The effect of docosahexaenoic acid (DHA) on lipid metabolism in broiler were studied in order to provide test results for polyunsaturated fatty acids (PUFA) regulating fatty deposition. 1-wk-old Arbor Acres (AA)...The effect of docosahexaenoic acid (DHA) on lipid metabolism in broiler were studied in order to provide test results for polyunsaturated fatty acids (PUFA) regulating fatty deposition. 1-wk-old Arbor Acres (AA) broiler were fed with DHA microalgae and slaughtered after 2 wk. The tissues were stored for isolating total RNA. RT-PCR was used to analyze the expression changes of genes. DHA microalgae significantly increased average body gain and feed conversion rates, reduced the levels of total cholesterol (TC), total glycerin (TG), and low-density lipoprotein cholesterol (LDL-C) in serum and increased the content of high-density lipoprotein cholesterol. 1 wk later, the effects were still remained. In liver tissue, DHA microalgae increased the expression of PPARα and carnitine palmitoyltransferase-1 (CPT-1). 1 wk later, it was observed that DHA up-regulated the expression of fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), lipoprotein lipase (LPL) and carnitine palmitoyltransferase-1 (CPT-1). 2 wk later, it still increased the expressions of FAS and CPT-1, but a converse result was observed for ACC and LPL. In adipose tissue, DHA microalgae suppressed the expression of PPARα and LPL, up-regulated the expression of ACC, FAS, and CPT-1. After withdrawal, the expression of genes in test group was significantly lower than that in control group (P0.01). In the muscle of chest, DHA microalgae significantly inhibited the gene expression (P0.01). 1 wk later, the expressions of FAS, LPL and CPT-1 in test group were significantly higher than that in control group (P0.05). 2 wk later, it was shown that DHA significantly inhibited fat synthesis and decomposition. In the leg, there was not any PPARα expression being detected, probably because of the less expression in muscle tissues or the regulation of PPARα had no relation to the case. DHA microalgae promote fat synthesis in the liver and inhibit in adipose and muscle tissues. It still has effects after 1 wk of withdrawal.展开更多
Vitamin D is a fat-soluble vitamin.It is an essential vitamin for human body.It has a classical effect on regulating calcium and phosphorus metabolism.Participate in cellular and humoral immune processes by regulating...Vitamin D is a fat-soluble vitamin.It is an essential vitamin for human body.It has a classical effect on regulating calcium and phosphorus metabolism.Participate in cellular and humoral immune processes by regulating the growth,differentiation and metabolism of immune cells.A large number of studies in recent years have shown that vitamin D deficiency increases the incidence of respiratory diseases.Respiratory diseases mainly include bronchial asthma,chronic obstructive pulmonary disease,tuberculosis,acute upper respiratory tract infection and pneumonia.Vitamin D metabolic pathway genes play a very important regulatory role in the transformation of vitamin D into active vitamin D,including CYP2R1,CYP27B1,CYP24A1,VDBP,VDR five genes.Genetic polymorphism of genes is the molecular basis of individual differences and disease development.Therefore,this paper summarizes the research on single nucleotide polymorphism of vitamin D metabolic pathway gene and respiratory diseases.In order to provide a new idea for future treatment.展开更多
Jerusalem artichoke(Helianthus tuberosus)is a global multifunctional crop.It has wide applications in the food,health,feed,and biofuel industries and in ecological protection;it also serves as a germplasm pool for bre...Jerusalem artichoke(Helianthus tuberosus)is a global multifunctional crop.It has wide applications in the food,health,feed,and biofuel industries and in ecological protection;it also serves as a germplasm pool for breeding of the global oil crop common sunflower(Helianthus annuus).However,biological studies of Je-rusalem artichoke have been hindered by a lack of genome sequences,and its high polyploidy and large genome size have posed challenges to genome assembly.Here,we report a 21-Gb chromosome-level as-sembly of the hexaploid Jerusalem artichoke genome,which comprises 17 homologous groups,each with 6 pseudochromosomes.We found multiple large-scale chromosome rearrangements between Jerusalem artichoke and common sunflower,and our results show that the hexaploid genome of Jerusalem artichoke was formed by a hybridization event between a tetraploid and a diploid Helianthus species,followed by chromosome doubling of the hybrid,which occurred approximately 2 million years ago.Moreover,we iden-tied more copies of actively expressed genes involved in inulin metabolism and showed that these genes may still be undergoing loss of function or sub-or neofunctionalization.These genomic resources will pro-mote further biological studies,breeding improvement,and industrial utilization of Helianthus crops.展开更多
[Objective] Expressions of key enzymatic genes involved in phenyl-propanoid metabolic pathway in potato and StR2R3-MYB and StTGA transcripters were investigated in the present study. [Method] The primitive cultivar Ya...[Objective] Expressions of key enzymatic genes involved in phenyl-propanoid metabolic pathway in potato and StR2R3-MYB and StTGA transcripters were investigated in the present study. [Method] The primitive cultivar Yan was the materials for replicated trials and total RNA extracted from tissues of seedlings. Re-al-time florescent quantification PCR, multiple intervals of air temperature, light-il umi-nation and time-duration were factors of treatments in the experiment. Data on gene expressions were obtained and proceed to asses and compare effects based on statistical analysis. [Result] The results showed negative correlations between tem-perature degrees and expressions of StPAL, StDFR and StR2R3-MYB genes but not StTGA. Positive correlations, however, were derived between those of StCHS, StDFR and StR2R3-MYB and light-intensity. Significant interactive effects between expressions of StPAL and StDFR and treatments, light intensity and temperature degree, along the phenylpropanoid pathway were observed. Transcription regulator of StR2R3-MYB showed significant positive effect on the expression of StCHS of potato. StTGA transcription factor, on the other hand, gave significant negative ef-fects on the expression of StDFR. [Conclusion] Results from present study reveal the role of environmental factors and complicate interactions between such condi-tions as temperature-light il umination and mRNA function of target genes.展开更多
AIM: To evaluate whether alcohol dehydrogenase-1B (ADH1B) His47Arg and aldehyde dehydrogenase-2 (ALDH2) Glu487Lys polymorphism is involved in the esophageal squamous cell carcinoma (ESCC) risk in Chinese Han populatio...AIM: To evaluate whether alcohol dehydrogenase-1B (ADH1B) His47Arg and aldehyde dehydrogenase-2 (ALDH2) Glu487Lys polymorphism is involved in the esophageal squamous cell carcinoma (ESCC) risk in Chinese Han population. METHODS: Seven studies of ADH1B and ALDH2 genotypes in Chinese Han population in 1450 cases and 2459 controls were included for meta-analysis. Stratified analyses were carried out to determine the genealcohol and gene-gene interaction with ESCC risk. Potential sources of heterogeneity between studies were explored, and publication bias was also evaluated. RESULTS: Individuals with ADH1B arginine (Arg)/Arg genotype showed 3.95-fold increased ESCC risk in the recessive genetic model [Arg/Arg vs Arg/histidine (His) + His/His: odds ratio (OR) = 3.95, 95% confidence in- terval (CI): 2.76-5.67]. Signif icant association was found in the dominant model for ALDH2 lysine (Lys) allele [glutamate (Glu)/Lys + Lys/Lys vs Glu/Glu: OR = 2.00,95% CI: 1.54-2.61]. Compared with the non-alcoholics, Arg/Arg (OR = 25.20, 95% CI: 10.87-53.44) and Glu/ Lys + Lys/Lys (OR = 21.47, 95% CI: 6.44-71.59) were found to interact with alcohol drinking to increase the ESCC risk. ADH1B Arg+ and ALDH2 Lys+ had a higher risk for ESCC (OR = 7.09, 95% CI: 2.16-23.33). CONCLUSION: The genetic variations of ADH1B His47Arg and ALDH2 Glu487Lys are susceptible loci for ESCC in Chinese Han population and interact substantially with alcohol consumption. The individuals carrying both risky genotypes have a higher baseline risk of ESCC.展开更多
AIM:To investigate the roles of the ribonucleotide reductase M2 (RRM2) subunit in colorectal cancer (CRC) and ultraviolet (UV)-induced DNA damage repair. METHODS:Immunohistochemical staining of tissue microarray was p...AIM:To investigate the roles of the ribonucleotide reductase M2 (RRM2) subunit in colorectal cancer (CRC) and ultraviolet (UV)-induced DNA damage repair. METHODS:Immunohistochemical staining of tissue microarray was performed to detect the expression of RRM2. Seven CRC cell lines were cultured and three human colon cancer cell lines, i.e., HCT116, SW480 and SW620, were used. Reverse transcription polymerase chain reaction and Western blotting were performed to determine the mRNA and protein expression levels of RRM2, respectively. Cell proliferation assay, cell cycle analysis were performed. Cell apoptosis was evaluated by double staining with fluorescein isothiocyanate-conjugated Annexin Ⅴ and propidium iodide (PI) usingAnnexin Ⅴ/PI apoptosis kit. The motility and invasion of CRC cells were assessed by the Transwell chamber assay. Cells were irradiated with a 254 nm UV-C lamp to detect the UV sensitivity after RRM2 depletion. RESULTS:Immunohistochemical staining revealed elevated RRM2 levels in CRC tissues. RRM2 overexpression was positively correlated with invasion depth (P < 0.05), poorly differentiated type (P = 0.0051), and tumor node metastasis stage (P = 0.0015). The expression of RRM2 in HCT116 cells was downregulated after transfection, and HCT116 cell proliferation was obviously suppressed compared to control groups (P < 0.05). In the invasion test, the number of cells that passed through the chambers in the RRM2-siRNA group was 81 ± 3, which was lower than that in the negative control (289 ± 7) and blank control groups (301 ± 7.2). These differences were statistically significant (P < 0.01). Our data suggest that RRM2 overexpression may be associated with CRC progression. RRM2 silencing by siRNA may inhibit the hyperplasia and invasiveness of CRC cells, suggesting that RRM2 may play an important role in the infiltration and metastasis of CRC, which is a potential therapeutic strategy in CRC. In addition, RRM2 depletion increased UV sensitivity. CONCLUSION:These findings suggest that RRM2 may be a facilitating factor in colorectal tumorigenesis and UV-induced DNA damage repair.展开更多
AIM:To investigate the role of metabolic enzyme and DNA repair genes in susceptibility of esophageal squamous cell carcinoma(ESCC). METHODS:A case-control study was designed with 454 samples from 128 ESCC patients and...AIM:To investigate the role of metabolic enzyme and DNA repair genes in susceptibility of esophageal squamous cell carcinoma(ESCC). METHODS:A case-control study was designed with 454 samples from 128 ESCC patients and 326 gender, age and ethnicity-matched control subjects.Genotypes of 69 single nucleotide polymorphisms(SNPs)of metabolic enzyme(aldehyde dehydrogenase-2,ALDH2; alcohol dehydrogenase-1 B,ADHB1;Cytochrome P450 2A6,CYP2A6)and DNA repair capacity genes(excision repair cross complementing group 1,ERCC1; O 6-methylguanine DNA methyltransferase,MGMT; xeroderma pigmentosum group A,XPA;xeroderma pigmentosum group A,XPD)were determined by the Sequenom MassARRAY system,and results were analyzed using unconditional logistic regression adjusted for age,gender. RESULTS:There was no association between the variation in the ERCC1,XPA,ADHB1 genes and ESCC risk.Increased risk of ESCC was suggested in ALDH2 for frequency of presence C allele of SNP [Rs886205:1.626(1.158-2.284)],XPD for C allele [Rs50872:1.482(1.058-2.074)],and MGMT for A allele[Rs11016897:1.666(1.245-2.228)].Five variants of MGMT were associated with a protective effect on ESCC carcinogenesis,including C allele [Rs7069143:0.698(0.518-0.939)],C allele[Rs3793909: 0.6 5 3(0.4 2 9-0.9 9 5)],A a l l e l e[R s 1 2 7 7 1 8 8 2: 0.719(0.524-0.986)],C allele[Rs551491:0.707 (0.529-0.945)],and A allele[Rs7071825:0.618 (0.506-0.910)].At the genotype level,increased risk of ESCC carcinogenesis was found in homozygous carriers of the ALDH2 Rs886205[CC vs TT,odds ratios(OR): 3.116,95%CI:1.179-8.234],MGMT Rs11016879(AA vs GG,OR:3.112,95%CI:1.565-6.181),Rs12771882 (AA vs GG,OR:2.442,95%CI:1.204-4.595),and heterozygotes carriers of the ALDH2 Rs886205 (CT vs TT,OR:3.930,95%CI:1.470-10.504), MGMT Rs11016879(AG vs GG,OR:3.933,95%CI: 2.216-6.982)and Rs7075748(CT vs CC,OR:1.949, 95%CI:1.134-3.350),respectively.Three variants were associated with a protective effect on ESCC carcinogenesis,carriers of the MGMT Rs11016878(AG vs AA,OR:0.388,95%CI:0.180-0.836),Rs7069143(CT vs CC,OR:0.478,95%CI:0.303-0.754)and Rs7071825(GG vs AA,OR:0.493,95%CI:0.266-0.915). Increased risk of ESCC metastasis was indicated in MGMT for frequency of presence C allele[Rs7068306: 2.204(1.244-3.906)],A allele[Rs10734088:1.968 (1.111-3.484)]and C allele[Rs4751115:2.178(1.251-3.791)].Two variants in frequency of presence C allele of CYP2A6[Rs8192720:0.290(0.099-0.855)] and A allele of MGMT[Rs2053139:0.511(0.289-0.903)] were associated with a protective effect on ESCC progression.Increased risk of ESCC metastasis was found in heterozygote carriers of the MGMT Rs7068306 (CG vs CC,OR:4.706,95%CI:1.872-11.833).CONCLUSION:Polymorphic variation in ALDH2,XPD and MGMT genes may be of importance for ESCC susceptibility.Polymorphic variation in CYP2A6 and MGMT are associated with ESCC metastasis.展开更多
Background The gradually increasing changes in a human hyperlipidemic diet along with chronic stress might play an important role in the increased numbers of fatty liver. This study investigated the effects of Ilex as...Background The gradually increasing changes in a human hyperlipidemic diet along with chronic stress might play an important role in the increased numbers of fatty liver. This study investigated the effects of Ilex asprella root decoction on related genes of lipid metabolism in chronic stress in hyperlipidemic fatty liver in rats. Methods Forty-eight male Wistar rats were randomly divided into four groups: normal control group, model control group, simvastatin group, and Ilex asprella root group. To establish chronic stress and hyperlipidemic fatty liver models in rats, the levels of serum lipids, glucose, liver index, insulin (INS), insulin resistant (IR) index, adiponectin, superoxide dismutase (SOD), glutathione peroxidase (GSH-pX), glutathione (GSH), liver X receptor (LXR), and sterol responsive element binding protein ($REBP)-lc in rats were measured. Results When compared to the normal control group, the levels of serum lipids, glucose, liver index, INS, IR index, and GSH in the model control group significantly increased (P 〈0.01). The protein levels of LXRa and SREBP-lc increased (P 〈0.05), and the serum adiponectin and the SOD and GSH-pX decreased significantly (P 〈0.01). When compared to the model control group, the levels of serum lipids, glucose, liver index, INS, IR index, SOD, and GSH-pX in the simvastatin group and Ilex asprella root group increased in varying degrees (P 〈0.01 or 0.05); the serum adiponectin and GSH decreased (P 〈0.05), while the protein levels of LXRa and SREBP-lc decreased in varying degrees (P 〈0.01 or 0.05). When compared to the simvastatin group, the IR index and protein levels of LXRa in the Ilex asprella root group decreased (P 〈0.05), and the serum adiponectin and SOD increased (P 〈0.05). Conclusion The Ilex asprella root decoction has some protective effects on regulating the related genes of lipid metabolism caused by chronic stress and hyperlipidemic fatty liver in rats.展开更多
Objective/Background:Proliferation is a widely recognized trigger for pulmonary hypertension(PH),a life-threatening,progressive disorder of pulmonary blood vessels.This study was aimed to identify some proliferation a...Objective/Background:Proliferation is a widely recognized trigger for pulmonary hypertension(PH),a life-threatening,progressive disorder of pulmonary blood vessels.This study was aimed to identify some proliferation associated genes/targets for better comprehension of PH pathogenesis.Methods:Human pulmonary arterial smooth muscle cells(hPASMCs)were cultured in the presence or absence of human recombinant platelet derived growth factor(rhPDGF)-BB.Cells were collected for metabolomics or transcriptomics study.Gene profiling of lungs of PH rats after hypoxia exposure or of PH patients were retrieved from GEO database.Results:90 metabolites(VIP score>1,fold change>2 or<0.5 and p<.05)and 2701 unique metabolism associated genes(MAGs)were identified in rhPDGF-BB treated hPASMCs compared to control cells.In addition,1151 differentially expressed genes(313 upregulated and 838 downregulated)were identified in rhPDGF-BB treated hPASMCs compared to control cells(fold change>2 or<0.5 and p<.05).152 differentially expressed MAGs were then determined,out of which 9 hub genes(IL6,CXCL8,CCL2,CXCR4,CCND1,PLAUR,PLAU,HBEGF and F3)were defined as core proliferation associated hub genes in protein proten interaction analysis.In addition,the hub gene-based LASSO model can predict the occurrence of PH(AUC=0.88).The expression of CXCR4,as one of the hub genes,was positively correlated to immune cell infiltrates.Conclusion:Our findings revealed some key proliferation associated genes in PH,which provide the crucial information concerning complex metabolic reprogramming and inflammatory modulation in response to proliferation signals and might offer therapeutic gains for PH.展开更多
The accumulation of pigments affects the color of rice hulls while only limited information is known about its underlying mechanisms. In the present study, a rice brown hull 6(bh6) mutant was isolated from an ethane...The accumulation of pigments affects the color of rice hulls while only limited information is known about its underlying mechanisms. In the present study, a rice brown hull 6(bh6) mutant was isolated from an ethane methyl sulfonate(EMS)-induced IR64 mutant bank. Brown pigments started to accumulate in bh6 rice hulls after heading and reached a higher level in mature seeds. Some major agronomic traits including panicle length and 1000-grain weight in bh6 were significantly lower than those in its corresponding wild type IR64, while other agronomic traits such as plant height, growth duration and seed-setting rate were largely similar between the two genotypes. The analysis of pigment content showed that the contents of total flavonoids and anthocyanin in bh6 hulls were significantly higher than those in IR64 hulls. Our results showed that the brown hull phenotype in bh6 was controlled by a single recessive gene which locates on the long arm of chromosome 9. Sequencing analysis detected a single base substitution(G/A) at position 1013 of the candidate gene(LOC_Os09g12150) encoding an F-box domain-containing protein(FBX310). Functional complementation experiment using the wild type allele can rescue the phenotype in bh6. Thus, we named this mutated gene as Os FBX310^(bh6), an allele of OsFBX310 functioning as an inhibitor of brown hull. The isolation of Os FBX310^(bh6) and its wild type allele can provide useful experimental materials and will facilitate the studies on revealing the mechanisms of flavonoid metabolism in monocot plants.展开更多
Several receptors have been identified as implicated on viral entry into the hepatocyte; and, this interaction between the virus and potential receptors could modulate infection, spontaneous viral clearance, persisten...Several receptors have been identified as implicated on viral entry into the hepatocyte; and, this interaction between the virus and potential receptors could modulate infection, spontaneous viral clearance, persistence of the infection and the widespread of the virus as outbreak. Nevertheless, the playing role of each of them remains controversial. The NiemannPick type C1 like 1 gene (NPC1L1) receptor has been recently implicated on hepatitis C virus (HCV) entry into the cell and ezetimibe, an anti-cholesterol drug seems to block that, emerging the idea to control hepatitis C outbreak modulating lipid-related receptors. Hepatitis C infection seems to modulate lipid metabolism according to host genetic background. Indeed, it circulates like a lipoviroparticle. The main aim of this field of vision would be to discuss the role of hepatocyte receptors implicated on virus entry, especially NPC1L1 and the therapeutic options derived from the better knowledge about HCV-lipidsreceptors interaction.展开更多
Trichoderma reesei Rut-C-30 is a well-known robust producer of cellulolytic enzymes,which are used to degrade lignocellulosic biomass for the sustainable production of biofuels and biochemicals.However,studies of its ...Trichoderma reesei Rut-C-30 is a well-known robust producer of cellulolytic enzymes,which are used to degrade lignocellulosic biomass for the sustainable production of biofuels and biochemicals.However,studies of its sec-ondary metabolism and regulation remain scarce.Ypr1 was previously described as a regulator of the biosynthesis of the yellow pigment sorbicillin(a bioactive agent with great pharmaceutical interest)in T.reesei and several other fungi.However,the manner in which this regulator affects global gene transcription has not been explored.In this study,we report the effect of Ypr1 on the regulation of both the secondary and primary metabolism of T.reesei Rut-C30.A global gene transcription profile was obtained using a comparative transcriptomic analysis of the wild-type strain T.reesei Rut-C-30 and its ypr1 deletion mutant.The results of this analysis suggest that,in addition to its role in regulating sorbicillin and the major extracellular(hemi)cellulases,Ypr1 also affects the transcription of genes encoding several other secondary metabolites.Although the primary metabolism of T.reeseiΔypr1 became less active compared with that of T.reesei Rut-C-30,several gene clusters involved in its secondary metabolism were activated,such as the gene clusters for the biosynthesis of specific polyketides and non-ribosomal peptides,together with the“sorbicillinoid-cellulase”super cluster,indicating that specific secondary metabolites and cellulases may be co-regulated in T.reesei Rut-C-30.The results presented in this study may benefit the development of genetic engineering strategies for the production of sorbicillin by T.reesei Rut-C-30,and provide insights for enhancing sorbicillin production in other filamentous fungal producers.展开更多
Soils are not exempt from anthropogenic pollution,which can eventually cause disturbance of the microbial communities and areas without any kind of productivity.Among soil microbiota,bacteria play an important role in...Soils are not exempt from anthropogenic pollution,which can eventually cause disturbance of the microbial communities and areas without any kind of productivity.Among soil microbiota,bacteria play an important role in pollutant degradation,enabling them to thrive in contaminated sites.Given this,several techniques have been used to increase the number of pollutantdegrading bacteria in situ or for subsequent addition.Additionally,bacteriophages exhibit a high tolerance to pollutants and enhance bacterial metabolic activity through phage-encoded auxiliary metabolic genes(AMGs),thereby augmenting their skills for nutrient assimilation,resistance to phage infection,antibiotic resistance,heavy metal resistance,and degradation of pesticides and xenobiotics,among others.Several phage-encoded AMGs have been described during the last few years,but their diversity,distribution,and function have not been extensively explored,warranting further studies.Here,we highlight soil microbiome interactions,especially bacterium and phage interactions to understand this unexplored world with a high potential for restoring polluted soils.展开更多
The virome is the most abundant and highly variable microbial consortium in the gut.Because of difficulties in isolating and culturing gut viruses and the lack of reference genomes,the virome has remained a rela-tivel...The virome is the most abundant and highly variable microbial consortium in the gut.Because of difficulties in isolating and culturing gut viruses and the lack of reference genomes,the virome has remained a rela-tively elusive aspect of the human microbiome.In recent years,studies on the virome have accumulated growing evidence showing that the virome is diet-modulated and widely involved in regulating health.Here,we review the responses of the gut virome to dietary intake and the potential health implications,presenting changes in the gut viral community and preferences of viral members to particular diets.We further discuss how viral-bacterial interactions and phage lifestyle shifts shape the gut microbiota.We also discuss the specific functions conferred by diet on the gut virome and bacterial community in the context of horizontal gene transfer,as well as the import of new viral members along with the diet.Collating these studies will expand our understanding of the dietary regulation of the gut virome and inspire dietary in-terventions and health maintenance strategies targeting the gut microbiota.展开更多
As the most abundant living entities in the environment,viruses have been well recognized as crucial members in sustaining biogeochemical cycling.However,the significance of viruses in soil ecosystem multifunctionalit...As the most abundant living entities in the environment,viruses have been well recognized as crucial members in sustaining biogeochemical cycling.However,the significance of viruses in soil ecosystem multifunctionality remains under-explored.In this study,we used metagenomics and meta-viromics analysis to investigate the role of soil viruses in soil ecosystem functions under heavy,light,and no organochlorine pesticides(OCPs)contamination.In the three types of soil samples collected,lightcontaminated soils supported the highest level of multifunctionality,followed by heavy-contaminated soils and clean soils.Additionally,our results revealed a positive correlation between bacterial community evenness and multifunctionality index(p<0.05).Dominant bacterial species with biodegradation and stress resistance advantages exhibited higher abundance in OCPaffected soils,potentially playing a core functional supporting role.Furthermore,our results indicated that the species richness and diversity of bacteriophages were positively correlated with multifunctionality(p<0.05)in OCP-affected soils.Bacteriophages in OCP-affected soils regulate host metabolism and enhance soil ecosystem multifunctionality by infecting functional bacterial hosts and encoding AMGs related to soil element cycling.Our findings emphasize the potential effect of phages on ecosystem multifunctionality in contaminated soil,suggesting that phages may serve as contributors to soil ecology beyond bacteria and other microorganisms.Therefore,in polluted or constrained soils,further research could potentially translate phage communities and related ecological processes into artificial methods for application in soil pollution remediation or ecological restoration.展开更多
Background Endogenous estrogen plays a very important role in the carcinogenesis and progression of breast cancer. The enzymes involved in the biosynthesis and metabolism of estrogen have been proposed to contribute t...Background Endogenous estrogen plays a very important role in the carcinogenesis and progression of breast cancer. The enzymes involved in the biosynthesis and metabolism of estrogen have been proposed to contribute to this effect. To examine this hypothesis, we conducted a case-control study to investigate the relationship between polymorphisms of genes responsible for estrogen biosynthesis (CYP17, cytochrome P450c17a and CYP19, aromatase cytochrome P450) and estrogen sulfation of inactivation ( SULT1 A1, sulfotransferasel A1 ) and the risk of breast cancer in Chinese women. Methods This study involved 213 breast cancer patients and 430 matched controls. PCR-based restriction fragment length polymorphism (RFLP) and short tandem repeat polymorphism (STRP) assays were used to detect the mononucleotide transition of CYP17 and SULT1A1 and tandem repeat polymorphism of CYP19. Logistic regression analyses were used to determine OR and 95% CI of each and all three high-risk genotypes, of all three genotypes combined, and of estrogen exposure factbrs. The relationship between each high-risk genotype and clinicalpathological characteristics were also assessed. Results The frequency of A2 allele of CYP17 was 49.8% in cases and 49. 1% in controls (P =0. 82). The frequency of His allele of SULT1A1 was significantly higher in cases ( 13.6% ) than in controls (9. 5% ) (P 〈 0. 05 ). There was also significant difference of the (TTTA)10 allele of CYP19 which was 12. 4% in cases and 8.2% in controls (P 〈0. 05). When the CYP17 A2 allele, CYP19 (TITA)1o and SULT1A1 His allele were considered as the “putative high-risk” genotype, there was an increased risk of breast cancer with the number of high-risk genotypes in a dose-response effect (trend, P = 0. 05 ). In multivariate analysis, the SULT1A1 genotype remained the most significant determinant for breast cancer, with OR =2. 37 (95% CI 1.23 - 4. 74) , followed by CYP19, with OR = 1.75 (95% CI 1.27 - 3.56). The (TTTA)10 allele of CYP19 was associated with tumor size, and the His allele of SULT1 A1 associated with status of lymph node metastasis. Conclusions This study supports the hypothesis that breast cancer can be initiated by estrogen exposure and that estrogen metabolizing genes are involved in this mechanism. This multigenic model is useful for identifying individuals who are at higher risks of breast cancer.展开更多
In order to study the influence of different types of N fertilizers on grapevine(Vitis labruscana ‘Black Summer') trees were used as experiment materials and fertilizers foliar application trails were conducted i...In order to study the influence of different types of N fertilizers on grapevine(Vitis labruscana ‘Black Summer') trees were used as experiment materials and fertilizers foliar application trails were conducted in the flowering and veraison stages. The expression levels of five grapevine N metabolic genes, including Vv GHD, Vv Ni R, Vv NR, Vv GS and Vv AS, were analyzed, some physiological traits including the flower and fruit dropping rate, leaves and shoots growth rate, chlorophyll content and the fruit size of grape berry were also investigated. The results showed that,in general, the expression levels of the five N metabolic genes were increased after foliar applied different types of N fertilizers in the two periods.N metabolic genes showed similar expression patterns toward the same type of fertilizer in the two periods, whereas foliar applied different types of N fertilizers, their expression patterns changed. Moreover, the N fertilizer which had stronger and longer influence on the N metabolic genes could enhance the physiology traits more dramatically. Given the gene expression levels and the changes of physiology traits, we conclude that urea and ammonium nitrate have the best effect on grapevine; calcium nitrate can help to reduce the flower and berry dropping rate; ammonium sulphate and sodium nitrate have relatively poor effects on grapevine.展开更多
Objective To determine whether interleukin-1α and 1β gene polymorphism is associated with rheumatoid arthritis disease activity and bone mineral metabolism, and whether there is any relationship between IL-1β an...Objective To determine whether interleukin-1α and 1β gene polymorphism is associated with rheumatoid arthritis disease activity and bone mineral metabolism, and whether there is any relationship between IL-1β and rheumatoid arthritis (RA) motif gene. Methods IL-1 gene polymorphisms were analyzed in 65 RA patients who met American College of Radiology (ACR) criteria and 60 controls. From genomic DNA, 2 polymorphisms in each gene for IL1α-889 and IL-1β+3953 were typed by PCR-RFLP and HLA-DRB1 allele typing was also undertaken by PCR-SSOP. Some clinical and laboratory parameters were collected. The allelic frequencies and carriage rates were compared between RA patients and controls and between patients with active and quiescent disease. Comparison was also made between IL-1 polymorphism and parameters of bone mineral metabolism and between patients with the HLA-DRB1 RA motif plus IL-1β 2 and patients without the two alleles. Fisher test and the analysis of variance was used to analyze the data.Results There was no significant difference in the frequency and carriage rate of IL-1α polymorphisms between RA patients and the controls. The β2/2 genotype of IL-1β was more common in female RA patients compared with controls (P=0.001). A lower carriage rate of IL-1β 2 occurred in male RA patients (P=0.001). A higher carriage rate of IL-1α2 is associated with a higher ESR (P=0.008), HAQ score (P=0.03), and vit-D 3 (P【0.001), but conversely a lower SJC (p=0.002), a lower RF (P=0.002) and a lower BMD at the lumbar spine (P=0.001). A higher frequency of IL-1α1 is associated with a lower CRP value (P=0.009). An increased IL-1β2 carriage is associated with active rheumatoid disease as indicated by a higher CRP (P【0.001), ESR (P【0.001) and pain score (P=0.001) and a higher BMD at the lumbar spine (P=0.007), lower vit-D 3 and. Udpd/Crea level The presence of the HLA DRB1 RA motif and IL-1β allele 2 at same time did not contribute to disease activity.Conclution Polymorphisms of the IL-β gene may affect the RA occurrence. Carriage of IL-1β2 polymorphisms is associated with more active disease in RA and the presence of both the IL-1α2 and the IL-1β1 allele in RA influences bone resorption.展开更多
To avoid the negative effects of antibiotics,using phage to prevent animal disease becomes a promising method in aquaculture.Here,a lytic phage provisionally named vB_Vca S_HC that can infect the pathogen(i.e.,Vibrio ...To avoid the negative effects of antibiotics,using phage to prevent animal disease becomes a promising method in aquaculture.Here,a lytic phage provisionally named vB_Vca S_HC that can infect the pathogen(i.e.,Vibrio campbellii 18)of prawn was isolated.The phage has an isometric head and a non-contractile tail.During phage infection,the induced host mortality in 5.5 h reached ca.96%,with a latent period of 1.5 h and a burst size of 172 PFU/cell.It has an 81,566 bp circular ds DNA genome containing 121 open reading frames(ORFs),and ca.71%of the ORFs are functionally unknown.Comparative genomic and phylogenetic analysis revealed that it is a novel phage belonging to Delepquintavirus,Siphoviridae,Caudovirales.In the phage genome,besides the ordinary genes related to structure assembly and DNA metabolism,there are 10 auxiliary metabolic genes.For the first time,the pyruvate phosphate dikinase(PPDK)gene was found in phages whose product is a key rate-limiting enzyme involving Embden-Meyerhof-Parnas(EMP)reaction.Interestingly,although the phage has a strong bactericidal activity and contains a potential lysogeny related gene,i.e.,the recombinase(Rec A)gene,we did not find the phage turned into a lysogenic state.Meanwhile,the phage genome does not contain any bacterial virulence gene or antimicrobial resistance gene.This study represents the first comprehensive characterization of a lytic V.campbellii phage and indicates that it is a promising candidate for the treatment of V.campbellii infections.展开更多
Terpenes,the largest group of plant-specialized metabolites,have received considerable attention for their highly diverse biological activities.Monoterpenes(C10),sesquiterpenes(C15),diterpenes(C20),and triterpenes(C30...Terpenes,the largest group of plant-specialized metabolites,have received considerable attention for their highly diverse biological activities.Monoterpenes(C10),sesquiterpenes(C15),diterpenes(C20),and triterpenes(C30)have been extensively investigated at both the biochemical and molecular levels over the past two decades.Sesterterpenes(C25),an understudied terpenoid group,were recently described by plant scientists at the molecular level.This review summarizes the plant species that produce sesterterpenes and describes recent developments in the field of sesterterpene biosynthesis,placing a special focus on the catalytic mechanism and evolution of geranylfarnesyl diphosphate synthase and sesterterpene synthase.Finally,we propose several questions to be addressed in future studies,which may help to elucidate sesterterpene metabolism in plants.展开更多
基金supported by the National Natural Sci-ence Foundation of China (30871785)the Key Projectof Ministry of Education of China (105167)the Program for New Century Excellent Talents in Univer-sities of the Ministry of Education of China (NCET-06-0865)
文摘The effect of docosahexaenoic acid (DHA) on lipid metabolism in broiler were studied in order to provide test results for polyunsaturated fatty acids (PUFA) regulating fatty deposition. 1-wk-old Arbor Acres (AA) broiler were fed with DHA microalgae and slaughtered after 2 wk. The tissues were stored for isolating total RNA. RT-PCR was used to analyze the expression changes of genes. DHA microalgae significantly increased average body gain and feed conversion rates, reduced the levels of total cholesterol (TC), total glycerin (TG), and low-density lipoprotein cholesterol (LDL-C) in serum and increased the content of high-density lipoprotein cholesterol. 1 wk later, the effects were still remained. In liver tissue, DHA microalgae increased the expression of PPARα and carnitine palmitoyltransferase-1 (CPT-1). 1 wk later, it was observed that DHA up-regulated the expression of fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), lipoprotein lipase (LPL) and carnitine palmitoyltransferase-1 (CPT-1). 2 wk later, it still increased the expressions of FAS and CPT-1, but a converse result was observed for ACC and LPL. In adipose tissue, DHA microalgae suppressed the expression of PPARα and LPL, up-regulated the expression of ACC, FAS, and CPT-1. After withdrawal, the expression of genes in test group was significantly lower than that in control group (P0.01). In the muscle of chest, DHA microalgae significantly inhibited the gene expression (P0.01). 1 wk later, the expressions of FAS, LPL and CPT-1 in test group were significantly higher than that in control group (P0.05). 2 wk later, it was shown that DHA significantly inhibited fat synthesis and decomposition. In the leg, there was not any PPARα expression being detected, probably because of the less expression in muscle tissues or the regulation of PPARα had no relation to the case. DHA microalgae promote fat synthesis in the liver and inhibit in adipose and muscle tissues. It still has effects after 1 wk of withdrawal.
基金National College Student Innovation and Entrepreneurship Training Project(Project No.:202011810001).
文摘Vitamin D is a fat-soluble vitamin.It is an essential vitamin for human body.It has a classical effect on regulating calcium and phosphorus metabolism.Participate in cellular and humoral immune processes by regulating the growth,differentiation and metabolism of immune cells.A large number of studies in recent years have shown that vitamin D deficiency increases the incidence of respiratory diseases.Respiratory diseases mainly include bronchial asthma,chronic obstructive pulmonary disease,tuberculosis,acute upper respiratory tract infection and pneumonia.Vitamin D metabolic pathway genes play a very important regulatory role in the transformation of vitamin D into active vitamin D,including CYP2R1,CYP27B1,CYP24A1,VDBP,VDR five genes.Genetic polymorphism of genes is the molecular basis of individual differences and disease development.Therefore,this paper summarizes the research on single nucleotide polymorphism of vitamin D metabolic pathway gene and respiratory diseases.In order to provide a new idea for future treatment.
基金supported by the National Key R&D Program of China (2021YFC2600101)the Shenzhen Science and Technology Program (JCYJ20190814163805604 and KQTD20180411143628272)+1 种基金the Fund of the Key Laboratory of Shenzhen (ZDSYS20141118170111640)the Agricultural Science and Technology Innovation Program.
文摘Jerusalem artichoke(Helianthus tuberosus)is a global multifunctional crop.It has wide applications in the food,health,feed,and biofuel industries and in ecological protection;it also serves as a germplasm pool for breeding of the global oil crop common sunflower(Helianthus annuus).However,biological studies of Je-rusalem artichoke have been hindered by a lack of genome sequences,and its high polyploidy and large genome size have posed challenges to genome assembly.Here,we report a 21-Gb chromosome-level as-sembly of the hexaploid Jerusalem artichoke genome,which comprises 17 homologous groups,each with 6 pseudochromosomes.We found multiple large-scale chromosome rearrangements between Jerusalem artichoke and common sunflower,and our results show that the hexaploid genome of Jerusalem artichoke was formed by a hybridization event between a tetraploid and a diploid Helianthus species,followed by chromosome doubling of the hybrid,which occurred approximately 2 million years ago.Moreover,we iden-tied more copies of actively expressed genes involved in inulin metabolism and showed that these genes may still be undergoing loss of function or sub-or neofunctionalization.These genomic resources will pro-mote further biological studies,breeding improvement,and industrial utilization of Helianthus crops.
基金Supported by the Natural Science Foundation of China(31371683)the National Key Technology R&D Program of China(2012BAD02B05-8) during 12th Five-year Plan PeriodEarmarked Fund for China Agriculture Research System(CARS-10-P19)~~
文摘[Objective] Expressions of key enzymatic genes involved in phenyl-propanoid metabolic pathway in potato and StR2R3-MYB and StTGA transcripters were investigated in the present study. [Method] The primitive cultivar Yan was the materials for replicated trials and total RNA extracted from tissues of seedlings. Re-al-time florescent quantification PCR, multiple intervals of air temperature, light-il umi-nation and time-duration were factors of treatments in the experiment. Data on gene expressions were obtained and proceed to asses and compare effects based on statistical analysis. [Result] The results showed negative correlations between tem-perature degrees and expressions of StPAL, StDFR and StR2R3-MYB genes but not StTGA. Positive correlations, however, were derived between those of StCHS, StDFR and StR2R3-MYB and light-intensity. Significant interactive effects between expressions of StPAL and StDFR and treatments, light intensity and temperature degree, along the phenylpropanoid pathway were observed. Transcription regulator of StR2R3-MYB showed significant positive effect on the expression of StCHS of potato. StTGA transcription factor, on the other hand, gave significant negative ef-fects on the expression of StDFR. [Conclusion] Results from present study reveal the role of environmental factors and complicate interactions between such condi-tions as temperature-light il umination and mRNA function of target genes.
基金Supported by The National Natural Science Foundation of China, No. 30901726
文摘AIM: To evaluate whether alcohol dehydrogenase-1B (ADH1B) His47Arg and aldehyde dehydrogenase-2 (ALDH2) Glu487Lys polymorphism is involved in the esophageal squamous cell carcinoma (ESCC) risk in Chinese Han population. METHODS: Seven studies of ADH1B and ALDH2 genotypes in Chinese Han population in 1450 cases and 2459 controls were included for meta-analysis. Stratified analyses were carried out to determine the genealcohol and gene-gene interaction with ESCC risk. Potential sources of heterogeneity between studies were explored, and publication bias was also evaluated. RESULTS: Individuals with ADH1B arginine (Arg)/Arg genotype showed 3.95-fold increased ESCC risk in the recessive genetic model [Arg/Arg vs Arg/histidine (His) + His/His: odds ratio (OR) = 3.95, 95% confidence in- terval (CI): 2.76-5.67]. Signif icant association was found in the dominant model for ALDH2 lysine (Lys) allele [glutamate (Glu)/Lys + Lys/Lys vs Glu/Glu: OR = 2.00,95% CI: 1.54-2.61]. Compared with the non-alcoholics, Arg/Arg (OR = 25.20, 95% CI: 10.87-53.44) and Glu/ Lys + Lys/Lys (OR = 21.47, 95% CI: 6.44-71.59) were found to interact with alcohol drinking to increase the ESCC risk. ADH1B Arg+ and ALDH2 Lys+ had a higher risk for ESCC (OR = 7.09, 95% CI: 2.16-23.33). CONCLUSION: The genetic variations of ADH1B His47Arg and ALDH2 Glu487Lys are susceptible loci for ESCC in Chinese Han population and interact substantially with alcohol consumption. The individuals carrying both risky genotypes have a higher baseline risk of ESCC.
文摘AIM:To investigate the roles of the ribonucleotide reductase M2 (RRM2) subunit in colorectal cancer (CRC) and ultraviolet (UV)-induced DNA damage repair. METHODS:Immunohistochemical staining of tissue microarray was performed to detect the expression of RRM2. Seven CRC cell lines were cultured and three human colon cancer cell lines, i.e., HCT116, SW480 and SW620, were used. Reverse transcription polymerase chain reaction and Western blotting were performed to determine the mRNA and protein expression levels of RRM2, respectively. Cell proliferation assay, cell cycle analysis were performed. Cell apoptosis was evaluated by double staining with fluorescein isothiocyanate-conjugated Annexin Ⅴ and propidium iodide (PI) usingAnnexin Ⅴ/PI apoptosis kit. The motility and invasion of CRC cells were assessed by the Transwell chamber assay. Cells were irradiated with a 254 nm UV-C lamp to detect the UV sensitivity after RRM2 depletion. RESULTS:Immunohistochemical staining revealed elevated RRM2 levels in CRC tissues. RRM2 overexpression was positively correlated with invasion depth (P < 0.05), poorly differentiated type (P = 0.0051), and tumor node metastasis stage (P = 0.0015). The expression of RRM2 in HCT116 cells was downregulated after transfection, and HCT116 cell proliferation was obviously suppressed compared to control groups (P < 0.05). In the invasion test, the number of cells that passed through the chambers in the RRM2-siRNA group was 81 ± 3, which was lower than that in the negative control (289 ± 7) and blank control groups (301 ± 7.2). These differences were statistically significant (P < 0.01). Our data suggest that RRM2 overexpression may be associated with CRC progression. RRM2 silencing by siRNA may inhibit the hyperplasia and invasiveness of CRC cells, suggesting that RRM2 may play an important role in the infiltration and metastasis of CRC, which is a potential therapeutic strategy in CRC. In addition, RRM2 depletion increased UV sensitivity. CONCLUSION:These findings suggest that RRM2 may be a facilitating factor in colorectal tumorigenesis and UV-induced DNA damage repair.
基金Supported by The National Natural Science Foundation of China,No.30760223,30860097the First Affiliated of Xinjiang Medical University Grant,No.2008-YFY-01+1 种基金Xinjiang Science and Technology Bureau Grant,No.200511113UrumqiScience and Technology Bureau Grant,No.Y05331002
文摘AIM:To investigate the role of metabolic enzyme and DNA repair genes in susceptibility of esophageal squamous cell carcinoma(ESCC). METHODS:A case-control study was designed with 454 samples from 128 ESCC patients and 326 gender, age and ethnicity-matched control subjects.Genotypes of 69 single nucleotide polymorphisms(SNPs)of metabolic enzyme(aldehyde dehydrogenase-2,ALDH2; alcohol dehydrogenase-1 B,ADHB1;Cytochrome P450 2A6,CYP2A6)and DNA repair capacity genes(excision repair cross complementing group 1,ERCC1; O 6-methylguanine DNA methyltransferase,MGMT; xeroderma pigmentosum group A,XPA;xeroderma pigmentosum group A,XPD)were determined by the Sequenom MassARRAY system,and results were analyzed using unconditional logistic regression adjusted for age,gender. RESULTS:There was no association between the variation in the ERCC1,XPA,ADHB1 genes and ESCC risk.Increased risk of ESCC was suggested in ALDH2 for frequency of presence C allele of SNP [Rs886205:1.626(1.158-2.284)],XPD for C allele [Rs50872:1.482(1.058-2.074)],and MGMT for A allele[Rs11016897:1.666(1.245-2.228)].Five variants of MGMT were associated with a protective effect on ESCC carcinogenesis,including C allele [Rs7069143:0.698(0.518-0.939)],C allele[Rs3793909: 0.6 5 3(0.4 2 9-0.9 9 5)],A a l l e l e[R s 1 2 7 7 1 8 8 2: 0.719(0.524-0.986)],C allele[Rs551491:0.707 (0.529-0.945)],and A allele[Rs7071825:0.618 (0.506-0.910)].At the genotype level,increased risk of ESCC carcinogenesis was found in homozygous carriers of the ALDH2 Rs886205[CC vs TT,odds ratios(OR): 3.116,95%CI:1.179-8.234],MGMT Rs11016879(AA vs GG,OR:3.112,95%CI:1.565-6.181),Rs12771882 (AA vs GG,OR:2.442,95%CI:1.204-4.595),and heterozygotes carriers of the ALDH2 Rs886205 (CT vs TT,OR:3.930,95%CI:1.470-10.504), MGMT Rs11016879(AG vs GG,OR:3.933,95%CI: 2.216-6.982)and Rs7075748(CT vs CC,OR:1.949, 95%CI:1.134-3.350),respectively.Three variants were associated with a protective effect on ESCC carcinogenesis,carriers of the MGMT Rs11016878(AG vs AA,OR:0.388,95%CI:0.180-0.836),Rs7069143(CT vs CC,OR:0.478,95%CI:0.303-0.754)and Rs7071825(GG vs AA,OR:0.493,95%CI:0.266-0.915). Increased risk of ESCC metastasis was indicated in MGMT for frequency of presence C allele[Rs7068306: 2.204(1.244-3.906)],A allele[Rs10734088:1.968 (1.111-3.484)]and C allele[Rs4751115:2.178(1.251-3.791)].Two variants in frequency of presence C allele of CYP2A6[Rs8192720:0.290(0.099-0.855)] and A allele of MGMT[Rs2053139:0.511(0.289-0.903)] were associated with a protective effect on ESCC progression.Increased risk of ESCC metastasis was found in heterozygote carriers of the MGMT Rs7068306 (CG vs CC,OR:4.706,95%CI:1.872-11.833).CONCLUSION:Polymorphic variation in ALDH2,XPD and MGMT genes may be of importance for ESCC susceptibility.Polymorphic variation in CYP2A6 and MGMT are associated with ESCC metastasis.
文摘Background The gradually increasing changes in a human hyperlipidemic diet along with chronic stress might play an important role in the increased numbers of fatty liver. This study investigated the effects of Ilex asprella root decoction on related genes of lipid metabolism in chronic stress in hyperlipidemic fatty liver in rats. Methods Forty-eight male Wistar rats were randomly divided into four groups: normal control group, model control group, simvastatin group, and Ilex asprella root group. To establish chronic stress and hyperlipidemic fatty liver models in rats, the levels of serum lipids, glucose, liver index, insulin (INS), insulin resistant (IR) index, adiponectin, superoxide dismutase (SOD), glutathione peroxidase (GSH-pX), glutathione (GSH), liver X receptor (LXR), and sterol responsive element binding protein ($REBP)-lc in rats were measured. Results When compared to the normal control group, the levels of serum lipids, glucose, liver index, INS, IR index, and GSH in the model control group significantly increased (P 〈0.01). The protein levels of LXRa and SREBP-lc increased (P 〈0.05), and the serum adiponectin and the SOD and GSH-pX decreased significantly (P 〈0.01). When compared to the model control group, the levels of serum lipids, glucose, liver index, INS, IR index, SOD, and GSH-pX in the simvastatin group and Ilex asprella root group increased in varying degrees (P 〈0.01 or 0.05); the serum adiponectin and GSH decreased (P 〈0.05), while the protein levels of LXRa and SREBP-lc decreased in varying degrees (P 〈0.01 or 0.05). When compared to the simvastatin group, the IR index and protein levels of LXRa in the Ilex asprella root group decreased (P 〈0.05), and the serum adiponectin and SOD increased (P 〈0.05). Conclusion The Ilex asprella root decoction has some protective effects on regulating the related genes of lipid metabolism caused by chronic stress and hyperlipidemic fatty liver in rats.
基金This work was supported by National Natural Science Foundation of China(81630003,82170058)Science Foundation for Outstanding Young Scholars of Henan Province(212300410027)+1 种基金Key Research Project of Ningxia Hui Autonomous Region(2019BFG02027)Project for College of Traditional Chinese Medicine of Henan University(No.2021YJYJZ07).
文摘Objective/Background:Proliferation is a widely recognized trigger for pulmonary hypertension(PH),a life-threatening,progressive disorder of pulmonary blood vessels.This study was aimed to identify some proliferation associated genes/targets for better comprehension of PH pathogenesis.Methods:Human pulmonary arterial smooth muscle cells(hPASMCs)were cultured in the presence or absence of human recombinant platelet derived growth factor(rhPDGF)-BB.Cells were collected for metabolomics or transcriptomics study.Gene profiling of lungs of PH rats after hypoxia exposure or of PH patients were retrieved from GEO database.Results:90 metabolites(VIP score>1,fold change>2 or<0.5 and p<.05)and 2701 unique metabolism associated genes(MAGs)were identified in rhPDGF-BB treated hPASMCs compared to control cells.In addition,1151 differentially expressed genes(313 upregulated and 838 downregulated)were identified in rhPDGF-BB treated hPASMCs compared to control cells(fold change>2 or<0.5 and p<.05).152 differentially expressed MAGs were then determined,out of which 9 hub genes(IL6,CXCL8,CCL2,CXCR4,CCND1,PLAUR,PLAU,HBEGF and F3)were defined as core proliferation associated hub genes in protein proten interaction analysis.In addition,the hub gene-based LASSO model can predict the occurrence of PH(AUC=0.88).The expression of CXCR4,as one of the hub genes,was positively correlated to immune cell infiltrates.Conclusion:Our findings revealed some key proliferation associated genes in PH,which provide the crucial information concerning complex metabolic reprogramming and inflammatory modulation in response to proliferation signals and might offer therapeutic gains for PH.
基金supported by the National High Technology Research and Development Program of China(Grant Nos.2012AA101102 and 2011AA10A101)
文摘The accumulation of pigments affects the color of rice hulls while only limited information is known about its underlying mechanisms. In the present study, a rice brown hull 6(bh6) mutant was isolated from an ethane methyl sulfonate(EMS)-induced IR64 mutant bank. Brown pigments started to accumulate in bh6 rice hulls after heading and reached a higher level in mature seeds. Some major agronomic traits including panicle length and 1000-grain weight in bh6 were significantly lower than those in its corresponding wild type IR64, while other agronomic traits such as plant height, growth duration and seed-setting rate were largely similar between the two genotypes. The analysis of pigment content showed that the contents of total flavonoids and anthocyanin in bh6 hulls were significantly higher than those in IR64 hulls. Our results showed that the brown hull phenotype in bh6 was controlled by a single recessive gene which locates on the long arm of chromosome 9. Sequencing analysis detected a single base substitution(G/A) at position 1013 of the candidate gene(LOC_Os09g12150) encoding an F-box domain-containing protein(FBX310). Functional complementation experiment using the wild type allele can rescue the phenotype in bh6. Thus, we named this mutated gene as Os FBX310^(bh6), an allele of OsFBX310 functioning as an inhibitor of brown hull. The isolation of Os FBX310^(bh6) and its wild type allele can provide useful experimental materials and will facilitate the studies on revealing the mechanisms of flavonoid metabolism in monocot plants.
文摘Several receptors have been identified as implicated on viral entry into the hepatocyte; and, this interaction between the virus and potential receptors could modulate infection, spontaneous viral clearance, persistence of the infection and the widespread of the virus as outbreak. Nevertheless, the playing role of each of them remains controversial. The NiemannPick type C1 like 1 gene (NPC1L1) receptor has been recently implicated on hepatitis C virus (HCV) entry into the cell and ezetimibe, an anti-cholesterol drug seems to block that, emerging the idea to control hepatitis C outbreak modulating lipid-related receptors. Hepatitis C infection seems to modulate lipid metabolism according to host genetic background. Indeed, it circulates like a lipoviroparticle. The main aim of this field of vision would be to discuss the role of hepatocyte receptors implicated on virus entry, especially NPC1L1 and the therapeutic options derived from the better knowledge about HCV-lipidsreceptors interaction.
基金This work is supported by the State Key Research and Development Program(2022YFE0108500).
文摘Trichoderma reesei Rut-C-30 is a well-known robust producer of cellulolytic enzymes,which are used to degrade lignocellulosic biomass for the sustainable production of biofuels and biochemicals.However,studies of its sec-ondary metabolism and regulation remain scarce.Ypr1 was previously described as a regulator of the biosynthesis of the yellow pigment sorbicillin(a bioactive agent with great pharmaceutical interest)in T.reesei and several other fungi.However,the manner in which this regulator affects global gene transcription has not been explored.In this study,we report the effect of Ypr1 on the regulation of both the secondary and primary metabolism of T.reesei Rut-C30.A global gene transcription profile was obtained using a comparative transcriptomic analysis of the wild-type strain T.reesei Rut-C-30 and its ypr1 deletion mutant.The results of this analysis suggest that,in addition to its role in regulating sorbicillin and the major extracellular(hemi)cellulases,Ypr1 also affects the transcription of genes encoding several other secondary metabolites.Although the primary metabolism of T.reeseiΔypr1 became less active compared with that of T.reesei Rut-C-30,several gene clusters involved in its secondary metabolism were activated,such as the gene clusters for the biosynthesis of specific polyketides and non-ribosomal peptides,together with the“sorbicillinoid-cellulase”super cluster,indicating that specific secondary metabolites and cellulases may be co-regulated in T.reesei Rut-C-30.The results presented in this study may benefit the development of genetic engineering strategies for the production of sorbicillin by T.reesei Rut-C-30,and provide insights for enhancing sorbicillin production in other filamentous fungal producers.
基金the European Union’s Horizon Europe 2020 Research and Innovation Program under the Marie Skłodowska-Curie(No.101106707)Generalitat de Catalunya through Consolidated Research Group 2021 SGR 01282 and from the CERCA program.
文摘Soils are not exempt from anthropogenic pollution,which can eventually cause disturbance of the microbial communities and areas without any kind of productivity.Among soil microbiota,bacteria play an important role in pollutant degradation,enabling them to thrive in contaminated sites.Given this,several techniques have been used to increase the number of pollutantdegrading bacteria in situ or for subsequent addition.Additionally,bacteriophages exhibit a high tolerance to pollutants and enhance bacterial metabolic activity through phage-encoded auxiliary metabolic genes(AMGs),thereby augmenting their skills for nutrient assimilation,resistance to phage infection,antibiotic resistance,heavy metal resistance,and degradation of pesticides and xenobiotics,among others.Several phage-encoded AMGs have been described during the last few years,but their diversity,distribution,and function have not been extensively explored,warranting further studies.Here,we highlight soil microbiome interactions,especially bacterium and phage interactions to understand this unexplored world with a high potential for restoring polluted soils.
基金This work was supported by the National Key Research and Development Program of China(2022YFA1304102)the National Natural Science Foundation of China(32070122,32370053,T2341010)+2 种基金the Chinese Universities Scientific Fund(2023RC022)Pinduoduo-Chinaa Agricultural University Research Fund(PC2023B02015)the 2115 Talent Development Program of China Agricultural University.
文摘The virome is the most abundant and highly variable microbial consortium in the gut.Because of difficulties in isolating and culturing gut viruses and the lack of reference genomes,the virome has remained a rela-tively elusive aspect of the human microbiome.In recent years,studies on the virome have accumulated growing evidence showing that the virome is diet-modulated and widely involved in regulating health.Here,we review the responses of the gut virome to dietary intake and the potential health implications,presenting changes in the gut viral community and preferences of viral members to particular diets.We further discuss how viral-bacterial interactions and phage lifestyle shifts shape the gut microbiota.We also discuss the specific functions conferred by diet on the gut virome and bacterial community in the context of horizontal gene transfer,as well as the import of new viral members along with the diet.Collating these studies will expand our understanding of the dietary regulation of the gut virome and inspire dietary in-terventions and health maintenance strategies targeting the gut microbiota.
基金supported by the National Natural Science Foundation of China(Grant Nos.42077106,42277115,and 42177113)the Key R&D Project of Jiangsu Province(Modern Agriculture,Grant No.BE2022322)the Fundamental Research Funds for the Central Universities(Grant No.YDZX2023023).
文摘As the most abundant living entities in the environment,viruses have been well recognized as crucial members in sustaining biogeochemical cycling.However,the significance of viruses in soil ecosystem multifunctionality remains under-explored.In this study,we used metagenomics and meta-viromics analysis to investigate the role of soil viruses in soil ecosystem functions under heavy,light,and no organochlorine pesticides(OCPs)contamination.In the three types of soil samples collected,lightcontaminated soils supported the highest level of multifunctionality,followed by heavy-contaminated soils and clean soils.Additionally,our results revealed a positive correlation between bacterial community evenness and multifunctionality index(p<0.05).Dominant bacterial species with biodegradation and stress resistance advantages exhibited higher abundance in OCPaffected soils,potentially playing a core functional supporting role.Furthermore,our results indicated that the species richness and diversity of bacteriophages were positively correlated with multifunctionality(p<0.05)in OCP-affected soils.Bacteriophages in OCP-affected soils regulate host metabolism and enhance soil ecosystem multifunctionality by infecting functional bacterial hosts and encoding AMGs related to soil element cycling.Our findings emphasize the potential effect of phages on ecosystem multifunctionality in contaminated soil,suggesting that phages may serve as contributors to soil ecology beyond bacteria and other microorganisms.Therefore,in polluted or constrained soils,further research could potentially translate phage communities and related ecological processes into artificial methods for application in soil pollution remediation or ecological restoration.
文摘Background Endogenous estrogen plays a very important role in the carcinogenesis and progression of breast cancer. The enzymes involved in the biosynthesis and metabolism of estrogen have been proposed to contribute to this effect. To examine this hypothesis, we conducted a case-control study to investigate the relationship between polymorphisms of genes responsible for estrogen biosynthesis (CYP17, cytochrome P450c17a and CYP19, aromatase cytochrome P450) and estrogen sulfation of inactivation ( SULT1 A1, sulfotransferasel A1 ) and the risk of breast cancer in Chinese women. Methods This study involved 213 breast cancer patients and 430 matched controls. PCR-based restriction fragment length polymorphism (RFLP) and short tandem repeat polymorphism (STRP) assays were used to detect the mononucleotide transition of CYP17 and SULT1A1 and tandem repeat polymorphism of CYP19. Logistic regression analyses were used to determine OR and 95% CI of each and all three high-risk genotypes, of all three genotypes combined, and of estrogen exposure factbrs. The relationship between each high-risk genotype and clinicalpathological characteristics were also assessed. Results The frequency of A2 allele of CYP17 was 49.8% in cases and 49. 1% in controls (P =0. 82). The frequency of His allele of SULT1A1 was significantly higher in cases ( 13.6% ) than in controls (9. 5% ) (P 〈 0. 05 ). There was also significant difference of the (TTTA)10 allele of CYP19 which was 12. 4% in cases and 8.2% in controls (P 〈0. 05). When the CYP17 A2 allele, CYP19 (TITA)1o and SULT1A1 His allele were considered as the “putative high-risk” genotype, there was an increased risk of breast cancer with the number of high-risk genotypes in a dose-response effect (trend, P = 0. 05 ). In multivariate analysis, the SULT1A1 genotype remained the most significant determinant for breast cancer, with OR =2. 37 (95% CI 1.23 - 4. 74) , followed by CYP19, with OR = 1.75 (95% CI 1.27 - 3.56). The (TTTA)10 allele of CYP19 was associated with tumor size, and the His allele of SULT1 A1 associated with status of lymph node metastasis. Conclusions This study supports the hypothesis that breast cancer can be initiated by estrogen exposure and that estrogen metabolizing genes are involved in this mechanism. This multigenic model is useful for identifying individuals who are at higher risks of breast cancer.
基金supported by National Natural Science Foundation of China (31401847)Natural Science Foundation of Jiangsu Province (BK20140707)+2 种基金National Postdoctoral Fund Project (2014M561663)Central Universities of Basic Operating Expenses Item (KJQN201541)National Science and Technology Fumin County Special Action Projects (BN2013116)
文摘In order to study the influence of different types of N fertilizers on grapevine(Vitis labruscana ‘Black Summer') trees were used as experiment materials and fertilizers foliar application trails were conducted in the flowering and veraison stages. The expression levels of five grapevine N metabolic genes, including Vv GHD, Vv Ni R, Vv NR, Vv GS and Vv AS, were analyzed, some physiological traits including the flower and fruit dropping rate, leaves and shoots growth rate, chlorophyll content and the fruit size of grape berry were also investigated. The results showed that,in general, the expression levels of the five N metabolic genes were increased after foliar applied different types of N fertilizers in the two periods.N metabolic genes showed similar expression patterns toward the same type of fertilizer in the two periods, whereas foliar applied different types of N fertilizers, their expression patterns changed. Moreover, the N fertilizer which had stronger and longer influence on the N metabolic genes could enhance the physiology traits more dramatically. Given the gene expression levels and the changes of physiology traits, we conclude that urea and ammonium nitrate have the best effect on grapevine; calcium nitrate can help to reduce the flower and berry dropping rate; ammonium sulphate and sodium nitrate have relatively poor effects on grapevine.
文摘Objective To determine whether interleukin-1α and 1β gene polymorphism is associated with rheumatoid arthritis disease activity and bone mineral metabolism, and whether there is any relationship between IL-1β and rheumatoid arthritis (RA) motif gene. Methods IL-1 gene polymorphisms were analyzed in 65 RA patients who met American College of Radiology (ACR) criteria and 60 controls. From genomic DNA, 2 polymorphisms in each gene for IL1α-889 and IL-1β+3953 were typed by PCR-RFLP and HLA-DRB1 allele typing was also undertaken by PCR-SSOP. Some clinical and laboratory parameters were collected. The allelic frequencies and carriage rates were compared between RA patients and controls and between patients with active and quiescent disease. Comparison was also made between IL-1 polymorphism and parameters of bone mineral metabolism and between patients with the HLA-DRB1 RA motif plus IL-1β 2 and patients without the two alleles. Fisher test and the analysis of variance was used to analyze the data.Results There was no significant difference in the frequency and carriage rate of IL-1α polymorphisms between RA patients and the controls. The β2/2 genotype of IL-1β was more common in female RA patients compared with controls (P=0.001). A lower carriage rate of IL-1β 2 occurred in male RA patients (P=0.001). A higher carriage rate of IL-1α2 is associated with a higher ESR (P=0.008), HAQ score (P=0.03), and vit-D 3 (P【0.001), but conversely a lower SJC (p=0.002), a lower RF (P=0.002) and a lower BMD at the lumbar spine (P=0.001). A higher frequency of IL-1α1 is associated with a lower CRP value (P=0.009). An increased IL-1β2 carriage is associated with active rheumatoid disease as indicated by a higher CRP (P【0.001), ESR (P【0.001) and pain score (P=0.001) and a higher BMD at the lumbar spine (P=0.007), lower vit-D 3 and. Udpd/Crea level The presence of the HLA DRB1 RA motif and IL-1β allele 2 at same time did not contribute to disease activity.Conclution Polymorphisms of the IL-β gene may affect the RA occurrence. Carriage of IL-1β2 polymorphisms is associated with more active disease in RA and the presence of both the IL-1α2 and the IL-1β1 allele in RA influences bone resorption.
基金supported by the open task of Qingdao National Laboratory for Marine Science and Technology(QNLM2016ORP0311)the NSFC projects (41876174, U1906216)+4 种基金the Senior User Project of RV KEXUE (KEXUE2019GZ03) supported by Center for Ocean Mega-Science,Chinese Academy of Sciencesthe DICP&QIBEBT (DICP&QIBEBT UN201803)the QIBEBT (QIBEBT ZZBS 201805)Dalian National Laboratory For Clean Energy (DNL),CASCentral Public-interest Scientific Institution Basal Research Fund,CAFS (No. 2017HY-ZD1002)。
文摘To avoid the negative effects of antibiotics,using phage to prevent animal disease becomes a promising method in aquaculture.Here,a lytic phage provisionally named vB_Vca S_HC that can infect the pathogen(i.e.,Vibrio campbellii 18)of prawn was isolated.The phage has an isometric head and a non-contractile tail.During phage infection,the induced host mortality in 5.5 h reached ca.96%,with a latent period of 1.5 h and a burst size of 172 PFU/cell.It has an 81,566 bp circular ds DNA genome containing 121 open reading frames(ORFs),and ca.71%of the ORFs are functionally unknown.Comparative genomic and phylogenetic analysis revealed that it is a novel phage belonging to Delepquintavirus,Siphoviridae,Caudovirales.In the phage genome,besides the ordinary genes related to structure assembly and DNA metabolism,there are 10 auxiliary metabolic genes.For the first time,the pyruvate phosphate dikinase(PPDK)gene was found in phages whose product is a key rate-limiting enzyme involving Embden-Meyerhof-Parnas(EMP)reaction.Interestingly,although the phage has a strong bactericidal activity and contains a potential lysogeny related gene,i.e.,the recombinase(Rec A)gene,we did not find the phage turned into a lysogenic state.Meanwhile,the phage genome does not contain any bacterial virulence gene or antimicrobial resistance gene.This study represents the first comprehensive characterization of a lytic V.campbellii phage and indicates that it is a promising candidate for the treatment of V.campbellii infections.
基金supported by the Key R&D Program of Shandong Province(grant no.2019JZZY020610)the National Key R&D Program of China(grant no.2018YFA0900600)+1 种基金the National Natural Science Foundation of China(grant no.31970315)the State Key Laboratory of Plant Genomics of China(grant no.SKLPG2016A-13).
文摘Terpenes,the largest group of plant-specialized metabolites,have received considerable attention for their highly diverse biological activities.Monoterpenes(C10),sesquiterpenes(C15),diterpenes(C20),and triterpenes(C30)have been extensively investigated at both the biochemical and molecular levels over the past two decades.Sesterterpenes(C25),an understudied terpenoid group,were recently described by plant scientists at the molecular level.This review summarizes the plant species that produce sesterterpenes and describes recent developments in the field of sesterterpene biosynthesis,placing a special focus on the catalytic mechanism and evolution of geranylfarnesyl diphosphate synthase and sesterterpene synthase.Finally,we propose several questions to be addressed in future studies,which may help to elucidate sesterterpene metabolism in plants.