In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering...In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation.The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO 2 /Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO 2 /Si stacked MOSFETs.展开更多
The resistivity, crystalline structure and effective work function (EWF) of reactive sputtered TaN has been investigated. As-deposited TaN films have an fcc structure. After post-metal annealing (PMA) at 900℃, th...The resistivity, crystalline structure and effective work function (EWF) of reactive sputtered TaN has been investigated. As-deposited TaN films have an fcc structure. After post-metal annealing (PMA) at 900℃, the TaN films deposited with a N2 flow rate greater than 6.5 sccm keep their fcc structure, while the films deposited with a N2 flow rate lower than 6.25 sccm exhibit a microstructure change. The flatband voltages of gate stacks with TaN films as gate electrodes on SiO2 and HfO2 are also measured. It is concluded that a dipole is formed at the dielectric-TaN interface and its contribution to the EWF of TaN changes with the Ta/N ratio in TaN, the underneath dielectric layer and the PMA conditions.展开更多
随着超大规模集成电路技术的发展,CMOS器件的制备过程需要同时引入金属栅和超浅结等新的先进工艺技术,因此各种新工艺的兼容性研究具有重要意义.本文研究了超浅结工艺中使用的锗预非晶化对镍硅(N iS i)金属栅功函数的影响.对具有不同剂...随着超大规模集成电路技术的发展,CMOS器件的制备过程需要同时引入金属栅和超浅结等新的先进工艺技术,因此各种新工艺的兼容性研究具有重要意义.本文研究了超浅结工艺中使用的锗预非晶化对镍硅(N iS i)金属栅功函数的影响.对具有不同剂量Ge注入的N iS i金属栅MOS电容样品的研究表明,锗预非晶化采用的Ge注入对N iS i金属栅的功函数影响很小(小于0.03eV),而且Ge注入也不会导致氧化层中固定电荷以及氧化层和硅衬底之间界面态的增加.这些结果表明,在自对准的先进CMOS工艺中,N iS i金属栅工艺和锗预非晶化超浅结工艺可以互相兼容.展开更多
Although metal gate/high-k stacks are commonly used in metal-oxide-semiconductor field-effect-transistors (MOSFETs) in the 45 nm technology node and beyond,there are still many challenges to be solved.Among the variou...Although metal gate/high-k stacks are commonly used in metal-oxide-semiconductor field-effect-transistors (MOSFETs) in the 45 nm technology node and beyond,there are still many challenges to be solved.Among the various technologies to tackle these problems,interface dipole engineering (IDE) is an effective method to improve the performance,particularly,modulating the effective work function (EWF) of metal gates.Because of the different electronegativity of the various atoms in the interfacial layer,a dipole layer with an electric filed can be formed altering the band alignment in the MOS stack.This paper reviews the interface dipole formation induced by different elements,recent progresses in metal gate/high-k MOS stacks with IDE on EWF modulation,and mechanism of IDE.展开更多
Sub-20 nm node bulk FinFET PMOS devices with an all-last high-k/metal gate (HK/MG) process are fabricated and the influence of a series of device parameters on the device scaling is investigated. The high and thin F...Sub-20 nm node bulk FinFET PMOS devices with an all-last high-k/metal gate (HK/MG) process are fabricated and the influence of a series of device parameters on the device scaling is investigated. The high and thin Fin structure with a tapered sidewall shows better performance than the normal Fin structure. The punch through stop layer (PTSL) and source drain extension (SDE) doping profiles are carefully optimized. The device without SDE annealing shows a larger drive current than that with SDE annealing due to better Si crystal regrowth in the amorphous Fin structure after source/drain implantation. The band-edged MG has a better short channel effect immunity, but the lower effective work function (EWF) MG shows a larger driveability. A tradeoff choice for different EWF MGs should be carefully designed for the device's scaling.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60936005 and 61076097)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No. 708083)the Fundamental Research Funds for the Central Universities (Grant No. 20110203110012)
文摘In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation.The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO 2 /Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO 2 /Si stacked MOSFETs.
基金Project supported by the State Key Development Program for Basic Research of China(No.2010CB934204)the National Natural Science Foundation of China(No.60825403)the National Key Projects of China(Nos.2009ZX-02302-004,2009ZX02023-005).
文摘The resistivity, crystalline structure and effective work function (EWF) of reactive sputtered TaN has been investigated. As-deposited TaN films have an fcc structure. After post-metal annealing (PMA) at 900℃, the TaN films deposited with a N2 flow rate greater than 6.5 sccm keep their fcc structure, while the films deposited with a N2 flow rate lower than 6.25 sccm exhibit a microstructure change. The flatband voltages of gate stacks with TaN films as gate electrodes on SiO2 and HfO2 are also measured. It is concluded that a dipole is formed at the dielectric-TaN interface and its contribution to the EWF of TaN changes with the Ta/N ratio in TaN, the underneath dielectric layer and the PMA conditions.
文摘随着超大规模集成电路技术的发展,CMOS器件的制备过程需要同时引入金属栅和超浅结等新的先进工艺技术,因此各种新工艺的兼容性研究具有重要意义.本文研究了超浅结工艺中使用的锗预非晶化对镍硅(N iS i)金属栅功函数的影响.对具有不同剂量Ge注入的N iS i金属栅MOS电容样品的研究表明,锗预非晶化采用的Ge注入对N iS i金属栅的功函数影响很小(小于0.03eV),而且Ge注入也不会导致氧化层中固定电荷以及氧化层和硅衬底之间界面态的增加.这些结果表明,在自对准的先进CMOS工艺中,N iS i金属栅工艺和锗预非晶化超浅结工艺可以互相兼容.
基金supported by the National Natural Science Foundation of China(51172009,51172013 and 11074020)Program for New Century Excellent Talents in University(NCET-08-0029)+1 种基金Hong Kong Research Grants Council(RGC)General Research Funds(GRF)(CityU112510)City University of Hong Kong Strategic Research Grant(SRG)(7008009)
文摘Although metal gate/high-k stacks are commonly used in metal-oxide-semiconductor field-effect-transistors (MOSFETs) in the 45 nm technology node and beyond,there are still many challenges to be solved.Among the various technologies to tackle these problems,interface dipole engineering (IDE) is an effective method to improve the performance,particularly,modulating the effective work function (EWF) of metal gates.Because of the different electronegativity of the various atoms in the interfacial layer,a dipole layer with an electric filed can be formed altering the band alignment in the MOS stack.This paper reviews the interface dipole formation induced by different elements,recent progresses in metal gate/high-k MOS stacks with IDE on EWF modulation,and mechanism of IDE.
基金supported by the National 02 IC Projectsthe Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences
文摘Sub-20 nm node bulk FinFET PMOS devices with an all-last high-k/metal gate (HK/MG) process are fabricated and the influence of a series of device parameters on the device scaling is investigated. The high and thin Fin structure with a tapered sidewall shows better performance than the normal Fin structure. The punch through stop layer (PTSL) and source drain extension (SDE) doping profiles are carefully optimized. The device without SDE annealing shows a larger drive current than that with SDE annealing due to better Si crystal regrowth in the amorphous Fin structure after source/drain implantation. The band-edged MG has a better short channel effect immunity, but the lower effective work function (EWF) MG shows a larger driveability. A tradeoff choice for different EWF MGs should be carefully designed for the device's scaling.