At present,developing high-efficiency microwave absorption materials with properties including lightweight,thin thickness,strong absorbing intensity and broad bandwidth is an urgent demand to solve the electromagnetic...At present,developing high-efficiency microwave absorption materials with properties including lightweight,thin thickness,strong absorbing intensity and broad bandwidth is an urgent demand to solve the electromagnetic pollution issues.An ideal microwave absorber should have excellent dielectric and magnetic loss capabilities,thereby inducing attenuation and absorption of incident electromagnetic radiation.Recently,various carbon/magnetic metal composites have been developed and expected to become promising candidates for high-performance microwave absorbers.In this review,we introduce the mechanisms of microwave absorption and summarize the recent advances in carbon/magnetic metal composites.Preparation methods and microwave absorption properties of carbon/magnetic metal composites with different components,morphologies and microstructures are discussed in detail.Finally,the challenges and future prospects of carbon/magnetic metal absorbing materials are also proposed,which will be useful to develop high-performance microwave absorption materials.展开更多
Metal matrix composites (MMCs) as advanced materials, while producing the components with high dimensional accuracy and intricate shapes, are more complex and cost effective for machining than conventional alloys. I...Metal matrix composites (MMCs) as advanced materials, while producing the components with high dimensional accuracy and intricate shapes, are more complex and cost effective for machining than conventional alloys. It is due to the presence of discontinuously distributed hard ceramic with the MMCs and involvement of a large number of machining control variables. However, determination of optimal machining conditions helps the process engineer to make the process efficient and effec- tive. In the present investigation a novel hybrid multi-response optimization approach is proposed to derive the economic machining conditions for MMCs. This hybrid approach integrates the concepts of grey relational analysis (GRA), principal component analysis (PCA) and Taguchi method (TM) to derive the optimal machining conditions. The machining experiments are planned to machine A17075/SiCp MMCs using wire-electrical discharge machining (WEDM) process. SiC particulate size and its weight percentage are explicitly considered here as the process variables along with the WEDM input variables. The derived optimal process responses are confirmed by the experimental validation tests and the results show satisfactory. The practical possibility of the derived optimal machining conditions is also analyzed and presented using scanning electron microscope (SEM) examinations. According to the growing industrial need of making high performance, low cost components, this investigation provides a simple and sequential approach to enhance the WEDM performance while machining MMCs.展开更多
基金financially supported by the National Science and Technology Major Project(No.2017-VI-0008-0078)the Joint Fund of the National Natural Science Foundation of China and Baosteel Group Corporation(No.U1560106)+1 种基金the Aeronautical Science Foundation of China(No.2016ZF51050)the Scientific Research Foundation for the Returned Overseas Chinese Scholars(State Education Ministry)。
文摘At present,developing high-efficiency microwave absorption materials with properties including lightweight,thin thickness,strong absorbing intensity and broad bandwidth is an urgent demand to solve the electromagnetic pollution issues.An ideal microwave absorber should have excellent dielectric and magnetic loss capabilities,thereby inducing attenuation and absorption of incident electromagnetic radiation.Recently,various carbon/magnetic metal composites have been developed and expected to become promising candidates for high-performance microwave absorbers.In this review,we introduce the mechanisms of microwave absorption and summarize the recent advances in carbon/magnetic metal composites.Preparation methods and microwave absorption properties of carbon/magnetic metal composites with different components,morphologies and microstructures are discussed in detail.Finally,the challenges and future prospects of carbon/magnetic metal absorbing materials are also proposed,which will be useful to develop high-performance microwave absorption materials.
文摘Metal matrix composites (MMCs) as advanced materials, while producing the components with high dimensional accuracy and intricate shapes, are more complex and cost effective for machining than conventional alloys. It is due to the presence of discontinuously distributed hard ceramic with the MMCs and involvement of a large number of machining control variables. However, determination of optimal machining conditions helps the process engineer to make the process efficient and effec- tive. In the present investigation a novel hybrid multi-response optimization approach is proposed to derive the economic machining conditions for MMCs. This hybrid approach integrates the concepts of grey relational analysis (GRA), principal component analysis (PCA) and Taguchi method (TM) to derive the optimal machining conditions. The machining experiments are planned to machine A17075/SiCp MMCs using wire-electrical discharge machining (WEDM) process. SiC particulate size and its weight percentage are explicitly considered here as the process variables along with the WEDM input variables. The derived optimal process responses are confirmed by the experimental validation tests and the results show satisfactory. The practical possibility of the derived optimal machining conditions is also analyzed and presented using scanning electron microscope (SEM) examinations. According to the growing industrial need of making high performance, low cost components, this investigation provides a simple and sequential approach to enhance the WEDM performance while machining MMCs.