We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion ...We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.展开更多
By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies o...By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.展开更多
We present a polarization converter composed of bi-layered metal films perforated with rectangle hole pairs in each film. The proposed converter can convert the polarization of an incident linearly-polarized electroma...We present a polarization converter composed of bi-layered metal films perforated with rectangle hole pairs in each film. The proposed converter can convert the polarization of an incident linearly-polarized electromagnetic wave to its orthogonal direction with high efficiency and large bandwidth in the infrared or microwave regions.To make sure of the mechanism of polarization conversion, the current and electric-field distributions at different resonant frequencies are analyzed. It is found that the cross-polarized transmission is due to the near-field coupling between hole pairs in neighboring metal films. Finally, a prototype of the proposed converter is fabricated and measured in the microwave region. Good agreement between the experimental and simulated results is obtained.展开更多
MTBPyP (meso-tetrakis(4-N-benzylpyridyl)porphyrin, M=H-2, Zn) bearing positive charge has been shown to associate with SiW12O404- in water solution. The spectral evolution and Job's plots analyses reveal that the ...MTBPyP (meso-tetrakis(4-N-benzylpyridyl)porphyrin, M=H-2, Zn) bearing positive charge has been shown to associate with SiW12O404- in water solution. The spectral evolution and Job's plots analyses reveal that the relatively stable aggregates contain equal numbers of MTBPyP4(+) and SiW12O404-.展开更多
Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation en...Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation energy show that the B/N pair co-doping configuration is a most stable structure. We find that the electronic structure and the transport properties are very sensitive to the doping concentration of the B/N pairs in MCNTs, where the energy gaps increase with doping concentration increasing both along the tube axis and around the tube, because the mirror symmetry of MCNT is broken by doping B/N pairs. In addition, we discuss conductance dips of the transmission spectrum of doped MCNTs. These unconventional doping effects could be used to design novel nanoelectronic devices.展开更多
Heavy metal contamination of soil resulting from sewage irrigation is a cause of serious concern due to the potential health impacts of consuming contaminated products. In this study an assessment made of the impact o...Heavy metal contamination of soil resulting from sewage irrigation is a cause of serious concern due to the potential health impacts of consuming contaminated products. In this study an assessment made of the impact of sewage irrigation on heavy metal contamination of Spinach, Cabbage, Beetroot, Reddish, Okra, Tomato, and Cucumber is widely cultivated and consumed in urban India, particularly by the poor. A field study was conducted at seven major sites that were irrigated by either treated, (Dhandupura) or untreated wastewater in the suburban areas of Agra, India. Samples of irrigation water, soil, and the edible portion of all the vegetables were collected monthly during the winter seasons and were analyzed for Fe, Cd, Cu, Zn, and Pb. Heavy metals in irrigation water were below the internationally recom- mended (WHO) maximum permissible limits set for agricultural use for all heavy metals except Cd at all the sites. Similarly, the mean heavy metal concentrations in soil were below the Indian standards for all heavy metals, but the maximum value of Cd recorded during January was higher than the standard. However, in the edible portion of spinach, the Cd concentration was higher than the permissible limits of the Indian standard during summer, whereas Pb concentrations were higher in winter seasons. Results of correlation analysis were computed to assess the relationship between individual heavy metal concentration in the vegetable samples. The study concludes that the use of treated and untreated wastewater for irrigation has increased the contamination of Cd, Pb in edible portion of vegetables causing potential health risk in the long term from this practice. The study also points to the fact that adherence to standards for heavy metal contamination of soil and irrigation water does not ensure safe food. Fe was measured abundant in soil whereas Pb and Cd were found more in untreated sites as compared to treated site. Correlation, paired T-test and ANOVA were also carried out for pre post harvested soil and vegetables.展开更多
Short wire pairs are simple metamaterial structures. This structure includes a dielectric substrate with metal strips on both sides, of which the electric and magnetic resonant frequencies can be controlled by adjusti...Short wire pairs are simple metamaterial structures. This structure includes a dielectric substrate with metal strips on both sides, of which the electric and magnetic resonant frequencies can be controlled by adjusting the length of the metallic wires. However, to vary the magnetic resonant frequency requires a change in the length of the strip and another patterned photomask. In this investigation, a simple method is introduced that requires only one patterned photomask by shifting the position of faced wire pairs up and down.展开更多
Individual metallic single-wall carbon nanotubes show unusual non-Ohmic transport behaviors at low and high bias fields. For low-resistance contact samples, the differential conductance increases with increasing bias,...Individual metallic single-wall carbon nanotubes show unusual non-Ohmic transport behaviors at low and high bias fields. For low-resistance contact samples, the differential conductance increases with increasing bias, reaching a maximum at ~100 mV. As the bias increases further, drops dramatically [1]. The higher the bias, the system behaves in a more normal (Ohmic) manner. This low-bias anomaly is temperature-dependent (50 - 150 K). We propose a new interpretation. Supercurrents run in the graphene wall below ~150 K. The normal hole currents run on the outer surface of the wall, which are subject to the scattering by phonons and impurities. The currents along the tube length generate circulating magnetic fields and eventually destroy the supercurrent in the wall at high enough bias, and restore the Ohmic behavior. If the prevalent ballistic electron model is adopted, then the temperature-dependent scattering effects cannot be discussed. For the high bias (0.3 - 5 V), (a) the I-V curves are temperature-independent (4 - 150 K), and (b) the currents (magnitudes) saturate. The behavior (a) arises from the fact that the neutral supercurrent below the critical temperature is not accelerated by the electric field. The behavior (b) is caused by the limitation of the number of quantum-states for the “holes” running outside of the tube.展开更多
Boron-nitrogen-hydrogen compounds have been investigated and developed very fast in last decades caused by its excellent hydrogen-storage performances. The bottleneck problem hindering its application is the irreversi...Boron-nitrogen-hydrogen compounds have been investigated and developed very fast in last decades caused by its excellent hydrogen-storage performances. The bottleneck problem hindering its application is the irreversibility after its dehydrogenation. However, the traditional B-N(or B-P) bond can be hindered by connecting with large steric hindrances, which results in the possible reversible hydrogenationdehydrogenation properties. In this research, we analyse the structural characters based on the experiments to obtain the required electronic structure properties for realizing the reversibility of FLPs in the hydrogenation(or dehydrogenation).展开更多
文摘We study theoretically the electrical shot noise properties of tunnel junctions between a normal metal and a superconductor with the mixture of singlet s-wave and chiral triplet p-wave pairing due to broken inversion symmetry. We investigate how the shot noise properties vary as the relative amplitude between the two parity components in the pairing potential is changed. It is demonstrated that some characteristics of the electrical shot noise properties of such tunnel junctions may depend sensitively on the relative amplitude between the two parity components in the pairing potential, and some significant changes may occur in the electrical shot noise properties when the relative amplitude between the two parity components is varied from the singlet s-wave pairing dominated regime to the chiral triplet p-wave pairing dominated regime. In the chiral triplet p-wave pairing dominated regime, the ratio of noise power to electric current is close to 2e both in the in-gap and in the out-gap region. In the singlet s-wave pairing dominated regime, the value of this ratio is close to 4e in the inner gap region but may reduce to about 2e in the outer gap region as the relative amplitude of the chiral triplet pairing component is increased. The variations of the differential shot noise with the bias voltage also exhibit some significantly different features in different regimes. Such different features can serve as useful diagnostic tools for the determination of the relative magnitude of the two parity components in the pairing potential.
基金supported by the Major Research Plan from the Ministry of Science and Technology of China (Grant No. 2011CB921900)the China Postdoctoral Science Special Foundation (Grant No. 201003009)+2 种基金the China Postdoctoral Science Foundation (GrantNo. 20090460145)the Fundamental Research Funds for the Central Universities (Grant No. 201012200053)the Science and Technology Program of Hunan Province of China (Grant No. 2010DFJ411)
文摘By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.
文摘We present a polarization converter composed of bi-layered metal films perforated with rectangle hole pairs in each film. The proposed converter can convert the polarization of an incident linearly-polarized electromagnetic wave to its orthogonal direction with high efficiency and large bandwidth in the infrared or microwave regions.To make sure of the mechanism of polarization conversion, the current and electric-field distributions at different resonant frequencies are analyzed. It is found that the cross-polarized transmission is due to the near-field coupling between hole pairs in neighboring metal films. Finally, a prototype of the proposed converter is fabricated and measured in the microwave region. Good agreement between the experimental and simulated results is obtained.
基金This work was supported by the National NatUral Science Foundation of China under grant! No.29733090 and No. 29803003 the Re
文摘MTBPyP (meso-tetrakis(4-N-benzylpyridyl)porphyrin, M=H-2, Zn) bearing positive charge has been shown to associate with SiW12O404- in water solution. The spectral evolution and Job's plots analyses reveal that the relatively stable aggregates contain equal numbers of MTBPyP4(+) and SiW12O404-.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10325415 and 50504017)the Natural Science Foundation of Hunan Province,China(Grant No.07JJ3102)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.10C1171)the Science Development Foundation of Central South University,China(Grant Nos.08SDF02 and 09SDF09)
文摘Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation energy show that the B/N pair co-doping configuration is a most stable structure. We find that the electronic structure and the transport properties are very sensitive to the doping concentration of the B/N pairs in MCNTs, where the energy gaps increase with doping concentration increasing both along the tube axis and around the tube, because the mirror symmetry of MCNT is broken by doping B/N pairs. In addition, we discuss conductance dips of the transmission spectrum of doped MCNTs. These unconventional doping effects could be used to design novel nanoelectronic devices.
文摘Heavy metal contamination of soil resulting from sewage irrigation is a cause of serious concern due to the potential health impacts of consuming contaminated products. In this study an assessment made of the impact of sewage irrigation on heavy metal contamination of Spinach, Cabbage, Beetroot, Reddish, Okra, Tomato, and Cucumber is widely cultivated and consumed in urban India, particularly by the poor. A field study was conducted at seven major sites that were irrigated by either treated, (Dhandupura) or untreated wastewater in the suburban areas of Agra, India. Samples of irrigation water, soil, and the edible portion of all the vegetables were collected monthly during the winter seasons and were analyzed for Fe, Cd, Cu, Zn, and Pb. Heavy metals in irrigation water were below the internationally recom- mended (WHO) maximum permissible limits set for agricultural use for all heavy metals except Cd at all the sites. Similarly, the mean heavy metal concentrations in soil were below the Indian standards for all heavy metals, but the maximum value of Cd recorded during January was higher than the standard. However, in the edible portion of spinach, the Cd concentration was higher than the permissible limits of the Indian standard during summer, whereas Pb concentrations were higher in winter seasons. Results of correlation analysis were computed to assess the relationship between individual heavy metal concentration in the vegetable samples. The study concludes that the use of treated and untreated wastewater for irrigation has increased the contamination of Cd, Pb in edible portion of vegetables causing potential health risk in the long term from this practice. The study also points to the fact that adherence to standards for heavy metal contamination of soil and irrigation water does not ensure safe food. Fe was measured abundant in soil whereas Pb and Cd were found more in untreated sites as compared to treated site. Correlation, paired T-test and ANOVA were also carried out for pre post harvested soil and vegetables.
文摘Short wire pairs are simple metamaterial structures. This structure includes a dielectric substrate with metal strips on both sides, of which the electric and magnetic resonant frequencies can be controlled by adjusting the length of the metallic wires. However, to vary the magnetic resonant frequency requires a change in the length of the strip and another patterned photomask. In this investigation, a simple method is introduced that requires only one patterned photomask by shifting the position of faced wire pairs up and down.
文摘Individual metallic single-wall carbon nanotubes show unusual non-Ohmic transport behaviors at low and high bias fields. For low-resistance contact samples, the differential conductance increases with increasing bias, reaching a maximum at ~100 mV. As the bias increases further, drops dramatically [1]. The higher the bias, the system behaves in a more normal (Ohmic) manner. This low-bias anomaly is temperature-dependent (50 - 150 K). We propose a new interpretation. Supercurrents run in the graphene wall below ~150 K. The normal hole currents run on the outer surface of the wall, which are subject to the scattering by phonons and impurities. The currents along the tube length generate circulating magnetic fields and eventually destroy the supercurrent in the wall at high enough bias, and restore the Ohmic behavior. If the prevalent ballistic electron model is adopted, then the temperature-dependent scattering effects cannot be discussed. For the high bias (0.3 - 5 V), (a) the I-V curves are temperature-independent (4 - 150 K), and (b) the currents (magnitudes) saturate. The behavior (a) arises from the fact that the neutral supercurrent below the critical temperature is not accelerated by the electric field. The behavior (b) is caused by the limitation of the number of quantum-states for the “holes” running outside of the tube.
基金supported by the National Key Research and Development Program of China(2017YFA0204600)National Natural Science Foundation of China(NSFC 21701001,51625102)+1 种基金Anhui Provincial Natural Science Foundation(1708085QB42)China Postdoctoral Science Foundation(2018M632013)
文摘Boron-nitrogen-hydrogen compounds have been investigated and developed very fast in last decades caused by its excellent hydrogen-storage performances. The bottleneck problem hindering its application is the irreversibility after its dehydrogenation. However, the traditional B-N(or B-P) bond can be hindered by connecting with large steric hindrances, which results in the possible reversible hydrogenationdehydrogenation properties. In this research, we analyse the structural characters based on the experiments to obtain the required electronic structure properties for realizing the reversibility of FLPs in the hydrogenation(or dehydrogenation).