Grain size analysis and chemical analysis of heavy metals are made for 312 surface samples of the Jiaozhou Bay. Nineteen samples of the waste water taken from the sewage discharge outlets along the eastern coast of th...Grain size analysis and chemical analysis of heavy metals are made for 312 surface samples of the Jiaozhou Bay. Nineteen samples of the waste water taken from the sewage discharge outlets along the eastern coast of the bay are also analyzed for heavy metals. Results show that heavy metals are richer in the east and poorer in the west of the bay. Sedimentary dynamic studies reveal that the distribution of heavy metals in the surface sediments of the Jiaozhou Bay is under the control of hydrodynamics.展开更多
Based on the three-component assumption that the reflection is divided into specular reflection,directional diffuse reflection,and ideal diffuse reflection,a bidirectional reflectance distribution function(BRDF) mod...Based on the three-component assumption that the reflection is divided into specular reflection,directional diffuse reflection,and ideal diffuse reflection,a bidirectional reflectance distribution function(BRDF) model of metallic materials is presented.Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection,the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection.This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials.Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.展开更多
A formula was proposed to calculate the distribution of metal ions quantitatively in chemical reaction system forming hydroxide where precipitation and complex are formed together. The effects of some factors on forma...A formula was proposed to calculate the distribution of metal ions quantitatively in chemical reaction system forming hydroxide where precipitation and complex are formed together. The effects of some factors on formation of precipitation and complex were investigated, and the corresponding precipitation rates of zinc, iron (III), aluminum, copper and magnesium were calculated. As a result, it shows that the proposed formula is reliable. By the proposed formula, the existence state of metal ions in hydroxides reaction system with any metal ions can be well described and the effects of some factors on the distribution of metal ions were determined.展开更多
An expression of degree of polarization(DOP) for metallic material is presented based on the three-component polarized bidirectional reflectance distribution function(p BRDF) model with considering specular reflec...An expression of degree of polarization(DOP) for metallic material is presented based on the three-component polarized bidirectional reflectance distribution function(p BRDF) model with considering specular reflection, directional diffuse reflection and ideal diffuse reflection. The three-component p BRDF model with a detailed reflection assumption is validated by comparing simulations with measurements. The DOP expression presented in this paper is related to surface roughness, which makes it more reasonable in physics. Test results for two metallic samples show that the DOP based on the three-component p BRDF model accords well with the measurement and the error of existing DOP expression is significantly reduced by introducing the diffuse reflection. It indicates that our DOP expression describes the polarized reflection properties of metallic surfaces more accurately.展开更多
Dust particles emitted from smelters can be hazardous to ecosystems and humans,as they are often enriched in metallic compounds.Here,we combined multi-method mineralogical analysis with a sophisticated size sorting ap...Dust particles emitted from smelters can be hazardous to ecosystems and humans,as they are often enriched in metallic compounds.Here,we combined multi-method mineralogical analysis with a sophisticated size sorting approach for copper smelting dust to study the nanosize-effect on heavy metal distribution,which has hitherto been underestimated.Three types of dust were collected from a copper flash smelter and then size-sorted using a Dekati low-pressure impactor.Results showed that all three samples could easily sort out nanoscale dust particles(<1μm,grades 10–2)and even those smaller than 100 nm(grades 5–2).Especially for electrostatic precipitators dust,the mass fraction of nanoscale dust(<1μm)could reach 10.71%.The presence of heavy metals(Pb,Zn,Cu,and As)and their mineral species in dust was examined at various particle sizes.It was discovered that different heavy metals are enriched on nanoparticles in specific sizes.In micron-sized particles,heavy metals are generally found in discrete phases(e.g.,CuSO_(4),PbSO_(4),and As_(2)O_(3)).In nanoscale particles,the dominant phase is Fe_(3)O_(4),while heavy metals are mostly found in lattice substitution(e.g.,CuFe_(2)O_(4)and ZnFe_(2)O_(4)).Two distinct nano-dust morphologies were found:One with irregular mesh or chain structures consisting of particles of a few nanometers,and the other with polygonal crystals in larger sizes of hundreds of nanometers.The enrichment of heavy metals in the latter morphology is more pronounced,possibly because lattice substitution of heavy metals is more likely to occur when polycrystalline particles are formed.展开更多
Due to rapid urbanization and industrialization, heavy metals in road-deposited sediments(RDSs) of parks are emitted into the terrestrial, atmospheric, and water environment, and have a severe impact on residents' ...Due to rapid urbanization and industrialization, heavy metals in road-deposited sediments(RDSs) of parks are emitted into the terrestrial, atmospheric, and water environment, and have a severe impact on residents' and tourists' health. To identify the distribution and characteristic of heavy metals in RDS and to assess the road environmental quality in Chinese parks, samples were collected from Beijing Olympic Park in the present study. The results indicated that particles with small grain size(〈150 μm) were the dominant fraction. The length of dry period was one of the main factors affecting the particle size distribution, as indicated by the variation of size fraction with the increase of dry days. The amount of heavy metal(i.e., Cu, Zn, Pb and Cd) content was the largest in particles with small size(〈150 μm) among all samples. Specifically, the percentage of Cu, Zn, Pb and Cd in these particles was 74.7%, 55.5%, 56.6% and 71.3%, respectively.Heavy metals adsorbed in sediments may mainly be contributed by road traffic emissions. The contamination levels of Pb and Cd were higher than Cu and Zn on the basis of the mean heavy metal contents. Specifically, the geoaccumulation index(I geo) decreased in the order:Cd〉Pb〉Cu〉Zn. This study analyzed the mobility of heavy metals in sediments using partial sequential extraction with the Tessier procedure. The results revealed that the apparent mobility and potential metal bioavailability of heavy metals in the sediments, based on the exchangeable and carbonate fractions, decreased in the order: Cd〉Zn≈Pb〉Cu.展开更多
Several of new chelating resins containing sulfoxide and heterocyclic functional groups (3-aminopyridine and 2-mercaptobenzothiazole) based on macroporous chloromethylated polystyrene were synthesized and characteri...Several of new chelating resins containing sulfoxide and heterocyclic functional groups (3-aminopyridine and 2-mercaptobenzothiazole) based on macroporous chloromethylated polystyrene were synthesized and characterized by elemental analysis and infrared spectra. Their adsorption capacities towards Zn^2+, Cu^2+, Pb^2+, Hg^2+ and Ag^+ at pH 3.0 and 6.0 were investigated in detail. It was found that the adsorption capacities of the resins containing bis[(3-pyridylaminoethyl)sulfoxide or (2-benzothiazolylthioethyl)sulfoxide for the above ions were higher than that on ones containing single above-mentioned groups.展开更多
Reliable estimation of the pore size distribution(PSD) in porous materials such as metal–organic frameworks(MOFs) and zeolitic imidazolate frameworks(ZIFs) is crucial for accurately assessing adsorption capacity and ...Reliable estimation of the pore size distribution(PSD) in porous materials such as metal–organic frameworks(MOFs) and zeolitic imidazolate frameworks(ZIFs) is crucial for accurately assessing adsorption capacity and corresponding selectivity. In this study, the so-called zeolitic imidazolate framework-7(ZIF-7) is successfully synthesized via relatively fast and convenient microwave technique. The morphology and structure of the obtained MOF were characterized by XRD, SEM and N_2 and CO_2adsorption/desorption isotherms at 77 K and0 °C respectively. Then, to determine the PSD of the fabricated MOF, carbon dioxide isotherms are experimentally measured at various temperatures up to atmospheric pressure. Afterward, the experimental CO_2 isotherms data are utilized in two recently proposed in-house algorithms of SHN1 and SHN2 to extract the true PSD of manufactured ZIF-7. The obtained results revealed that median pore diameter of the fabricated ZIF-7 is estimated around 0.404 nm and 0.370 nm by using CO_2 isotherms at 273 K and 298 K respectively. These values are in good agreement with the real pore diameter of 0.42 nm. Moreover, experimental data of water adsorption isotherms over four different MOFs, borrowed from literature, are employed to illustrate further effectiveness of the above algorithms on successful determination of the corresponding pore size distributions. All predicted PSDs are proved to be in good agreement with those obtained from independent methods such as topology and morphology studies.展开更多
The intensities of fluorescence spectral lines of Ca atoms and Sr atoms in two different hollow cathode lamps (HCLs) are measured by element-balance-detection technology. In the wavelength range of 350–750 nm in th...The intensities of fluorescence spectral lines of Ca atoms and Sr atoms in two different hollow cathode lamps (HCLs) are measured by element-balance-detection technology. In the wavelength range of 350–750 nm in the visible spectral region, using the individual strongest line (Ca 422.67 nm, Sr 460.73 nm) as the bench mark, the population ratios between the excited states of Ca atoms and Sr atoms are calculated by rate equations and the spontaneous transition probabilities. The HCLs with populations at excited states can be used to realize the frequency stabilization reference of the laser frequency standard.展开更多
In areas with a high geological background of heavy metals,some edible plants could pose a serious threat to human health.In order to find effective methods to remove heavy metals or reduce their harm,this study inves...In areas with a high geological background of heavy metals,some edible plants could pose a serious threat to human health.In order to find effective methods to remove heavy metals or reduce their harm,this study investigated the enrichment conditions of five soil heavy metals,Cd,Pb,Cu,Zn and Cr,in four edible plants in a mining area,Baoshantao,in eastern China that has a high geological background of metals,and two groups of experiments were designed to investigate the effects of passivators on their enrichment.The results showed that the soil heavy metal content in the study area has a certain degree of spatial variability.The five heavy metal element contaminants in the soil are in the order of Cd>Cu>Zn>Pb>Cr.The enrichment coefficients and the transfer coefficients of different edible plants were different for the different heavy metals.The two groups of passivators showed better passivating effects with an increase in passivating agent dosage.The smaller the enrichment coefficient of water spinach,the lower the bioavailability.The results of this study can provide a scientific basis for the restoration of soil heavy metal pollution and the safe use of land in areas with a high geological background of heavy metals.展开更多
Heavy metal concentrations in surface water and sediments collected from Honghu Lake in Hubei Province, China were analyzed, and ecological risks were evaluated according to the sediment quality guidelines. The result...Heavy metal concentrations in surface water and sediments collected from Honghu Lake in Hubei Province, China were analyzed, and ecological risks were evaluated according to the sediment quality guidelines. The results showed that the average concentrations of heavy metals in surface water were ranked as: As 〉 Zn 〉 Cu 〉 Cr 〉 Pb 〉 Ni 〉 Cd 〉 Hg. In comparison with results reported in other rivers and the background values, The Honghu Lake was polluted by As, Cr, Pb, Cu and Ni. Most of metals might be mainly from fertilizers, industrial effluent and domestic wastewater around the lake. Heavy metals concentrations were relatively higher in the inlet area than in other areas. Negative correlations were observed between most heavy metals and pH, while a significant positive correlation was present between Zn, Cd and Pb. In the sediment core, Cu, Zn, Cr and Ni showed a decreasing trend while Cd present an increasing trend. The decrease of As, Cu, Zn, Cr and Ni in the 1990s might due to the flood event in 1998. The analysis of ecological risk assessment based on sediment quality guidelines suggested that heavy metals in most sediments from the Honghu Lake had moderate toxicity, with Cr being the highest priority pollutant.展开更多
Impact of waste fuels(virgin/waste wood, mixed biofuel(peat, bark, wood chips) industrial,household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been...Impact of waste fuels(virgin/waste wood, mixed biofuel(peat, bark, wood chips) industrial,household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr,As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature.Total concentration in ashes decreased in order of Zn 〉 Cu 〉 Pb 〉 Cr 〉 Sb 〉 As 〉 Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers(especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions.Concentration levels in ash and ash matrix properties(association of elements on ash particles)are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in 〉50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths.展开更多
Urban mining is essential for continued natural resource extraction. The recovery of rare and precious metals (RPMs) from urban mines has attracted increasing attention from both academic and industrial sectors, bec...Urban mining is essential for continued natural resource extraction. The recovery of rare and precious metals (RPMs) from urban mines has attracted increasing attention from both academic and industrial sectors, because of the broad application and high price of RPMs, and their low content in natural ores. This study summarizes the distribution characteristics of various RPMs in urban mines, and the advantages and shortcomings of various technologies for RPM recovery from urban mines, including both conventional (pyrometallurgical, hydrometallurgical, and biometallurgical processing), and emerging (electrochemical, supereritieal fluid, mechanochemical, and ionic liquids processing) technologies. Mechanical/physical technologies are commonly employed to separate RPMs from nonmetallic components in a pre-treatment process. A pyrometallurgical process is often used tbr RPM recovery, although the expensive equipment required has limited its use in small and medium-sized enterprises. Hydrometallurgical processing is effective and easy to operate, with high selectivity of target metals and high recovery efficiency of RPMs, compared to pyrometallurgy. Biometallurgy, though, has shown the most promise for leaching RPMs from urban mines, because of its low cost and environmental friendliness. Newly developed technologies electrochemical, supercritical fluid, ionic liquid, and mechanochemical have offered new choices and achieved some success in laboratory experiments, especially as efficient and environmentally friendly methods of recycling RPMs. With continuing advances in science and technology, more technologies will no doubt be developed in this field, and be able to contribute to the sustainability of RPM mining.展开更多
Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the sta...Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the statistics of some parameters,the shear avalanches can display a self-organized critical state,suggesting a large ductility of BMGs.The emergence of the self-organized criticality(SOC)behavior in different BMGs is due to the temperature,strain rate,and chemical compositions.The SOC behavior is accompanied with the following phenomena:the interactions occur in the shear bands;the incubation time is longer than the relaxation time;the time interval is lacking of typical time scale;and the spatial or temporal parameters should display apower-law distribution.展开更多
The purpose of this contribution is to highlight four topics of regional and worldwide mineral resource prediction:(1)use of the jackknife for bias elimination in regional mineral potential assessments;(2)estimating t...The purpose of this contribution is to highlight four topics of regional and worldwide mineral resource prediction:(1)use of the jackknife for bias elimination in regional mineral potential assessments;(2)estimating total amounts of metal from mineral potential maps;(3)fractal/multifractal modeling of mineral deposit density data in permissive areas;and(4)worldwide and large-areas metal size-frequency distribution modeling.The techniques described in this paper remain tentative because they have not been widely researched and applied in mineral potential studies.Although most of the content of this paper has previously been published,several perspectives for further research are suggested.展开更多
The potential environmental implications of a Pb(Lead)-Zn(Zinc)sulfide tailing impoundment were found to be dependent on its geochemical characteristics.One typical lead-zinc sulfide tailing impoundment was studied.Te...The potential environmental implications of a Pb(Lead)-Zn(Zinc)sulfide tailing impoundment were found to be dependent on its geochemical characteristics.One typical lead-zinc sulfide tailing impoundment was studied.Ten boreholes were set with the grid method and 36 tailings were sampled and tested.According to the results of metal content analysis,the tailing samples contained considerably high contents of heavy metals,ranging from 6.99 to 89.0 mg/kg for Cd,75.3 to 602 mg/kg for Cu,0.53%to 2.63%for Pb and 0.30%to 2.54%for Zn.Most of the heavy metals in the sample matrix showed a uniform concentration distribution,except Cd.Cd,Pb,Zn,and Mn were associated with each other,and were considered to be the dominant contributors based on hierarchical cluster analysis.XRD,SEM and XPS were employed for evaluation of the tailing weathering characteristics,confirming that the tailings had undergone intensive weathering.The maximum potential acidity of the tailings reached 244 kg H2SO4/ton;furthermore,the bioavailability of heavy metals like Pb,Cd,Cr,Cu,and Zn was 37.8%,12.9%,12.2%,5.95%,and 5.46%respectively.These metals would be potentially released into drainage by the weathering process.Analysis of a gastrointestinal model showed that Pb,Cr,Ni and Cu contained in the tailings were high-risk metals.Thus,control of the heavy metals’migration and their environmental risks should be planned from the perspective of geochemistry.展开更多
文摘Grain size analysis and chemical analysis of heavy metals are made for 312 surface samples of the Jiaozhou Bay. Nineteen samples of the waste water taken from the sewage discharge outlets along the eastern coast of the bay are also analyzed for heavy metals. Results show that heavy metals are richer in the east and poorer in the west of the bay. Sedimentary dynamic studies reveal that the distribution of heavy metals in the surface sediments of the Jiaozhou Bay is under the control of hydrodynamics.
文摘Based on the three-component assumption that the reflection is divided into specular reflection,directional diffuse reflection,and ideal diffuse reflection,a bidirectional reflectance distribution function(BRDF) model of metallic materials is presented.Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection,the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection.This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials.Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.
基金Project (51304047) supported by the National Natural Science Foundation of ChinaProject (20131037) supported by Science and Technology Foundation of Liaoning Province,China
文摘A formula was proposed to calculate the distribution of metal ions quantitatively in chemical reaction system forming hydroxide where precipitation and complex are formed together. The effects of some factors on formation of precipitation and complex were investigated, and the corresponding precipitation rates of zinc, iron (III), aluminum, copper and magnesium were calculated. As a result, it shows that the proposed formula is reliable. By the proposed formula, the existence state of metal ions in hydroxides reaction system with any metal ions can be well described and the effects of some factors on the distribution of metal ions were determined.
文摘An expression of degree of polarization(DOP) for metallic material is presented based on the three-component polarized bidirectional reflectance distribution function(p BRDF) model with considering specular reflection, directional diffuse reflection and ideal diffuse reflection. The three-component p BRDF model with a detailed reflection assumption is validated by comparing simulations with measurements. The DOP expression presented in this paper is related to surface roughness, which makes it more reasonable in physics. Test results for two metallic samples show that the DOP based on the three-component p BRDF model accords well with the measurement and the error of existing DOP expression is significantly reduced by introducing the diffuse reflection. It indicates that our DOP expression describes the polarized reflection properties of metallic surfaces more accurately.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52121004)National Natural Science Foundation of China(Nos.22276218 and 52022111)+1 种基金Major program Natural Science Foundation of Hunan Province of China(No.2021JC0001)Science and Technology Innovation Program of Hunan Province(No.2021RC3013).
文摘Dust particles emitted from smelters can be hazardous to ecosystems and humans,as they are often enriched in metallic compounds.Here,we combined multi-method mineralogical analysis with a sophisticated size sorting approach for copper smelting dust to study the nanosize-effect on heavy metal distribution,which has hitherto been underestimated.Three types of dust were collected from a copper flash smelter and then size-sorted using a Dekati low-pressure impactor.Results showed that all three samples could easily sort out nanoscale dust particles(<1μm,grades 10–2)and even those smaller than 100 nm(grades 5–2).Especially for electrostatic precipitators dust,the mass fraction of nanoscale dust(<1μm)could reach 10.71%.The presence of heavy metals(Pb,Zn,Cu,and As)and their mineral species in dust was examined at various particle sizes.It was discovered that different heavy metals are enriched on nanoparticles in specific sizes.In micron-sized particles,heavy metals are generally found in discrete phases(e.g.,CuSO_(4),PbSO_(4),and As_(2)O_(3)).In nanoscale particles,the dominant phase is Fe_(3)O_(4),while heavy metals are mostly found in lattice substitution(e.g.,CuFe_(2)O_(4)and ZnFe_(2)O_(4)).Two distinct nano-dust morphologies were found:One with irregular mesh or chain structures consisting of particles of a few nanometers,and the other with polygonal crystals in larger sizes of hundreds of nanometers.The enrichment of heavy metals in the latter morphology is more pronounced,possibly because lattice substitution of heavy metals is more likely to occur when polycrystalline particles are formed.
基金supported by the Beijing Municipal Natural Science Foundation (No. 8142013)the Philosophical and Social Science Planning Program of Beijing (No. 13CSC010)
文摘Due to rapid urbanization and industrialization, heavy metals in road-deposited sediments(RDSs) of parks are emitted into the terrestrial, atmospheric, and water environment, and have a severe impact on residents' and tourists' health. To identify the distribution and characteristic of heavy metals in RDS and to assess the road environmental quality in Chinese parks, samples were collected from Beijing Olympic Park in the present study. The results indicated that particles with small grain size(〈150 μm) were the dominant fraction. The length of dry period was one of the main factors affecting the particle size distribution, as indicated by the variation of size fraction with the increase of dry days. The amount of heavy metal(i.e., Cu, Zn, Pb and Cd) content was the largest in particles with small size(〈150 μm) among all samples. Specifically, the percentage of Cu, Zn, Pb and Cd in these particles was 74.7%, 55.5%, 56.6% and 71.3%, respectively.Heavy metals adsorbed in sediments may mainly be contributed by road traffic emissions. The contamination levels of Pb and Cd were higher than Cu and Zn on the basis of the mean heavy metal contents. Specifically, the geoaccumulation index(I geo) decreased in the order:Cd〉Pb〉Cu〉Zn. This study analyzed the mobility of heavy metals in sediments using partial sequential extraction with the Tessier procedure. The results revealed that the apparent mobility and potential metal bioavailability of heavy metals in the sediments, based on the exchangeable and carbonate fractions, decreased in the order: Cd〉Zn≈Pb〉Cu.
基金The authors are grateful for the financial support by the Postdoctoral Science Foundation of China (No. 2003034330)the Science Foundation for mld-youth elite of Shandong Province+3 种基金the Nature Science Foundation of Shandong Province (No. Y2005F11 and No. 2005BS11010)the Nature Science Foundation of Yantai Normal University (No. 032912, 20052901, 042920) Educational Project for Postgraduate of Yantai Normal University (No. YD05001)Applied Project of Educational Bureau of Shandong Province (No. J05D03, J04B02).
文摘Several of new chelating resins containing sulfoxide and heterocyclic functional groups (3-aminopyridine and 2-mercaptobenzothiazole) based on macroporous chloromethylated polystyrene were synthesized and characterized by elemental analysis and infrared spectra. Their adsorption capacities towards Zn^2+, Cu^2+, Pb^2+, Hg^2+ and Ag^+ at pH 3.0 and 6.0 were investigated in detail. It was found that the adsorption capacities of the resins containing bis[(3-pyridylaminoethyl)sulfoxide or (2-benzothiazolylthioethyl)sulfoxide for the above ions were higher than that on ones containing single above-mentioned groups.
文摘Reliable estimation of the pore size distribution(PSD) in porous materials such as metal–organic frameworks(MOFs) and zeolitic imidazolate frameworks(ZIFs) is crucial for accurately assessing adsorption capacity and corresponding selectivity. In this study, the so-called zeolitic imidazolate framework-7(ZIF-7) is successfully synthesized via relatively fast and convenient microwave technique. The morphology and structure of the obtained MOF were characterized by XRD, SEM and N_2 and CO_2adsorption/desorption isotherms at 77 K and0 °C respectively. Then, to determine the PSD of the fabricated MOF, carbon dioxide isotherms are experimentally measured at various temperatures up to atmospheric pressure. Afterward, the experimental CO_2 isotherms data are utilized in two recently proposed in-house algorithms of SHN1 and SHN2 to extract the true PSD of manufactured ZIF-7. The obtained results revealed that median pore diameter of the fabricated ZIF-7 is estimated around 0.404 nm and 0.370 nm by using CO_2 isotherms at 273 K and 298 K respectively. These values are in good agreement with the real pore diameter of 0.42 nm. Moreover, experimental data of water adsorption isotherms over four different MOFs, borrowed from literature, are employed to illustrate further effectiveness of the above algorithms on successful determination of the corresponding pore size distributions. All predicted PSDs are proved to be in good agreement with those obtained from independent methods such as topology and morphology studies.
基金supported by the National Natural Science Foundation of China(No.91436210)
文摘The intensities of fluorescence spectral lines of Ca atoms and Sr atoms in two different hollow cathode lamps (HCLs) are measured by element-balance-detection technology. In the wavelength range of 350–750 nm in the visible spectral region, using the individual strongest line (Ca 422.67 nm, Sr 460.73 nm) as the bench mark, the population ratios between the excited states of Ca atoms and Sr atoms are calculated by rate equations and the spontaneous transition probabilities. The HCLs with populations at excited states can be used to realize the frequency stabilization reference of the laser frequency standard.
基金The National Natural Science Foundation of China(42371185)The Anhui Normal University College Students Innovation and EntrepreneurshipTraining Program(2022056511).
文摘In areas with a high geological background of heavy metals,some edible plants could pose a serious threat to human health.In order to find effective methods to remove heavy metals or reduce their harm,this study investigated the enrichment conditions of five soil heavy metals,Cd,Pb,Cu,Zn and Cr,in four edible plants in a mining area,Baoshantao,in eastern China that has a high geological background of metals,and two groups of experiments were designed to investigate the effects of passivators on their enrichment.The results showed that the soil heavy metal content in the study area has a certain degree of spatial variability.The five heavy metal element contaminants in the soil are in the order of Cd>Cu>Zn>Pb>Cr.The enrichment coefficients and the transfer coefficients of different edible plants were different for the different heavy metals.The two groups of passivators showed better passivating effects with an increase in passivating agent dosage.The smaller the enrichment coefficient of water spinach,the lower the bioavailability.The results of this study can provide a scientific basis for the restoration of soil heavy metal pollution and the safe use of land in areas with a high geological background of heavy metals.
基金Acknowledgements This work was financially supported by the National Natural Science Foundation of China (Grant No. 41073070) and the Research Fund for the Doctoral Program of Higher Education, China (No. 20090145110004). The authors are grateful to acknowledge the State Laboratory of Biogeology and Environmental Geology. The authors also would like to appreciate the reviewers for their suggestions.
文摘Heavy metal concentrations in surface water and sediments collected from Honghu Lake in Hubei Province, China were analyzed, and ecological risks were evaluated according to the sediment quality guidelines. The results showed that the average concentrations of heavy metals in surface water were ranked as: As 〉 Zn 〉 Cu 〉 Cr 〉 Pb 〉 Ni 〉 Cd 〉 Hg. In comparison with results reported in other rivers and the background values, The Honghu Lake was polluted by As, Cr, Pb, Cu and Ni. Most of metals might be mainly from fertilizers, industrial effluent and domestic wastewater around the lake. Heavy metals concentrations were relatively higher in the inlet area than in other areas. Negative correlations were observed between most heavy metals and pH, while a significant positive correlation was present between Zn, Cd and Pb. In the sediment core, Cu, Zn, Cr and Ni showed a decreasing trend while Cd present an increasing trend. The decrease of As, Cu, Zn, Cr and Ni in the 1990s might due to the flood event in 1998. The analysis of ecological risk assessment based on sediment quality guidelines suggested that heavy metals in most sediments from the Honghu Lake had moderate toxicity, with Cr being the highest priority pollutant.
基金Varmeforsk(Thermal Engineering Research Association)(Q4-251)is acknowledged for financial support to Mattias Backstrom.Anjali Bajwa is greatly acknowledged for assistance with grammatical and technical issues
文摘Impact of waste fuels(virgin/waste wood, mixed biofuel(peat, bark, wood chips) industrial,household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr,As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature.Total concentration in ashes decreased in order of Zn 〉 Cu 〉 Pb 〉 Cr 〉 Sb 〉 As 〉 Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers(especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions.Concentration levels in ash and ash matrix properties(association of elements on ash particles)are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in 〉50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths.
文摘Urban mining is essential for continued natural resource extraction. The recovery of rare and precious metals (RPMs) from urban mines has attracted increasing attention from both academic and industrial sectors, because of the broad application and high price of RPMs, and their low content in natural ores. This study summarizes the distribution characteristics of various RPMs in urban mines, and the advantages and shortcomings of various technologies for RPM recovery from urban mines, including both conventional (pyrometallurgical, hydrometallurgical, and biometallurgical processing), and emerging (electrochemical, supereritieal fluid, mechanochemical, and ionic liquids processing) technologies. Mechanical/physical technologies are commonly employed to separate RPMs from nonmetallic components in a pre-treatment process. A pyrometallurgical process is often used tbr RPM recovery, although the expensive equipment required has limited its use in small and medium-sized enterprises. Hydrometallurgical processing is effective and easy to operate, with high selectivity of target metals and high recovery efficiency of RPMs, compared to pyrometallurgy. Biometallurgy, though, has shown the most promise for leaching RPMs from urban mines, because of its low cost and environmental friendliness. Newly developed technologies electrochemical, supercritical fluid, ionic liquid, and mechanochemical have offered new choices and achieved some success in laboratory experiments, especially as efficient and environmentally friendly methods of recycling RPMs. With continuing advances in science and technology, more technologies will no doubt be developed in this field, and be able to contribute to the sustainability of RPM mining.
基金Item Sponsored by National Natural Science Foundation of China(51371122)Program for the Innovative Talents of Higher Learning Institutions of Shanxi of China(2013)The Youth Natural Science Foundation of Shanxi Province of China(2015021005)
文摘Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the statistics of some parameters,the shear avalanches can display a self-organized critical state,suggesting a large ductility of BMGs.The emergence of the self-organized criticality(SOC)behavior in different BMGs is due to the temperature,strain rate,and chemical compositions.The SOC behavior is accompanied with the following phenomena:the interactions occur in the shear bands;the incubation time is longer than the relaxation time;the time interval is lacking of typical time scale;and the spatial or temporal parameters should display apower-law distribution.
文摘The purpose of this contribution is to highlight four topics of regional and worldwide mineral resource prediction:(1)use of the jackknife for bias elimination in regional mineral potential assessments;(2)estimating total amounts of metal from mineral potential maps;(3)fractal/multifractal modeling of mineral deposit density data in permissive areas;and(4)worldwide and large-areas metal size-frequency distribution modeling.The techniques described in this paper remain tentative because they have not been widely researched and applied in mineral potential studies.Although most of the content of this paper has previously been published,several perspectives for further research are suggested.
基金supported by the National Key Research and Development Plan(No.2018YFC1802803)Guangdong Provincial Science and Technology Program(No.2015B020237003)the 2017 Central Special Fund for Soil,Preliminary Study on Harmless Treatment and Comprehensive Utilization of Tailings in Dabao Mountain(18HK0108)。
文摘The potential environmental implications of a Pb(Lead)-Zn(Zinc)sulfide tailing impoundment were found to be dependent on its geochemical characteristics.One typical lead-zinc sulfide tailing impoundment was studied.Ten boreholes were set with the grid method and 36 tailings were sampled and tested.According to the results of metal content analysis,the tailing samples contained considerably high contents of heavy metals,ranging from 6.99 to 89.0 mg/kg for Cd,75.3 to 602 mg/kg for Cu,0.53%to 2.63%for Pb and 0.30%to 2.54%for Zn.Most of the heavy metals in the sample matrix showed a uniform concentration distribution,except Cd.Cd,Pb,Zn,and Mn were associated with each other,and were considered to be the dominant contributors based on hierarchical cluster analysis.XRD,SEM and XPS were employed for evaluation of the tailing weathering characteristics,confirming that the tailings had undergone intensive weathering.The maximum potential acidity of the tailings reached 244 kg H2SO4/ton;furthermore,the bioavailability of heavy metals like Pb,Cd,Cr,Cu,and Zn was 37.8%,12.9%,12.2%,5.95%,and 5.46%respectively.These metals would be potentially released into drainage by the weathering process.Analysis of a gastrointestinal model showed that Pb,Cr,Ni and Cu contained in the tailings were high-risk metals.Thus,control of the heavy metals’migration and their environmental risks should be planned from the perspective of geochemistry.