The TDDFT method is first applied in a series of tetra-nuclear transition metal clusters studies for nonlinear optical properties. The results indicate that the charge transfer inside the metal core [MCu3X4] (M=W, Mo...The TDDFT method is first applied in a series of tetra-nuclear transition metal clusters studies for nonlinear optical properties. The results indicate that the charge transfer inside the metal core [MCu3X4] (M=W, Mo; X=S, O, Cl, Se, Br) makes contribution to the optical nonlinearity. It is possible to enhance the hyperpolarizability by substituting the ligands of the clusters.展开更多
Nanometer-sized metal clusters were prepared inside single crystalline MgO films by vacuum co-deposition of metals and MgO. The atomic structure was studied by high-resolution electron microscopy (HREM) and nm-area el...Nanometer-sized metal clusters were prepared inside single crystalline MgO films by vacuum co-deposition of metals and MgO. The atomic structure was studied by high-resolution electron microscopy (HREM) and nm-area electron diffraction. The size of the clusters is ranging from 1 nm to 3 nm without those larger than 5 nm, and most of them have definite epitaxial orientations with the MgO matrix films. The character of the composite films is very much useful for the studies of various kinds of physical properties with anisotroPy. The physical properties such as electric transport, magnetic, optical absorption, sintering and catalytic ones were thus measured on the same samples analyzed by HREM by using high sensitivity apparatus with interest of clarifying the retationship between the atomic structure and physical properties展开更多
The syntheses and structures of a novel series of polynuclear coinage metal cluster compounds are discussed. The most fascinating structural characteristic of the Au-Ag alloy clusters with Au_18Ag_19 and Au_18Ag_19 co...The syntheses and structures of a novel series of polynuclear coinage metal cluster compounds are discussed. The most fascinating structural characteristic of the Au-Ag alloy clusters with Au_18Ag_19 and Au_18Ag_19 cores and phosphine ligands, which were prepared by the reduction of mononuclear coinage metal complexes R3PAuX and R3PAgX with NaBH4 in organic solution, is their construction from 13-atom gold-centred icosahedral Au_7Ag_6 building blocks. The structures of the polynuclear coinage metal clusters with R2dtc ligands are variable with either unlimited linear chain or triangular M3 units.展开更多
This paper presents a versatile method for synthesizing electron-rich polynuclear transition metal clusters with chalcogen bridges and phosphine ligands.The reactions of transition metal complexes(R3P)2MX2(M=Co,Ni;R=P...This paper presents a versatile method for synthesizing electron-rich polynuclear transition metal clusters with chalcogen bridges and phosphine ligands.The reactions of transition metal complexes(R3P)2MX2(M=Co,Ni;R=Ph,Bu,Et;X=Cl,Br) with bridging reagents Na2Ex (E=S,Se;x=1.2) are described.The geometric and electronic structures of a series of polynuclear transition metal clusters with trianglar M3 units are also discussed.展开更多
The static polarizabilities and the second-order hyperpolarizabilities of a series of tri-nuclear metal cluster models MS4(MPPh3)2(MPPh3) (M=Mo,W; M=Cu, Ag, Au) have been calculated within the first-principle theoreti...The static polarizabilities and the second-order hyperpolarizabilities of a series of tri-nuclear metal cluster models MS4(MPPh3)2(MPPh3) (M=Mo,W; M=Cu, Ag, Au) have been calculated within the first-principle theoretical framework. The model clusters have two fragments of rhombic units and it is the charge transfer from one of these moieties to the other that is responsible for nonlinear optical property. This kind of electronic delocalization, differentiated from that of planar p-system, is very interesting and is worthy for further investigation.展开更多
Within the framework of the dynamical classical over-barrier model,the soft collisions between slow highly charged ions(SHCIs) Ar 17+ and the large copper clusters under large impact parameters have been studied in...Within the framework of the dynamical classical over-barrier model,the soft collisions between slow highly charged ions(SHCIs) Ar 17+ and the large copper clusters under large impact parameters have been studied in this paper.We present the dominant mechanism of the electron transfer between SHCIs and a large metal cluster by computational simulation.The evolution of the occupation of projectile ions,KL x satellite lines,X-ray yields,Auger electron spectrum and scattering angles are provided.展开更多
Twelve novel transition-rare-earth metal clusters,formulated as [Ni_(18)Pr_(14)(μ_(3)OH)_(14)(dmpa)_(10)(mmt)_(10)(SO_(4))_(4)(CH_(3)COO)_(16)]·9CH_(3)OH·5H_(2)O(1,H_(3)dmpa=dimethylolpropionic acid,and Hmm...Twelve novel transition-rare-earth metal clusters,formulated as [Ni_(18)Pr_(14)(μ_(3)OH)_(14)(dmpa)_(10)(mmt)_(10)(SO_(4))_(4)(CH_(3)COO)_(16)]·9CH_(3)OH·5H_(2)O(1,H_(3)dmpa=dimethylolpropionic acid,and Hmmt=2-me rcapto-5-methyl-1,3,4-thiadiazole) [Ni_(36)RE_(102)(OH)_(138)(mmt)_(18)(Hdmpa)_(30)(H_(2)dmpa)_(12)(CH_(3)COO)_(72)(NO_(3))_(36)(SO_(4))_(18)(H_(2)O)_(30)]·Br_(6)(RE=Nd(2),Sm(3),Eu(4) and Gd(5))[Ni_(12)RE_(10)(μ_(3)-OH)_(10)(dmpa)_(8)(mmt)_(8)(S(_(4))2(CH_(3)COO)_(8)(H_(2)O)_(4)]·8CH_(3)OH·7H_(2)O(RE = Tb(6),Dy(7),Ho(8),Er(9) and Y(10)) [Ni_(8)Pr_(8)(μ_(3)-OH)_(8)(mmt)_(8)(Hdpga)_(16)(CH3COO)_(8)]·8CH_(3)OH(11,H_(2)dpga=diphe nyl-glycolic acid),and [Ni_(16)Tb_(6)(μ_(3)-OH)_(24)(mmt)_(8)(Hdpga)_(4)(dpga)_(4)(CH_(3)COO)_(2)(NO_(3))_(4)(H_(2)O)_(2)]·12CH_(3)OH·5H_(2)O(12),were synthesized solvothermally by using different ligand combinations and rare earth nitrates.X-ray crystal structure analyses reveal that complexes 1 and 12 possess sandwich-like structure.Compounds 2-5 are isostructural and feature a hexagonal structure,shaped like a "Star of David".Isostructural 6-10 present ring-like structure,as well as the cluster 11.The structural variations of these complexes can be attributed to the effect of lanthanide contraction.Moreover,the template effect of SO_(4)^(2-) anion derived from the slow decomposition of Hmmt ligand also plays a significant role in the formation of cluster skeletons.The insitu mechanism for the generation of sulfate anion is briefly discussed.Meanwhile,the magnetic properties of complexes 2-11 were studied which show typical antiferromagnetic interactions.展开更多
Developing artificial catalysts that mimic the functionality of enzymes and adapt to the surrounding microenvironment to achieve specific activity and selectivity is a fascinating research area yet remains a great cha...Developing artificial catalysts that mimic the functionality of enzymes and adapt to the surrounding microenvironment to achieve specific activity and selectivity is a fascinating research area yet remains a great challenge.In this work,we present a meticulously designed strategy for the successful encapsulation of ultrasmall metal clusters(MCs)within an amine-type porous organic cage(POC)through electrostatic complexation,phase transfer,and alcohol reduction processes.The amine cage showcases an intriguing and customizable feature that allows for the regulation of the surrounding microenvironment of the confined MCs through a feasible postmodifi-cation approach.This functionalization of cage skeleton further facilitates precise adjustment to the surface electronic state of Pd cluster,thereby influencing the adsorption behavior of substrate.Consequently,this controlled regulation leads to modified activity and chemoselectivity in the catalytic hydrogenation of halogenated nitrobenzene.Importantly,the investigation of the correlation between the surrounding microenvironment,substrate adsorption,and catalytic performance in the POC-immobilized MCs system has not been previously reported.We anticipate that our research will provide valuable insights in this field.展开更多
The Hückel’s rule,Baird’s rule,and electronic shell closure model are classical and well-established concepts in chemistry,which have long been employed in rationalizing the aromaticity/antiaromaticity of organ...The Hückel’s rule,Baird’s rule,and electronic shell closure model are classical and well-established concepts in chemistry,which have long been employed in rationalizing the aromaticity/antiaromaticity of organic species and stability of inorganic clusters.Thus,the observation of unique species featuring properties out of the fundamental frameworks of these rules is challenging but significant and helps in drawing a complete picture of fascinating concepts in chemistry.展开更多
The hydrothermal reaction of 5-methoxyisophthalic acid(MeO-H2ip), 1,3-bis(2-methylimidazol-1-yl)propane(bmip) and Zn(NO3)2·6H2O in the presence of NaOCH3 gave rise to a three-dimensional(3-D) metal-orga...The hydrothermal reaction of 5-methoxyisophthalic acid(MeO-H2ip), 1,3-bis(2-methylimidazol-1-yl)propane(bmip) and Zn(NO3)2·6H2O in the presence of NaOCH3 gave rise to a three-dimensional(3-D) metal-organic framework containing octanuclear Zn(II) units, [Zn4(MeO-ip)3(OH)2(bmip)]n. Single-crystal X-ray diffraction analysis reveals that the complex crystallizes in the triclinic space group P1 with a = 11.348(3), b = 14.163(4), c = 15.088(4) , α = 108.537(2), β = 106.542(2), γ = 103.106(1)o, V = 2065.4(9) -3, Z = 2, Mr = 334.62, Dc = 1.740 g·cm-(-3), μ = 2.375 mm-(-1), S = 1.015, F(000) = 1096, the final R = 0.0272 and w R = 0.0715 for 8929 observed reflections(I 〉 2σ(I)). The complex is thermally stable up to 370 oC, and exhibits photoluminescent emission at 450 nm on 350 nm excitation.展开更多
Metal clusters that contain a small number of atoms usually present unique properties with dramatic dependence on their sizes,geometric structures,and compositions.The studies of naked metal clusters are devoted to de...Metal clusters that contain a small number of atoms usually present unique properties with dramatic dependence on their sizes,geometric structures,and compositions.The studies of naked metal clusters are devoted to develop new catalysts and functional materials of atomic precision,and enable to improve the fundamental theory of structure chemistry and to understand the basic reactions and properties bridging the gap between atoms and bulk materials.In particular,some interesting superatom clusters have received reasonable research interest indicative of materials gene of clusters.Here in this review,we simply summarize the preparation,stability,and reactivity of naked metal clusters with a few examples displayed.Hopefully it serves as a modest spur to stimulate more interest of related investigations in this field.展开更多
Electrospray ionization time-of-flight mass spectrometry(ESI-TOF-MS)has been recognized as a powerful technique for studying metal clusters’chemical composition and reaction mechanisms.It is a great challenge in mass...Electrospray ionization time-of-flight mass spectrometry(ESI-TOF-MS)has been recognized as a powerful technique for studying metal clusters’chemical composition and reaction mechanisms.It is a great challenge in mass spectrometry analysis to maintain the metal cluster molecules intact without fragmentation,which is achieved in this work by using mixed solvents to change the interaction between cluster molecules and solvent molecules,further affecting the fragmentation behaviors of the metal cluster in MS.Theoretical analysis reveals that the stability of the[(C)Au_(6)Ag_(2)(C_(18)H_(14)ONP)_(6)]^(4+)cluster in ESI-TOF-MS is related to the strength of the chemical bonds between its own atoms and the bonding between the solvent and the cluster molecules.展开更多
A condition for local moment formation in metals derived by Stoddart and March (Ann. Phys. NY 1972 64, 174) is first used to discuss the ferromagnetism of body-centred-cubic Fe. A less detailed discussion is also ...A condition for local moment formation in metals derived by Stoddart and March (Ann. Phys. NY 1972 64, 174) is first used to discuss the ferromagnetism of body-centred-cubic Fe. A less detailed discussion is also added on Ni and Co. This leads into a treatment of the non- linear response of such 3d ferromagnets to dilute substitutional impurities. Antiferromagnets responding to local changes in the exchange field caused by such impurities are also studied, Mn in Cr being one such system discussed. The paper concludes with a brief summary of clusters of transition metal atoms, with most attention devoted to Cr and to Mn.展开更多
Optical responses in dilute composites are controlled through the local dielectric resonance of metallic clusters. We consider two located metallic clusters close to each other with admittances ε1 and ε2. Through va...Optical responses in dilute composites are controlled through the local dielectric resonance of metallic clusters. We consider two located metallic clusters close to each other with admittances ε1 and ε2. Through varying the difference admittance ratio η[= (ε2 - ε0)/(ε1 - ε0)], we find that their optical responses are determined by the local resonance. There is a blueshift of absorption peaks with the increase of η- Simultaneously, it is known that the absorption peaks will be redshifted by enlarging the cluster size. By adjusting the nano-metallic cluster geometry, size and admittances, we can control the positions and intensities of absorption peaks effectively. We have also deduced the effective linear optical responses of three-component composites εe=ε0 (1+∑^n n=1[(γn1+ηγn2)/(ε0(s-sn))]) and the sum rule of cross sections:∑^n n=1(γn1+ηγn2)=Nh1+Nh2,, where Nh1and Nh2 are the numbers of εl and ε2 bonds along the electric field, respectively. These results may be beneficial to the study of surface plasmon resonances on a nanometre scale.展开更多
Advances in cluster science have enabled the preparation of atomically precise metal clusters with one to a hundred atoms under controllable expansion conditions.After introducing typical gas-phase cluster preparation...Advances in cluster science have enabled the preparation of atomically precise metal clusters with one to a hundred atoms under controllable expansion conditions.After introducing typical gas-phase cluster preparation and reaction apparatuses,this work summarized recent progress in preparing pure metal clusters of single-atom resolution,including neutral and ionic ones,with typical examples of Al,V,Nb,Fe,Co,Ni,Rh,Pt,Ag,Cu,and Pb.With the development of soft-landing deposition technology,the size-selective pure metal clusters with strict atomic precision and predictive property will benefit nanomanufacturing down to atomic and near-atomic scales.This work serves as a modest motivation to stimulate the interest of scientists focusing on interdisciplinary subjects.展开更多
On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the ma...On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the major results reported in this paper contain the following two respects: explicit relationships between the coefficients of the real and complex Kramers doublets have been derived by using two types of the expressions of the principal components of the g tensors in real and complex orbital representations obtained in the first paper; the use of these relationships of the real and complex orbital coefficients has carried out a series of mathematical demonstrations on the agreement of the real and complex orbital methods .展开更多
The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic ...The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic clusters to nanoparticles.Therefore,understanding the interactions among these components,especially the synergistic effects between single atomic sites and cluster sites,is crucial for improving the oxygen reduction reaction(ORR)activity of M–N–C catalysts.Accordingly,herein,we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy.We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron-withdrawing–OH ligands and decreasing the d-band center of the Fe center.The as-developed catalyst exhibits encouraging ORR activity with halfwave potentials(E1/2)of 0.831 and 0.905 V in acidic and alkaline media,respectively.Moreover,the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst.The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metalair battery device.Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of singleatom site catalysts.展开更多
Metallic clusters,ranging from 1 to 2 nm in size,have emerged as promising candidates for creating nanoelectronic devices at the single-cluster level.With the intermediate quantum properties between metals and semicon...Metallic clusters,ranging from 1 to 2 nm in size,have emerged as promising candidates for creating nanoelectronic devices at the single-cluster level.With the intermediate quantum properties between metals and semiconductors,these metallic clusters offer an alternative pathway to silicon-based electronics and organic molecules for miniaturized electronics with dimensions below 5 nm.Significant progress has been made in studies of single-cluster electronic devices.However,a clear guide for selecting,synthesizing,and fabricating functional single-cluster electronic devices is still required.This review article provides a comprehensive overview of single-cluster electronic devices,including the mechanisms of electron transport,the fabrication of devices,and the regulations of electron transport properties.Furthermore,we discuss the challenges and future directions for single-cluster electronic devices and their potential applications.展开更多
Compared to single-atom catalysts,supported metal clusters can exhibit enhanced activity and designated selectivity in heterogeneous catalysis due to their unique geometric and electronic features.Herein,by means of c...Compared to single-atom catalysts,supported metal clusters can exhibit enhanced activity and designated selectivity in heterogeneous catalysis due to their unique geometric and electronic features.Herein,by means of comprehensive density functional theory (DFT) computations,we systematically investigated the potential of several Ni clusters supported on graphdiyne (Ni_(x)/GDY,x=1–6) for CO_(2) reduction reaction (CO_(2)RR).Our results revealed that,due to the strong interaction between Ni atoms and sp-hybridized C atoms,these supported Ni clusters on GDY exhibit high stabilities and excellent electronic properties.In particular,according to the computed free energy profiles for CO_(2)RR on these Ni_(x)/GDY systems,the anchored Ni_(4) cluster was revealed to exhibit high CO_(2)RR catalytic activity with a small limiting potential and moderate kinetic barrier for C–C coupling,and CH_(4),C_(2)H_(5)OH,and C_(3)H_(7)OH were identified as the main products,which can be attributed to its strong capacity for CO_(2) activation due to its unique configuration and excellent electronic properties.Thus,by carefully controlling the precise numbers of atoms in sub-nano clusters,the spatially confined Ni clusters can perform as promising CO_(2)RR catalysts with high-efficiency and high-selectivity,which may provide a useful guidance to further develop novel and low-cost metal clusters-based catalysts for sustain CO_(2)conversion to valuable chemicals and fuels.展开更多
An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-o...An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-of-fight mass spectrometer. Taking advantage of the nano-electrospray ionization source, polyvalent ions are usually produced in the "ionization" process and the obtained mass resolution of the equipment is over 8000. The molecular ion peaks of metal cluster compounds [Au20(PPhpy2)10Cl2](SbF6)4, where PPhpy2=bis(2- pyridyl)phenylphosphine, and [AuaAg2(C)L6](BF4)4, where L=2-(diphenylphosphino)-5- methylpyridine, are distinguished in the respective mass spectrum, accompanied by some fragment ion peaks. In addition, the mass-to-charge ratios of the parent ions are determi- nated. Preliminary results suggest that the device is a powerful tool for the study of metal cluster compounds. It turns out that the information obtained by the instrumentation serves as an essential supplement to single crystal X-ray diffraction for structure characterization of metal cluster compounds.展开更多
文摘The TDDFT method is first applied in a series of tetra-nuclear transition metal clusters studies for nonlinear optical properties. The results indicate that the charge transfer inside the metal core [MCu3X4] (M=W, Mo; X=S, O, Cl, Se, Br) makes contribution to the optical nonlinearity. It is possible to enhance the hyperpolarizability by substituting the ligands of the clusters.
文摘Nanometer-sized metal clusters were prepared inside single crystalline MgO films by vacuum co-deposition of metals and MgO. The atomic structure was studied by high-resolution electron microscopy (HREM) and nm-area electron diffraction. The size of the clusters is ranging from 1 nm to 3 nm without those larger than 5 nm, and most of them have definite epitaxial orientations with the MgO matrix films. The character of the composite films is very much useful for the studies of various kinds of physical properties with anisotroPy. The physical properties such as electric transport, magnetic, optical absorption, sintering and catalytic ones were thus measured on the same samples analyzed by HREM by using high sensitivity apparatus with interest of clarifying the retationship between the atomic structure and physical properties
文摘The syntheses and structures of a novel series of polynuclear coinage metal cluster compounds are discussed. The most fascinating structural characteristic of the Au-Ag alloy clusters with Au_18Ag_19 and Au_18Ag_19 cores and phosphine ligands, which were prepared by the reduction of mononuclear coinage metal complexes R3PAuX and R3PAgX with NaBH4 in organic solution, is their construction from 13-atom gold-centred icosahedral Au_7Ag_6 building blocks. The structures of the polynuclear coinage metal clusters with R2dtc ligands are variable with either unlimited linear chain or triangular M3 units.
文摘This paper presents a versatile method for synthesizing electron-rich polynuclear transition metal clusters with chalcogen bridges and phosphine ligands.The reactions of transition metal complexes(R3P)2MX2(M=Co,Ni;R=Ph,Bu,Et;X=Cl,Br) with bridging reagents Na2Ex (E=S,Se;x=1.2) are described.The geometric and electronic structures of a series of polynuclear transition metal clusters with trianglar M3 units are also discussed.
基金supported by the National Natural Science Foundation of China(NSFC.69978021 and 20173064)FPNSFC(E9910030).
文摘The static polarizabilities and the second-order hyperpolarizabilities of a series of tri-nuclear metal cluster models MS4(MPPh3)2(MPPh3) (M=Mo,W; M=Cu, Ag, Au) have been calculated within the first-principle theoretical framework. The model clusters have two fragments of rhombic units and it is the charge transfer from one of these moieties to the other that is responsible for nonlinear optical property. This kind of electronic delocalization, differentiated from that of planar p-system, is very interesting and is worthy for further investigation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11135002,91026021,11075068,11075069,and 10975065)the Fundamental Research Funds for the Central Universities of China (Grant No. lzujbky-2010-k08)
文摘Within the framework of the dynamical classical over-barrier model,the soft collisions between slow highly charged ions(SHCIs) Ar 17+ and the large copper clusters under large impact parameters have been studied in this paper.We present the dominant mechanism of the electron transfer between SHCIs and a large metal cluster by computational simulation.The evolution of the occupation of projectile ions,KL x satellite lines,X-ray yields,Auger electron spectrum and scattering angles are provided.
基金Project supported by the National Natural Science Foundation of China (21971203)Support Plan of Shaanxi Province for Young Topnotch TalentFundamental Research Funds for Central Universities。
文摘Twelve novel transition-rare-earth metal clusters,formulated as [Ni_(18)Pr_(14)(μ_(3)OH)_(14)(dmpa)_(10)(mmt)_(10)(SO_(4))_(4)(CH_(3)COO)_(16)]·9CH_(3)OH·5H_(2)O(1,H_(3)dmpa=dimethylolpropionic acid,and Hmmt=2-me rcapto-5-methyl-1,3,4-thiadiazole) [Ni_(36)RE_(102)(OH)_(138)(mmt)_(18)(Hdmpa)_(30)(H_(2)dmpa)_(12)(CH_(3)COO)_(72)(NO_(3))_(36)(SO_(4))_(18)(H_(2)O)_(30)]·Br_(6)(RE=Nd(2),Sm(3),Eu(4) and Gd(5))[Ni_(12)RE_(10)(μ_(3)-OH)_(10)(dmpa)_(8)(mmt)_(8)(S(_(4))2(CH_(3)COO)_(8)(H_(2)O)_(4)]·8CH_(3)OH·7H_(2)O(RE = Tb(6),Dy(7),Ho(8),Er(9) and Y(10)) [Ni_(8)Pr_(8)(μ_(3)-OH)_(8)(mmt)_(8)(Hdpga)_(16)(CH3COO)_(8)]·8CH_(3)OH(11,H_(2)dpga=diphe nyl-glycolic acid),and [Ni_(16)Tb_(6)(μ_(3)-OH)_(24)(mmt)_(8)(Hdpga)_(4)(dpga)_(4)(CH_(3)COO)_(2)(NO_(3))_(4)(H_(2)O)_(2)]·12CH_(3)OH·5H_(2)O(12),were synthesized solvothermally by using different ligand combinations and rare earth nitrates.X-ray crystal structure analyses reveal that complexes 1 and 12 possess sandwich-like structure.Compounds 2-5 are isostructural and feature a hexagonal structure,shaped like a "Star of David".Isostructural 6-10 present ring-like structure,as well as the cluster 11.The structural variations of these complexes can be attributed to the effect of lanthanide contraction.Moreover,the template effect of SO_(4)^(2-) anion derived from the slow decomposition of Hmmt ligand also plays a significant role in the formation of cluster skeletons.The insitu mechanism for the generation of sulfate anion is briefly discussed.Meanwhile,the magnetic properties of complexes 2-11 were studied which show typical antiferromagnetic interactions.
基金supported by the National Natural Science Foundation of China(grant nos.22071008 and 52003029)the High-level Overseas Talents Program of China,the Excellent Young Scholars Research Fund from the Beijing Institute of Technology,and the Central University Basic Research Fund of China(grant no.2021CX01024)+1 种基金financial support from the China Postdoctoral Science Foundation(grant no.2022M710375)The technical support from Analysis&Testing Center of Beijing Institute of Technology is also appreciated.
文摘Developing artificial catalysts that mimic the functionality of enzymes and adapt to the surrounding microenvironment to achieve specific activity and selectivity is a fascinating research area yet remains a great challenge.In this work,we present a meticulously designed strategy for the successful encapsulation of ultrasmall metal clusters(MCs)within an amine-type porous organic cage(POC)through electrostatic complexation,phase transfer,and alcohol reduction processes.The amine cage showcases an intriguing and customizable feature that allows for the regulation of the surrounding microenvironment of the confined MCs through a feasible postmodifi-cation approach.This functionalization of cage skeleton further facilitates precise adjustment to the surface electronic state of Pd cluster,thereby influencing the adsorption behavior of substrate.Consequently,this controlled regulation leads to modified activity and chemoselectivity in the catalytic hydrogenation of halogenated nitrobenzene.Importantly,the investigation of the correlation between the surrounding microenvironment,substrate adsorption,and catalytic performance in the POC-immobilized MCs system has not been previously reported.We anticipate that our research will provide valuable insights in this field.
基金supported by the Taishan Scholars Project of Shandong Province(no.ts201712011)the National Natural Science Foundation of China(NSFC)(nos.21603119 and 21705093)+4 种基金the Natural Science Foundation of Shandong Province(nos.ZR2017BB061 and ZR2016BQ09)the Natural Science Foundation of Jiangsu Province(no.BK20170396)the Project for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province(no.2019KJC025)the Young Scholars Program of Shandong University(YSPSDU)(no.2018WLJH48)the Qilu Youth Scholar Funding of Shandong University,and the Fundamental Research Funds of Shandong University(no.2017TB003).
文摘The Hückel’s rule,Baird’s rule,and electronic shell closure model are classical and well-established concepts in chemistry,which have long been employed in rationalizing the aromaticity/antiaromaticity of organic species and stability of inorganic clusters.Thus,the observation of unique species featuring properties out of the fundamental frameworks of these rules is challenging but significant and helps in drawing a complete picture of fascinating concepts in chemistry.
基金supported by the Natural Science Foundation of Fujian Province(2015J01038)Provincial Education Department of Fujian(JA12070)State Key Laboratory of Structural Chemistry(20150015)
文摘The hydrothermal reaction of 5-methoxyisophthalic acid(MeO-H2ip), 1,3-bis(2-methylimidazol-1-yl)propane(bmip) and Zn(NO3)2·6H2O in the presence of NaOCH3 gave rise to a three-dimensional(3-D) metal-organic framework containing octanuclear Zn(II) units, [Zn4(MeO-ip)3(OH)2(bmip)]n. Single-crystal X-ray diffraction analysis reveals that the complex crystallizes in the triclinic space group P1 with a = 11.348(3), b = 14.163(4), c = 15.088(4) , α = 108.537(2), β = 106.542(2), γ = 103.106(1)o, V = 2065.4(9) -3, Z = 2, Mr = 334.62, Dc = 1.740 g·cm-(-3), μ = 2.375 mm-(-1), S = 1.015, F(000) = 1096, the final R = 0.0272 and w R = 0.0715 for 8929 observed reflections(I 〉 2σ(I)). The complex is thermally stable up to 370 oC, and exhibits photoluminescent emission at 450 nm on 350 nm excitation.
基金financially supported by the National Natural Science Foundation of China (Nos. 21802146 and 21722308)CAS Key Research Project of Frontier Science (CAS Grant QYZDB-SSW-SLH024)Frontier Cross Project of National Laboratory for Molecular Sciences (051Z011BZ3)。
文摘Metal clusters that contain a small number of atoms usually present unique properties with dramatic dependence on their sizes,geometric structures,and compositions.The studies of naked metal clusters are devoted to develop new catalysts and functional materials of atomic precision,and enable to improve the fundamental theory of structure chemistry and to understand the basic reactions and properties bridging the gap between atoms and bulk materials.In particular,some interesting superatom clusters have received reasonable research interest indicative of materials gene of clusters.Here in this review,we simply summarize the preparation,stability,and reactivity of naked metal clusters with a few examples displayed.Hopefully it serves as a modest spur to stimulate more interest of related investigations in this field.
基金supported by the National Natural Science Foundation of China(Nos.91961107,21827801,21805231)。
文摘Electrospray ionization time-of-flight mass spectrometry(ESI-TOF-MS)has been recognized as a powerful technique for studying metal clusters’chemical composition and reaction mechanisms.It is a great challenge in mass spectrometry analysis to maintain the metal cluster molecules intact without fragmentation,which is achieved in this work by using mixed solvents to change the interaction between cluster molecules and solvent molecules,further affecting the fragmentation behaviors of the metal cluster in MS.Theoretical analysis reveals that the stability of the[(C)Au_(6)Ag_(2)(C_(18)H_(14)ONP)_(6)]^(4+)cluster in ESI-TOF-MS is related to the strength of the chemical bonds between its own atoms and the bonding between the solvent and the cluster molecules.
文摘A condition for local moment formation in metals derived by Stoddart and March (Ann. Phys. NY 1972 64, 174) is first used to discuss the ferromagnetism of body-centred-cubic Fe. A less detailed discussion is also added on Ni and Co. This leads into a treatment of the non- linear response of such 3d ferromagnets to dilute substitutional impurities. Antiferromagnets responding to local changes in the exchange field caused by such impurities are also studied, Mn in Cr being one such system discussed. The paper concludes with a brief summary of clusters of transition metal atoms, with most attention devoted to Cr and to Mn.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 10304001, 10334010, 10521002, 10434020, 10328407 and 90501007).
文摘Optical responses in dilute composites are controlled through the local dielectric resonance of metallic clusters. We consider two located metallic clusters close to each other with admittances ε1 and ε2. Through varying the difference admittance ratio η[= (ε2 - ε0)/(ε1 - ε0)], we find that their optical responses are determined by the local resonance. There is a blueshift of absorption peaks with the increase of η- Simultaneously, it is known that the absorption peaks will be redshifted by enlarging the cluster size. By adjusting the nano-metallic cluster geometry, size and admittances, we can control the positions and intensities of absorption peaks effectively. We have also deduced the effective linear optical responses of three-component composites εe=ε0 (1+∑^n n=1[(γn1+ηγn2)/(ε0(s-sn))]) and the sum rule of cross sections:∑^n n=1(γn1+ηγn2)=Nh1+Nh2,, where Nh1and Nh2 are the numbers of εl and ε2 bonds along the electric field, respectively. These results may be beneficial to the study of surface plasmon resonances on a nanometre scale.
基金the Ministry of Science and Technology of the People's Republic of China(No.2020YFA0714602)the National Natural ScienceFoundationof China(Grant No.21722308and 22003072),the Key Research Program of CAS Frontier Sciences(CAS Grant QYZDBSSWSLHO024)+1 种基金the National Project Development of Advanced Scientific Instruments Based on Deep Ultraviolet Laser Source(Y31M0112C1)and the CAS Instrument Development Project(Y5294512C1).
文摘Advances in cluster science have enabled the preparation of atomically precise metal clusters with one to a hundred atoms under controllable expansion conditions.After introducing typical gas-phase cluster preparation and reaction apparatuses,this work summarized recent progress in preparing pure metal clusters of single-atom resolution,including neutral and ionic ones,with typical examples of Al,V,Nb,Fe,Co,Ni,Rh,Pt,Ag,Cu,and Pb.With the development of soft-landing deposition technology,the size-selective pure metal clusters with strict atomic precision and predictive property will benefit nanomanufacturing down to atomic and near-atomic scales.This work serves as a modest motivation to stimulate the interest of scientists focusing on interdisciplinary subjects.
文摘On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the major results reported in this paper contain the following two respects: explicit relationships between the coefficients of the real and complex Kramers doublets have been derived by using two types of the expressions of the principal components of the g tensors in real and complex orbital representations obtained in the first paper; the use of these relationships of the real and complex orbital coefficients has carried out a series of mathematical demonstrations on the agreement of the real and complex orbital methods .
基金supported by the National Natural Science Foundation of China(22109100,22075203)Guangdong Basic and Applied Basic Research Foundation(2022A1515011677)+1 种基金Shenzhen Science and Technology Project Program(JCYJ2021032409420401)Natural Science Foundation of SZU(000002111605).
文摘The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic clusters to nanoparticles.Therefore,understanding the interactions among these components,especially the synergistic effects between single atomic sites and cluster sites,is crucial for improving the oxygen reduction reaction(ORR)activity of M–N–C catalysts.Accordingly,herein,we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy.We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron-withdrawing–OH ligands and decreasing the d-band center of the Fe center.The as-developed catalyst exhibits encouraging ORR activity with halfwave potentials(E1/2)of 0.831 and 0.905 V in acidic and alkaline media,respectively.Moreover,the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst.The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metalair battery device.Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of singleatom site catalysts.
基金supported by the National Natural Science Foundation of China(Nos.22250003,22173075,21933012,and 22003052)the Fundamental Research Funds for the Central Universities(Nos.20720220020,20720220072,and 20720200068).
文摘Metallic clusters,ranging from 1 to 2 nm in size,have emerged as promising candidates for creating nanoelectronic devices at the single-cluster level.With the intermediate quantum properties between metals and semiconductors,these metallic clusters offer an alternative pathway to silicon-based electronics and organic molecules for miniaturized electronics with dimensions below 5 nm.Significant progress has been made in studies of single-cluster electronic devices.However,a clear guide for selecting,synthesizing,and fabricating functional single-cluster electronic devices is still required.This review article provides a comprehensive overview of single-cluster electronic devices,including the mechanisms of electron transport,the fabrication of devices,and the regulations of electron transport properties.Furthermore,we discuss the challenges and future directions for single-cluster electronic devices and their potential applications.
基金financially supported by the Natural Science Funds (NSF) for Distinguished Young Scholar of Heilongjiang Province (JC2018004)the Specialized Fund for the Doctoral Research of Jilin Engineering Normal University (BSKJ201916)。
文摘Compared to single-atom catalysts,supported metal clusters can exhibit enhanced activity and designated selectivity in heterogeneous catalysis due to their unique geometric and electronic features.Herein,by means of comprehensive density functional theory (DFT) computations,we systematically investigated the potential of several Ni clusters supported on graphdiyne (Ni_(x)/GDY,x=1–6) for CO_(2) reduction reaction (CO_(2)RR).Our results revealed that,due to the strong interaction between Ni atoms and sp-hybridized C atoms,these supported Ni clusters on GDY exhibit high stabilities and excellent electronic properties.In particular,according to the computed free energy profiles for CO_(2)RR on these Ni_(x)/GDY systems,the anchored Ni_(4) cluster was revealed to exhibit high CO_(2)RR catalytic activity with a small limiting potential and moderate kinetic barrier for C–C coupling,and CH_(4),C_(2)H_(5)OH,and C_(3)H_(7)OH were identified as the main products,which can be attributed to its strong capacity for CO_(2) activation due to its unique configuration and excellent electronic properties.Thus,by carefully controlling the precise numbers of atoms in sub-nano clusters,the spatially confined Ni clusters can perform as promising CO_(2)RR catalysts with high-efficiency and high-selectivity,which may provide a useful guidance to further develop novel and low-cost metal clusters-based catalysts for sustain CO_(2)conversion to valuable chemicals and fuels.
文摘An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-of-fight mass spectrometer. Taking advantage of the nano-electrospray ionization source, polyvalent ions are usually produced in the "ionization" process and the obtained mass resolution of the equipment is over 8000. The molecular ion peaks of metal cluster compounds [Au20(PPhpy2)10Cl2](SbF6)4, where PPhpy2=bis(2- pyridyl)phenylphosphine, and [AuaAg2(C)L6](BF4)4, where L=2-(diphenylphosphino)-5- methylpyridine, are distinguished in the respective mass spectrum, accompanied by some fragment ion peaks. In addition, the mass-to-charge ratios of the parent ions are determi- nated. Preliminary results suggest that the device is a powerful tool for the study of metal cluster compounds. It turns out that the information obtained by the instrumentation serves as an essential supplement to single crystal X-ray diffraction for structure characterization of metal cluster compounds.