate supply and variability on soil metabolic activity. We investigated geographic changes in soil organic ...Variations in soil organic matter accumulation across an elevation can be used to explain the control of substrate supply and variability on soil metabolic activity. We investigated geographic changes in soil organic matter and metabolic rates along an elevation gradient(289–2,489 m) in the Santa Rosa Mountains, California, USA from subalpine and montane pine forests through chaparral to desert. From base(289 m) to summit(2,489 m), 24 sites were established for collecting soil samples under canopies and inter-canopy spaces, at 0–5 and 5–15 cm soil depths increments. Soil organic matter(SOM) content was determined using weight loss on ignition at 550°C and soil CO2 efflux(R) was measured at day 5(R5) and day 20(R20) of incubation. Changes in SOM content along the elevation gradient showed a significant relationship(P〈0.05) but R5 and R20 were not related to either elevation or SOM content. However, the ratio of R and SOM(R5/SOM) showed a strong relationship across the mountains at both soil depths. R5/SOM, as an indicator of carbon use efficiency, may be applicable to other semi-arid transects at larger scale modeling of soil metabolic processes.展开更多
The gut microbiota plays a key role in metabolic diseases.Gut-microbiota-derived metabolites are found in different dietary sources,including:Carbohydrate(acetate,propionate,butyrate,also known as short-chain fatty ac...The gut microbiota plays a key role in metabolic diseases.Gut-microbiota-derived metabolites are found in different dietary sources,including:Carbohydrate(acetate,propionate,butyrate,also known as short-chain fatty acids,as well as succinate);protein(hydrogen sulfide,indole,and phenylacetic acid);and lipids(resveratrol-,ferulic acid-,linoleic acid-,catechin-and berry-derived metabolites).Insulin resistance,which is a global pandemic metabolic disease that progresses to type 2 diabetes mellitus,can be directly targeted by these metabolites.Gutmicrobiota-derived metabolites have broad effects locally and in distinct organs,in particular skeletal muscle,adipose tissue,and liver.These metabolites can modulate glucose metabolism,including the increase in glucose uptake and lipid oxidation in skeletal muscle,and decrease in lipogenesis and gluconeogenesis associated with lipid oxidation in the liver through activation of phosphatidylinositol 3-kinase-serine/threonine-protein kinase B and AMP-activated protein kinase.In adipose tissue,gut-microbiota-derived metabolites stimulate adipogenesis and thermogenesis,inhibit lipolysis,and attenuate inflammation.Importantly,an increase in energy expenditure and fat oxidation occurs in the whole body.Therefore,the therapeutic potential of current pharmacological and non-pharmacological approaches used to treat diabetes mellitus can be tested to target specific metabolites derived from intestinal bacteria,which may ultimately ameliorate the hyperglycemic burden.展开更多
The combined stress of high temperature and high relative air humidity is one of the most serious agrometeorological disasters that restricts the production capacity of protected agriculture.However,there is little in...The combined stress of high temperature and high relative air humidity is one of the most serious agrometeorological disasters that restricts the production capacity of protected agriculture.However,there is little information about the precise interaction between them on tomato fruit quality.The objectives of this study were to explore the effects of the combined stress of high temperature and relative humidity on the sugar and acid metabolism and fruit quality of tomato fruits,and to determine the best relative air humidity for fruit quality under high temperature environments.Four temperature treatments(32℃,35℃,38℃,41℃),three relative air humidity(50%,70%,90%)and four duration(3,6,9,12 d)orthogonal experiments were conducted,with 28℃,50%as control.The results showed that under high temperature and relative air humidity,the activity of sucrose metabolizing enzymes in young tomato fruits changed,which reduced fruits soluble sugar content;in addition,enzyme activities involved phosphopyruvate carboxylase(PEPC),mitochondria aconitase(MDH)and citrate synthetase(CS)increased which increased the content of organic acids(especially malic acid).Eventually,vitamin C,total sugar and sugar-acid ratio decreased significantly,while the titratable acid increased,resulting in a decrease in fruit flavor quality and nutritional quality in ripe fruit.Specifically,a temperature of 32℃and a relative air humidity of 70%were the best cultivation conditions for tomato reproductive growth period under high temperature.Our results indicating that fruit quality reduced under high temperature at the flowering stage,while increasing the relative air humidity to 70%could alleviate this negative effect.Our results are benefit to better understand the interaction between microclimate parameters under specific climatic conditions in the greenhouse environment and their impact on tomato flavor quality.展开更多
Lipids and glucose exert many essential physiological functions,such as providing raw materials or energy for cellular biosynthesis,regulating cell signal transduction,and maintaining a constant body temperature.Dysre...Lipids and glucose exert many essential physiological functions,such as providing raw materials or energy for cellular biosynthesis,regulating cell signal transduction,and maintaining a constant body temperature.Dysregulation of lipid and glucose metabolism can lead to glucolipid metabolic disorders linked to various metabolic diseases,such as obesity,diabetes,and cardiovascular disease.Therefore,intervention in glucolipid metabolism is a key therapeutic strategy for the treatment of metabolic diseases.Activating transcription factor 3(ATF3)is a transcription factor that acts as a hub of the cellular adaptive-response network and plays a pivotal role in the regulation of inflammation,apoptosis,DNA repair,and oncogenesis.Emerging evidence has illustrated the vital roles of ATF3 in glucolipid metabolism.ATF3 inhibits intestinal lipid absorption,enhances hepatic triglyceride hydrolysis and fatty acid oxidation,promotes macrophage reverse cholesterol transport,and attenuates the progression of western diet-induced nonalcoholic fatty liver disease and atherosclerosis.In addition to its role in lipid metabolism,ATF3 has also been identified as an important regulator of glucose metabolism.Here,we summarize the recent advances in the understanding of ATF3,mainly focusing on its role in glucose and lipid metabolism and potential therapeutic implications.展开更多
基金Supported by the National High Technology Research and Development Program of China (2006AA02Z246 2007AA03Z456) the National Natural Science Foundation of China (20776119 21076169)+4 种基金 Xi’an Research and Development Program(CX0735) the Scientific Research Program of Shaanxi Provincial Department of Education China (07JK417 07JC16 JG08181) the Natural Science Foundation of Shaanxi Province (2010JQ2012) the Specialized Research Fund for the Doctoral Program of Higher Education of China (20096101120023 20096101110014) Shaanxi Key Subject Program China
文摘Recombinant Escherichia coli BL21 is used to produce human-like collagen. The key constituents of media are optimized using response surface methodology (RSM). Before thermal induction, the highest biomass production and the lowest production of some hazardous by-products, especially acetic acid, were obtained in the media containing 0.085 mol·L-1 glucose and 0.019 mol·L-1 nitrogen (carbon-nitrogen ratio, 4.47:1). After thermal induction, when the concentrations of glucose and nitrogen in the media were 0.065 mol·L-1 and 0.017 mol·L-1 , respectively (carbon-nitrogen ratio, 3.82:1), the productivity of human-like collagen per cell was the highest while that of acetic acid was the lowest. The extended analysis showed that the production of lactic acid and propionic acid increased while that of some intermediate acids of the tricarboxylic acid cycle decreased if the dose of glucose increased.
基金funded by the National Natural Science Foundation of China(NSFC31301843)the National Nonprofit Institute Research Grant of Chinese Academy of Agricultural Sciences(IARRP-202-5)
文摘Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource.
文摘Variations in soil organic matter accumulation across an elevation can be used to explain the control of substrate supply and variability on soil metabolic activity. We investigated geographic changes in soil organic matter and metabolic rates along an elevation gradient(289–2,489 m) in the Santa Rosa Mountains, California, USA from subalpine and montane pine forests through chaparral to desert. From base(289 m) to summit(2,489 m), 24 sites were established for collecting soil samples under canopies and inter-canopy spaces, at 0–5 and 5–15 cm soil depths increments. Soil organic matter(SOM) content was determined using weight loss on ignition at 550°C and soil CO2 efflux(R) was measured at day 5(R5) and day 20(R20) of incubation. Changes in SOM content along the elevation gradient showed a significant relationship(P〈0.05) but R5 and R20 were not related to either elevation or SOM content. However, the ratio of R and SOM(R5/SOM) showed a strong relationship across the mountains at both soil depths. R5/SOM, as an indicator of carbon use efficiency, may be applicable to other semi-arid transects at larger scale modeling of soil metabolic processes.
基金Supported by São Paulo Research Foundation,No.2013/19560-6 and No.2017/23195-2EFSD(European Foundation for the Study of Diabetes)/Sanofi(to RangelÉB).
文摘The gut microbiota plays a key role in metabolic diseases.Gut-microbiota-derived metabolites are found in different dietary sources,including:Carbohydrate(acetate,propionate,butyrate,also known as short-chain fatty acids,as well as succinate);protein(hydrogen sulfide,indole,and phenylacetic acid);and lipids(resveratrol-,ferulic acid-,linoleic acid-,catechin-and berry-derived metabolites).Insulin resistance,which is a global pandemic metabolic disease that progresses to type 2 diabetes mellitus,can be directly targeted by these metabolites.Gutmicrobiota-derived metabolites have broad effects locally and in distinct organs,in particular skeletal muscle,adipose tissue,and liver.These metabolites can modulate glucose metabolism,including the increase in glucose uptake and lipid oxidation in skeletal muscle,and decrease in lipogenesis and gluconeogenesis associated with lipid oxidation in the liver through activation of phosphatidylinositol 3-kinase-serine/threonine-protein kinase B and AMP-activated protein kinase.In adipose tissue,gut-microbiota-derived metabolites stimulate adipogenesis and thermogenesis,inhibit lipolysis,and attenuate inflammation.Importantly,an increase in energy expenditure and fat oxidation occurs in the whole body.Therefore,the therapeutic potential of current pharmacological and non-pharmacological approaches used to treat diabetes mellitus can be tested to target specific metabolites derived from intestinal bacteria,which may ultimately ameliorate the hyperglycemic burden.
基金National Natural Science Foundation of China under Grant No.41775104National Key Research and Development Plan of China under Grant No.2019FYD1002202.
文摘The combined stress of high temperature and high relative air humidity is one of the most serious agrometeorological disasters that restricts the production capacity of protected agriculture.However,there is little information about the precise interaction between them on tomato fruit quality.The objectives of this study were to explore the effects of the combined stress of high temperature and relative humidity on the sugar and acid metabolism and fruit quality of tomato fruits,and to determine the best relative air humidity for fruit quality under high temperature environments.Four temperature treatments(32℃,35℃,38℃,41℃),three relative air humidity(50%,70%,90%)and four duration(3,6,9,12 d)orthogonal experiments were conducted,with 28℃,50%as control.The results showed that under high temperature and relative air humidity,the activity of sucrose metabolizing enzymes in young tomato fruits changed,which reduced fruits soluble sugar content;in addition,enzyme activities involved phosphopyruvate carboxylase(PEPC),mitochondria aconitase(MDH)and citrate synthetase(CS)increased which increased the content of organic acids(especially malic acid).Eventually,vitamin C,total sugar and sugar-acid ratio decreased significantly,while the titratable acid increased,resulting in a decrease in fruit flavor quality and nutritional quality in ripe fruit.Specifically,a temperature of 32℃and a relative air humidity of 70%were the best cultivation conditions for tomato reproductive growth period under high temperature.Our results indicating that fruit quality reduced under high temperature at the flowering stage,while increasing the relative air humidity to 70%could alleviate this negative effect.Our results are benefit to better understand the interaction between microclimate parameters under specific climatic conditions in the greenhouse environment and their impact on tomato flavor quality.
基金the National Natural Science Foundation of China(32271218 to Y.X.)in part by grants from the National Natural Science Foundation of China(81670519 to J.L.)the Science and Technology Commission of Shanghai Municipality(22ZR1414300 to H.W.).
文摘Lipids and glucose exert many essential physiological functions,such as providing raw materials or energy for cellular biosynthesis,regulating cell signal transduction,and maintaining a constant body temperature.Dysregulation of lipid and glucose metabolism can lead to glucolipid metabolic disorders linked to various metabolic diseases,such as obesity,diabetes,and cardiovascular disease.Therefore,intervention in glucolipid metabolism is a key therapeutic strategy for the treatment of metabolic diseases.Activating transcription factor 3(ATF3)is a transcription factor that acts as a hub of the cellular adaptive-response network and plays a pivotal role in the regulation of inflammation,apoptosis,DNA repair,and oncogenesis.Emerging evidence has illustrated the vital roles of ATF3 in glucolipid metabolism.ATF3 inhibits intestinal lipid absorption,enhances hepatic triglyceride hydrolysis and fatty acid oxidation,promotes macrophage reverse cholesterol transport,and attenuates the progression of western diet-induced nonalcoholic fatty liver disease and atherosclerosis.In addition to its role in lipid metabolism,ATF3 has also been identified as an important regulator of glucose metabolism.Here,we summarize the recent advances in the understanding of ATF3,mainly focusing on its role in glucose and lipid metabolism and potential therapeutic implications.