期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Metabolic Regulation of Mammary Gland Epithelial Cells of Dairy Cow by Galactopoietic Compound Isolated from Vaccariae segetalis 被引量:10
1
作者 TONG Hui-li GAO Xue-jun LI Qing-zhang LIU Jie LI Nan WAN Zhong-ying 《Agricultural Sciences in China》 CAS CSCD 2011年第7期1106-1116,共11页
In previous experiment, we isolated a compound dibutyl phthalate (DBP) from Vaccaria segetalis which had galactopoietic function on mammary gland epithelial cells of dairy cow (DCMECs). In this experiment, we asce... In previous experiment, we isolated a compound dibutyl phthalate (DBP) from Vaccaria segetalis which had galactopoietic function on mammary gland epithelial cells of dairy cow (DCMECs). In this experiment, we ascertained the metabolic regulation function of DBP on DCMECs. Many genes related to lactation including Stat5, AMPK, b-casein, Glut1, SREBP-1, PEPCK, and ACC were detected by real-time PCR. Furthermore, Stat5 and AMPK were detected by Western blot and immunofluorescence co-localization, respectively. The results showed that DBP stimulates the expression of Stat5 and p-Stat5, thus activates Stat5 cell signal transduction pathway and stimulates b-casein synthesis. DBP also raises the activities of Glut1 and AMPK to stimulate glucose uptake and glycometabolism and activates the expression of AMPK downstream target genes PEPCK and ACC and expression of SREBP-1 to stimulate milk fat synthesis. In addition, the activities of HK, G-6-PDH, ICDH, ATPase, and energy charges were stimulated by DBP to increase the energy metabolism level of DCMECs. The results showed DBP stimulates energy metabolism related to galactopoietic function in DCMECs. 展开更多
关键词 Vaccaria segetalis DBP dairy cow mammary gland epithelial cell metabolic regulation
下载PDF
Thyroid hormone action in metabolic regulation 被引量:3
2
作者 Yiyun Song Xuan Yao Hao Ying 《Protein & Cell》 SCIE CSCD 2011年第5期358-368,共11页
Thyroid hormone plays pivotal roles in growth,differentiation,development and metabolic homeostasis via thyroid hormone receptors(TRs)by controlling the expression of TR target genes.The transcriptional activity of TR... Thyroid hormone plays pivotal roles in growth,differentiation,development and metabolic homeostasis via thyroid hormone receptors(TRs)by controlling the expression of TR target genes.The transcriptional activity of TRs is modulated by multiple factors including various TR isoforms,diverse thyroid hormone response elements,different heterodimeric partners,coregulators,and the cellular location of TRs.In the present review,we summarize recent advance in understanding the molecular mechanisms of thyroid hormone action obtained from human subject research,thyroid hormone mimetics application,TR isoform-specific knock-in mouse models,and mitochondrion study with highlights in metabolic regulations.Finally,as future perspectives,we share our thoughts about current challenges and possible approaches to promote our knowledge of thyroid hormone action in metabolism. 展开更多
关键词 thyroid hormone thyroid hormone receptor metabolic regulation central and peripheral effect thyroid diseases
原文传递
The crucial role of metabolic regulation in differential hepatotoxicity induced by furanoids in Dioscorea bulbifera 被引量:1
3
作者 WU Zi-Tian LI Zhuo-Qing +4 位作者 SHI Wei WANG Ling-Li JIANG Yan LI Ping LI Hui-Jun 《Chinese Journal of Natural Medicines》 SCIE CAS CSCD 2020年第1期57-69,共13页
Diterpenoid lactones(DLs),a group of furan-containing compounds found in Dioscorea bulbifera L.(DB),have been reported to be associated with hepatotoxicity.Different hepatotoxicities of these DLs have been observed in... Diterpenoid lactones(DLs),a group of furan-containing compounds found in Dioscorea bulbifera L.(DB),have been reported to be associated with hepatotoxicity.Different hepatotoxicities of these DLs have been observed in vitro,but reasonable explanations for the differential hepatotoxicity have not been provided.Herein,the present study aimed to confirm the potential factors that contribute to varied hepatotoxicity of four representative DLs(diosbulbins A,B,C,F).In vitro toxic effects were evaluated in various cell models and the interactions between DLs and CYP3 A4 at the atomic level were simulated by molecular docking.Results showed that DLs exhibited varied cytotoxicities,and that CYP3 A4 played a modulatory role in this process.Moreover,structural variation may cause different affinities between DLs and CYP3 A4,which was positively correlated with the observation of cytotoxicity.In addition,analysis of the glutathione(GSH)conjugates indicated that reactive intermediates were formed by metabolic oxidation that occurred on the furan moiety of DLs,whereas,GSH consumption analysis reflected the consistency between the reactive metabolites and the hepatotoxicity.Collectively,our findings illustrated that the metabolic regulation played a crucial role in generating the varied hepatotoxicity of DLs. 展开更多
关键词 Dioscorea bulbifera Diterpenoid lactones metabolic regulation HEPATOTOXICITY Furan moiety
原文传递
Metabolic Regulation of the NLRP3 Inflammasome 被引量:1
4
作者 Qizhen Ye Sheng Chen Di Wang 《Infectious Microbes & Diseases》 2021年第4期183-186,共4页
The progression of many diseases is accompanied by inflammation,in which inflammasomes play an important role.Inflammasomes are large multimolecular complexes present in the cytosol of stimulated immune cells,which me... The progression of many diseases is accompanied by inflammation,in which inflammasomes play an important role.Inflammasomes are large multimolecular complexes present in the cytosol of stimulated immune cells,which mediate the activation of caspase-1 and the secretion of cytokines,leading to cellular pyroptosis.During this process,metabolic regulation of the inflammasome is gaining increasing attention in this field.This review focuses on a major inflammasome,NOD-,LRR-and pyrin domain-containing protein 3(NLRP3),and discusses the role and significance of its metabolic regulation. 展开更多
关键词 INFLAMMATION metabolic regulation NLRP3 inflammasome
原文传递
Comparative transcriptome analysis reveals metabolic regulation of prodigiosin in Serratia marcescens
5
作者 Yang Sun Lijun Wang +5 位作者 Tolbert Osire Weilai Fu Ganfeng Yi Shang-Tian Yang Taowei Yang Zhiming Rao 《Systems Microbiology and Biomanufacturing》 2021年第3期323-335,共13页
Prodigiosin is a secondary metabolite mainly produced at 30°C in Serratia marcescens,but it can hardly be synthetized at 37°C or higher.In this study,we provide insight into the metabolic regulation of prodi... Prodigiosin is a secondary metabolite mainly produced at 30°C in Serratia marcescens,but it can hardly be synthetized at 37°C or higher.In this study,we provide insight into the metabolic regulation of prodigiosin synthesis in response to temperature through transcriptome sequencing.The analysis of the function of differentially expressed genes suggested that temperature resulted in significant alteration of the metabolic pathways between 30 and 37°C.Specifically,30°C favored transcriptional expression of the pig gene cluster.At the same time,the carbon flux was redistributed to pathways of pyruvate,proline,serine,especially homoserine,cystathionine,homocysteine,methionine,and s-adenosylmethionine metabolism,all involved in prodigiosin biosynthesis,and was finally increased towards the prodigiosin synthesis pathway in S.marcescens at 30°C.Interestingly,results further confirmed increased transcriptional level of five regulators(LuxS,RpoS,Hfq,EepR,CRP),and decreased content of hexS through qPCR.Finally,successful co-overexpression of mmuM and metK,related to homocysteine,methionine,and s-adenosylmethionine metabolism,in the chromosome of JNB5-1(JNB5-1/MK)resulted in increased prodigiosin titer up to 7.57 g/L in JNB5-1/MK at 30°C,which was 41.2%higher than that in JNB5-1.Our transcriptome analysis provides further insight into the strain’s response to temperature changes at the transcription level,which is of great significance for improving the production of prodigiosin. 展开更多
关键词 S.marcescens PRODIGIOSIN TRANSCRIPTOME TEMPERATURE-DEPENDENT metabolic regulation
原文传递
Microbiota regulation in constipation and colorectal cancer
6
作者 Li-Wei Wang Hao Ruan +2 位作者 Bang-Mao Wang Yuan Qin Wei-Long Zhong 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第5期776-786,共11页
The relevance of constipation to the development and progression of colorectal cancer(CRC)is currently a controversial issue.Studies have shown that changes in the composition of the gut microbiota,a condition known a... The relevance of constipation to the development and progression of colorectal cancer(CRC)is currently a controversial issue.Studies have shown that changes in the composition of the gut microbiota,a condition known as ecological imbalance,are correlated with an increasing number of common human diseases,including CRC and constipation.CRC is the second leading cause of cancerrelated deaths worldwide,and constipation has been receiving widespread attention as a risk factor for CRC.Early colonoscopy screening of constipated patients,with regular follow-ups and timely intervention,can help detect early intestinal lesions and reduce the risks of developing colorectal polyps and CRC.As an important regulator of the intestinal microenvironment,the gut microbiota plays a critical role in the onset and progression of CRC.An increasing amount of evidence supports the thought that gut microbial composition and function are key determinants of CRC development and progression,with alterations inducing changes in the expression of host genes,metabolic regulation,and local and systemic immunological responses.Furthermore,constipation greatly affects the composition of the gut microbiota,which in turn influences the susceptibility to intestinal diseases such as CRC.However,the crosstalk between the gut microbiota,constipation,and CRC is still unclear. 展开更多
关键词 MICROBIOTA CONSTIPATION Colorectal cancer Intestinal microenvironment Immunological responses metabolic regulation
下载PDF
Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology 被引量:2
7
作者 Yang Zhang Jing Yu +7 位作者 Yilu Wu Mingda Li Yuxuan Zhao Haowen Zhu Changjing Chen Meng Wang Biqiang Chen Tianwei Tan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第2期14-28,共15页
The use of traditional chemical catalysis to produce chemicals has a series of drawbacks,such as high dependence on fossil resources,high energy consumption,and environmental pollution.With the development of syntheti... The use of traditional chemical catalysis to produce chemicals has a series of drawbacks,such as high dependence on fossil resources,high energy consumption,and environmental pollution.With the development of synthetic biology and metabolic engineering,the use of renewable biomass raw materials for chemicals synthesis by constructing efficient microbial cell factories is a green way to replace traditional chemical catalysis and traditional microbial fermentation.This review mainly summarizes several types of bulk chemicals and high value-added chemicals using metabolic engineering and synthetic biology strategies to achieve efficient microbial production.In addition,this review also summarizes several strategies for effectively regulating microbial cell metabolism.These strategies can achieve the coupling balance of material and energy by regulating intracellular material metabolism or energy metabolism,and promote the efficient production of target chemicals by microorganisms. 展开更多
关键词 CHEMICALS Synthetic biology metabolic regulation Microbial cell factory
下载PDF
Metabolic Cycles: Effect of a Simultaneous Input and Output of Two Substrates
8
作者 Antonio Sillero Víctor García-Herrero 《Journal of Biomedical Science and Engineering》 2016年第13期624-637,共14页
The metabolic cycle firstly considered here is composed of a unique initial substrate, six enzymes, and five empty boxes to accommodate the substrates derived from the transformation of the initial substrate. This cyc... The metabolic cycle firstly considered here is composed of a unique initial substrate, six enzymes, and five empty boxes to accommodate the substrates derived from the transformation of the initial substrate. This cycle was considered as a pre-Closed Metabolic Cycle (CMC). Using this model, the influence of changing the kinetic constant values of any enzyme on the substrate concentration was explored. This model was transformed into an open metabolic cycle (OMC) by the input and output of two metabolites catalyzed by two external enzymes. In this case, the relative rates of input and output of metabolites were also examined;it can be concluded that the OMC cycles form delicate and fragile structures which can be theoretically disrupted, making them metabolically unfeasible. 展开更多
关键词 metabolic Cycles metabolic regulation Kinetic Constants Differential Equations Metabolites: Input and Output
下载PDF
Effect of Insulin on the Differential Expression of VLDL Receptor Isoforms of SGC7901 Cell and Its Biological Implication 被引量:2
9
作者 蔡哲钧 李飞 +4 位作者 彭传梅 李和 宗义强 刘志国 屈伸 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2010年第5期551-555,共5页
This study examined the effect of insulin on the expression of very low density lipoprotein receptor (VLDLR) subtypes of SGC7901 cells and discussed its biological implication.In vitro, moderately or poorly-differenti... This study examined the effect of insulin on the expression of very low density lipoprotein receptor (VLDLR) subtypes of SGC7901 cells and discussed its biological implication.In vitro, moderately or poorly-differentiated human gastric adenocarcinoma cell line SGC7901 was incubated with insulin for different lengths of time, and then the expression of protein and RNA level in VLDLR subtypes were detected by Western blotting and real-time PCR, respectively.The results showed that, at certain time interval, insulin could down-regulate expression of type Ⅰ VLDLR and up-regulate the expression of type Ⅱ VLDLR in SGC7901 cells, at both protein and RNA level.We are led to conclude that insulin serves as a regulator in maintaining the balance between glucose and lipid metabolism in vivo, possibly through its effect on the differential expression of VLDLR subtypes. 展开更多
关键词 INSULIN very low density lipoprotein receptor cell proliferation metabolic regulation
下载PDF
Germplasm resources and secondary metabolism regulation in Reishi mushroom(Ganoderma lucidum)
10
作者 Xinyu He Yiwen Chen +6 位作者 Zhenhao Li Ling Fang Haimin Chen Zongsuo Liang Ann Abozeid Zongqi Yang Dongfeng Yang 《Chinese Herbal Medicines》 CAS 2023年第3期376-382,共7页
Ganoderma lucidum is a valuable medical macrofungus with a myriad of diverse secondary metabolites,in which triterpenoids are the major constituents.This paper introduced the germplasm resources of genus Ganoderma fro... Ganoderma lucidum is a valuable medical macrofungus with a myriad of diverse secondary metabolites,in which triterpenoids are the major constituents.This paper introduced the germplasm resources of genus Ganoderma from textual research,its distribution and identification at the molecular level.Also we overviewed G.lucidum in the components,the biological activities and biosynthetic pathways of ganoderic acid,aiming to provide scientific evidence for the development and utilization of G.lucidum germplasm resources and the biosynthesis of ganoderic acid. 展开更多
关键词 chemical constituents Ganoderma lucidum(Leyss.ex Fr.)Karst. ganoderic acid germplasm resources pharmacological activities secondary metabolism regulation
原文传递
Regulation of Sulfate Uptake and Assimilation——the Same or Not the Same? 被引量:13
11
作者 Jean-Claude Davidian Stanislav Kopriva 《Molecular Plant》 SCIE CAS CSCD 2010年第2期314-325,共12页
Plant take up the essential nutrient sulfur as sulfate from the soil, reduce it, and assimilate into bioorganic compounds, with cysteine being the first product. Both sulfate uptake and assimilation are highly regulat... Plant take up the essential nutrient sulfur as sulfate from the soil, reduce it, and assimilate into bioorganic compounds, with cysteine being the first product. Both sulfate uptake and assimilation are highly regulated by the demand for the reduced sulfur, by availability of nutrients, and by environmental conditions. In the last decade, great prog- ress has been achieved in dissecting the regulation of sulfur metabolism. Sulfate uptake and reduction of activated sulfate, adenosine 5'-phosphosulfate (APS), to sulfite by APS reductase appear to be the key regulatory steps. Here, we review the current knowledge on regulation of these processes, with special attention given to similarities and differences. 展开更多
关键词 metabolic regulation nutrient and metal transport NUTRITION primary metabolism sulfate uptake sulfur metabolism.
原文传递
Energy Signaling in the Regulation of Gene Expression during Stress 被引量:14
12
作者 Elena Baena-Gonzalez 《Molecular Plant》 SCIE CAS CSCD 2010年第2期300-313,共14页
Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must ha... Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprog- ramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response. 展开更多
关键词 Abiotic/environmental stress metabolic regulation cell signaling gene expression post-transcriptionalcontrol transcriptional control and transcription factors.
原文传递
PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) Integrates the Regulation of Sugar Responses with Isoprenoid Metabolism in Arabidopsis 被引量:5
13
作者 Ursula Flores-Perez Jordi Perez-Gil +6 位作者 Marta Closa Louwrance R Wright Patricia Botella-Pavia Michael A. Phillips Albert Ferrer Jonathan Gershenzon Manuel Rodriguez-Concepcion 《Molecular Plant》 SCIE CAS CSCD 2010年第1期101-112,共12页
The biosynthesis of isoprenoids in plant cells occurs from precursors produced in the cytosol by the mevalonate (MVA) pathway and in the plastid by the methylerythritol 4-phosphate (MEP) pathway, but little is kno... The biosynthesis of isoprenoids in plant cells occurs from precursors produced in the cytosol by the mevalonate (MVA) pathway and in the plastid by the methylerythritol 4-phosphate (MEP) pathway, but little is known about the mechanisms coordinating both pathways. Evidence of the importance of sugar signaling for such coordination in Arabi- dopsis thaliana is provided here by the characterization of a mutant showing an increased accumulation of MEP-derived isoprenoid products (chlorophylls and carotenoids) without changes in the levels of relevant MEP pathway transcripts, proteins, or enzyme activities. This mutant was found to be a new loss-of-function allele of PRL1 (Pleiotropic Regulatory Locus 1), a gene encoding a conserved WD-protein that functions as a global regulator of sugar, stress, and hormone responses, in part by inhibition of SNFl-related protein kinases (SnRK1). Consistent with the reported role of SnRK1 kinases in the phosphorylation and inactivation of the main regulatory enzyme of the MVA pathway (hydroxymethylglutaryl coenzyme-A reductase), its activity but not transcript or protein levels was reduced in prll seedlings. However, the accumulation of MVA-derived end products (sterols) was unaltered in mutant seedlings. Sucrose supplementation to wild- type seedlings phenocopied the prll mutation in terms of isoprenoid metabolism, suggesting that the observed isoprenoid phenotypes result from the increased sugar accumulation in the prll mutant. In summary, PRL1 appears to coordinate isoprenoid metabolism with sugar, hormone, and stress responses. 展开更多
关键词 Carbohydrate metabolism metabolic regulation secondary metabolism--terpenoids isoprenoids and carotenoids Arabidopsis.
原文传递
Complex Assembly and Metabolic Profiling of Arabidopsis thaliana PlantsOverexpressing Vitamin B6 Biosynthesis Proteins 被引量:3
14
作者 Jan Erik Leuendorf Sonia Osorio +2 位作者 Agnieszka Szewczyk Alisdair R. Fernie Hanjo Hellmann 《Molecular Plant》 SCIE CAS CSCD 2010年第5期890-903,共14页
In plants, vitamin B6 biosynthesis requires the activity of PDX1 and PDX2 proteins. Arabidopsis thaliana encodes for three PDX1 proteins, named PDXI.1, 1.2, and 1.3, but only one PDX2. Here, we show in planta complex ... In plants, vitamin B6 biosynthesis requires the activity of PDX1 and PDX2 proteins. Arabidopsis thaliana encodes for three PDX1 proteins, named PDXI.1, 1.2, and 1.3, but only one PDX2. Here, we show in planta complex assembly of PDX proteins, based on split-YFP and FPLC assays, and can demonstrate their presence in higher complexes of around 750 kDa. Metabolic profiling of plants ectopically expressing the different PDX proteins indicates a negative influence of PDX1.2 on vitamin Be biosynthesis and a correlation between aberrant vitamin B6 content, PDX1 gene expression, and light sensitivity specifically for PDX1.3. These findings provide first insights into in planta vitamin B6 synthase complex assembly and new information on how the different PDX proteins affect plant metabolism. 展开更多
关键词 Abiotic/environmental stress metabolomics metabolic regulation molecular physiology.
原文传递
Analysis of Short-Term Metabolic Alterations in Arabidopsis Following Changes in the Prevailing Environmental Conditions 被引量:2
15
作者 Alexandra Florian Zoran Nikoloski +5 位作者 Ronan Sulpice Stefan Timm Wagner L. Araujo Takayuki Tohge Hermann Bauwe Alisdair R. Fernie 《Molecular Plant》 SCIE CAS CSCD 2014年第5期893-911,共19页
Although a considerable increase in our knowledge concerning the importance of metabolic adjustments to unfavorable growth conditions has been recently provided, relatively little is known about the adjustments which ... Although a considerable increase in our knowledge concerning the importance of metabolic adjustments to unfavorable growth conditions has been recently provided, relatively little is known about the adjustments which occur in response to fluctuation in environmental factors. Evaluating the metabolic adjustments occurring under changing environmental conditions thus offers a good opportunity to increase our current understanding of the crosstalk between the major pathways which are affected by such conditions. To this end, plants growing under normal conditions were transferred to different light and temperature conditions which were anticipated to affect (amongst other processes) the rates of photosynthesis and photorespiration and characterized at the physiological, molecular, and metabolic levels following this transition. Our results revealed similar behavior in response to both treatments and imply a tight connec- tivity of photorespiration with the major pathways of plant metabolism. They further highlight that the majority of the regulation of these pathways is not mediated at the level of transcription but that leaf metabolism is rather pre-poised to adapt to changes in these input parameters. 展开更多
关键词 central metabolism environmental perturbation gene expression metabolic regulation PHOTORESPIRATION PHOTOSYNTHESIS ribulose-1 5-bisphosphate carboxylase/oxygenase (RubisCO).
原文传递
G protein controls stress readiness by modulating transcriptional and metabolic homeostasis in Arabidopsis thaliana and Marchantia polymorpha
16
作者 Ting-Ying Wu Shalini Krishnamoorthi +6 位作者 Kulaporn Boonyaves Isam Al-Darabsah Richalynn Leong Alan M.Jones Kimitsune Ishizaki Kang-Ling Liao Daisuke Urano 《Molecular Plant》 SCIE CAS CSCD 2022年第12期1889-1907,共19页
The core G protein signaling module,which consists of Gαand extra-large Gα(XLG)subunits coupled with the Gβγdimer,is a master regulator of various stress responses.In this study,we compared the basal and salt stre... The core G protein signaling module,which consists of Gαand extra-large Gα(XLG)subunits coupled with the Gβγdimer,is a master regulator of various stress responses.In this study,we compared the basal and salt stress-induced transcriptomic,metabolomic and phenotypic profiles in Gα,Gβ,and XLG-null mutants of two plant species,Arabidopsis thaliana and Marchantia polymorpha,and showed that G protein mediates the shift of transcriptional and metabolic homeostasis to stress readiness status.We demonstrated that such stress readiness serves as an intrinsic protection mechanism against further stressors through enhancing the phenylpropanoid pathway and abscisic acid responses.Furthermore,WRKY transcription factors were identified as key intermediates of G protein-mediated homeostatic shifts.Statistical and mathematical model comparisons between A.thaliana and M.polymorpha revealed evolutionary conservation of transcriptional and metabolic networks over land plant evolution,whereas divergence has occurred in the function of plant-specific atypical XLG subunit.Taken together,our results indicate that the shifts in transcriptional and metabolic homeostasis at least partially act as the mechanisms of G protein-coupled stress responses that are conserved between two distantly related plants. 展开更多
关键词 homeostatic adjustments transcriptional regulation metabolic regulation heterotrimeric G protein evolutionary conservation
原文传递
Targeting fructose metabolism by glucose transporter 5 regulation in human cholangiocarcinoma
17
作者 Nattawan Suwannakul Napat Armartmuntree +7 位作者 Raynoo Thanan Kaoru Midorikawa Tetsuo Kon Shinji Oikawa Hatasu Kobayashi Ning Ma Shosuke Kawanishi Mariko Murata 《Genes & Diseases》 SCIE 2022年第6期1727-1741,共15页
Alterations in cellular metabolism may contribute to tumor proliferation and survival.Upregulation of the facilitative glucose transporter(GLUT)plays a key role in promoting cancer.GLUT5 mediates modulation of fructos... Alterations in cellular metabolism may contribute to tumor proliferation and survival.Upregulation of the facilitative glucose transporter(GLUT)plays a key role in promoting cancer.GLUT5 mediates modulation of fructose utilization,and its overexpression has been associated with poor prognosis in several cancers.However,its metabolic regulation remains poorly understood.Here,we demonstrated elevated GLUT5 expression in human cholangiocarcinoma(CCA),using RNA sequencing data from samples of human tissues and cell lines,as compared to normal liver tissues or a cholangiocyte cell line.Cells exhibiting highexpression of GLUT5 showed increased rates of cell proliferation and ATP production,particularly in a fructose-supplemented medium.In contrast,GLUT5 silencing attenuated cell proliferation,ATP production,cell migration/invasion,and improved epithelialemesenchymal transition(EMT)balance.Correspondingly,fructose consumption increased tumor growth in a nude mouse xenograft model,and GLUT5 silencing suppressed growth,supporting the tumor-inhibitory effect of GLUT5 downregulation.Furthermore,in the metabolic pathways of fructolysis-Warburg effect,the expression levels of relative downstream genes,including ketohexokinase(KHK),aldolase B(ALDOB),lactate dehydrogenase A(LDHA),and monocarboxylate transporter 4(MCT4),as well as hypoxia-inducible factor 1 alpha(HIF1A),were altered in a GLUT5 expression-dependent manner.Taken together,these findings indicate that GLUT5 could be a potential target for CCA therapeutic approach via metabolic regulation. 展开更多
关键词 CHOLANGIOCARCINOMA FRUCTOSE Glucose transporter 5 metabolic regulation Warburg effect
原文传递
Paracrine Fibroblast Growth Factor-Based Therapy:An Unexpected Panacea for Metabolic-DysfunctionAssociated Fatty Liver Disease(MAFLD)
18
作者 Tongtong Pan Ting Li +2 位作者 Lu Shi Lihuang Su Yongping Chen 《Infectious Microbes & Diseases》 2022年第1期13-19,共7页
Metabolic-dysfunction-associated fatty liver disease(MAFLD)is a group of highly heterogeneous multi-system diseases,which is closely related to metabolic dysfunction and is one of the most important public health prob... Metabolic-dysfunction-associated fatty liver disease(MAFLD)is a group of highly heterogeneous multi-system diseases,which is closely related to metabolic dysfunction and is one of the most important public health problems in the world.Studies have shown that paracrine fibroblast growth factors(FGFs)play an important role in the occurrence and development of MAFLD by regulating glucose and lipid metabolism,inflammation,and fibrosis.This article reviews the latest progress in understanding of the distribution,function,and metabolic regulation of paracrine FGFs,which paves the way for future FGF-based therapies targeting MAFLD. 展开更多
关键词 fibroblast growth factor metabolic-dysfunction-associated fatty liver disease PARACRINE metabolic regulation
原文传递
Key regulators of intestinal stem cells:diet,microbiota,and microbial metabolites 被引量:1
19
作者 Chensi Yao Xiaowen Gou +6 位作者 Chuanxi Tian Lijuan Zhou Rui Hao Li Wan Zeyu Wang Min Li Xiaolin Tong 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2023年第10期735-746,共12页
Interactions between diet and the intestinal microbiome play an important role in human health and disease development.It is well known that such interactions,whether direct or indirect,trigger a series of metabolic r... Interactions between diet and the intestinal microbiome play an important role in human health and disease development.It is well known that such interactions,whether direct or indirect,trigger a series of metabolic reactions in the body.Evidence suggests that intestinal stem cells(ISCs),which are phenotypic precursors of various intestinal epithelial cells,play a significant role in the regulation of intestinal barrier function and homeostasis.The advent and evolution of intestinal organoid culture techniques have presented a key opportunity to study the association between the intestinal microenvironment and ISCs.As a result,the effects exerted by dietary factors,intestinal microbiomes,and their metabolites on the metabolic regulation of ISCs and the potential mechanisms underlying such effects are being gradually revealed.This review summarises the effects of different dietary patterns on the behaviour and functioning of ISCs and focuses on the crosstalk between intestinal microbiota,related metabolites,and ISCs,with the aim of fully understanding the relationship between these three factors and providing further insights into the complex mechanisms associated with ISCs in the human body.Gaining an understanding of these mechanisms may lead to the development of novel dietary interventions or drugs conducive to intestinal health. 展开更多
关键词 Intestinal stem cells Intestinal microbiome metabolic regulation Dietary patterns METABOLITES
原文传递
Microbial synthesis of bacitracin:Recent progress,challenges,and prospects
20
作者 Jiang Zhu Shiyi Wang +6 位作者 Cheng Wang Zhi Wang Gan Luo Junhui Li Yangyang Zhan Dongbo Cai Shouwen Chen 《Synthetic and Systems Biotechnology》 SCIE CSCD 2023年第2期314-322,共9页
Microorganisms are important sources of various natural products that have been commercialized for human medicine and animal healthcare.Bacitracin is an important antibacterial natural product predominantly pro-duced ... Microorganisms are important sources of various natural products that have been commercialized for human medicine and animal healthcare.Bacitracin is an important antibacterial natural product predominantly pro-duced by Bacillus licheniformis and Bacillus subtilis,and it is characterized by a broad antimicrobial spectrum,strong activity and low resistance,thus bacitracin is extensively applied in animal feed and veterinary medicine industries.In recent years,various strategies have been proposed to improve bacitracin production.Herein,we systematically describe the regulation of bacitracin biosynthesis in genus Bacillus and its associated mechanism,to provide a theoretical basis for bacitracin overproduction.The metabolic engineering strategies applied for bacitracin production are explored,including improving substrate utilization,using an enlarged precursor amino acid pool,increasing ATP supply and NADPH generation,and engineering transcription regulators.We also present several approaches of fermentation process optimization to facilitate the industrial large-scale production of bacitracin.Finally,the challenges and prospects associated with microbial bacitracin synthesis are discussed to facilitate the establishment of high-yield and low-cost biological factories. 展开更多
关键词 BACILLUS BACITRACIN metabolic regulation metabolic engineering Fermentation process
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部