期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Development of cell metabolite analysis on microfluidic platform 被引量:2
1
作者 Luyao Lin Jin-Ming Lin 《Journal of Pharmaceutical Analysis》 SCIE CAS 2015年第6期337-347,共11页
Cell metabolite analysis is of great interest to analytical chemists and physiologists, with some metabolites having been identified as important indicators of major diseases such as cancer. A highthroughput and sensi... Cell metabolite analysis is of great interest to analytical chemists and physiologists, with some metabolites having been identified as important indicators of major diseases such as cancer. A highthroughput and sensitive method for drug metabolite analysis will largely promote the drug discovery industry. The basic barrier of metabolite analysis comes from the interference of complex components in cell biological system and low abundance of target substances. As a powerful tool in biosample analysis, microfluidic chip enhances the sensitivity and throughput by integrating multiple functional units into one chip. In this review, we discussed three critical steps of establishing functional microfluidic platform for cellular metabolism study. Cell in vitro culture model, on chip sample pretreatment, and microchip combined detectors were described in details and demonstrated by works in five years. And a brief summary was given to discuss the advantages as well as challenges of applying microchip method in cell metabolite and biosample analysis. 展开更多
关键词 Microfluidic Cell analysis Cellular metabolism Chip-mass spectrometry
下载PDF
Exogenous strigolactones promote lateral root growth by reducing the endogenous auxin level in rapeseed 被引量:5
2
作者 MA Ni WAN Lin +3 位作者 ZHAO Wei LIU Hong-fang LI Jun ZHANG Chun-lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第2期465-482,共18页
Strigolactones(SLs)are newly discovered plant hormones which regulate the normal development of different plant organs,especially root architecture.Lateral root formation of rapeseed seedlings before winter has great ... Strigolactones(SLs)are newly discovered plant hormones which regulate the normal development of different plant organs,especially root architecture.Lateral root formation of rapeseed seedlings before winter has great effects on the plant growth and seed yield.Here,we treated the seedlings of Zhongshuang 11(ZS11),an elite conventional rapeseed cultivar,with different concentrations of GR24(a synthetic analogue of strigolactones),and found that a low concentration(0.18μmol L–1)of GR24 could significantly increase the lateral root growth,shoot growth,and root/shoot ratio of seedlings.RNA-Seq analysis of lateral roots at 12 h,1 d,4 d,and 7 d after GR24 treatment showed that 2301,4626,1595,and 783 genes were significantly differentially expressed,respectively.Function enrichment analysis revealed that the plant hormone transduction pathway,tryptophan metabolism,and the phenylpropanoid biosynthesis pathway were over-represented.Moreover,transcription factors,including AP2/ERF,AUX/IAA,NAC,MYB,and WRKY,were up-regulated at 1 d after GR24 treatment.Metabolomics profiling further demonstrated that the amounts of various metabolites,such as indole-3-acetic acid(IAA)and cis-zeatin were drastically altered.In particular,the concentrations of endogenous IAA significantly decreased by 52.4 and 75.8%at 12 h and 1 d after GR24 treatment,respectively.Our study indicated that low concentrations of exogenous SLs could promote the lateral root growth of rapeseed through interaction with other phytohormones,which provides useful clues for the effects of SLs on root architecture and crop productivity. 展开更多
关键词 rapeseed(Brassica napus L.) STRIGOLACTONES lateral root growth RNA-SEQ metabolic profiling analysis
下载PDF
Optimization of the bioconversion of glycerol to ethanol using Escherichia coli by implementing a bi-level programming framework for proposing gene transcription control strategies based on genetic algorithms
3
作者 Carol Milena Barreto-Rodriguez Jessica Paola Ramirez-Angulo +2 位作者 Jorge Mario Gomez-Ramirez Luke Achenie Andres Fernando Gonzalez-Barrios 《Advances in Bioscience and Biotechnology》 2012年第4期336-343,共8页
In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approach... In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approaches that can be exploited in order to enhance yield of processes which are based on biological reactions. Here, we propose an evolutionary approach aiming to suggest different mutant for augmenting ethanol yield using glycerol as substrate in Escherichia coli. We found that this algorithm, even though is far from providing the global optimum, is able to uncover genes that a global optimizer would be incapable of. By over-expressing accB, eno, dapE, and accA mutants in ethanol production was augmented up to 2 fold compared to its counterpart E. coli BW25113. 展开更多
关键词 Bi-level Optimization Escherichia coli Metabolic Flux analysis Genetic Algorithm
下载PDF
Metabolic flux analysis on arachidonic acid fermentation
4
作者 JIN Mingjie HUANG He +2 位作者 ZHANG Kun YAN Jie GAO Zhen 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2007年第4期421-426,共6页
The analysis of flux distributions in metabolic networks has become an important approach for understand-ing the fermentation characteristics of the process.A model of metabolic flux analysis of arachidonic acid(AA)sy... The analysis of flux distributions in metabolic networks has become an important approach for understand-ing the fermentation characteristics of the process.A model of metabolic flux analysis of arachidonic acid(AA)synthesis in Mortierella alpina ME-1 was established and carbon flux distributions were estimated in different fermentation phases with different concentrations of N-source.During the expo-nential,decelerating and stationary phase,carbon fluxes to AA were 3.28%,8.80%and 6.97%,respectively,with sufficient N-source broth based on the flux of glucose uptake,and those were increased to 3.95%,19.21%and 39.29%,respectively,by regulating the shifts of carbon fluxes via fermentation with limited N-source broth and adding 0.05% NaNO_(3) at 96 h.Eventually AA yield was increased from 1.3 to 3.5 g·L^(−1).These results suggest a way to improve AA fermentation,that is,fermentation with limited N-source broth and adding low concentration N-source during the stationary phase. 展开更多
关键词 metabolic flux analysis arachidonic acid Mortierella alpina FERMENTATION SYNTHESIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部