期刊文献+
共找到195篇文章
< 1 2 10 >
每页显示 20 50 100
Research status and prospects of the fractal analysis of metal material surfaces and interfaces
1
作者 Qinjin Dai Xuefeng Liu +2 位作者 Xin Ma Shaojie Tian Qinghe Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期20-38,共19页
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal... As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future. 展开更多
关键词 metal material surfaces and interfaces fractal analysis fractal dimension HOMOGENEITY
下载PDF
The Anti-Penetration Performance and Mechanism of Metal Materials:A Review
2
作者 Jialin Chen Shutao Li +5 位作者 Shang Ma Yeqing Chen Yin Liu Quanwei Tian Xiting Zhong Jiaxing Song 《Engineering》 SCIE EI CAS CSCD 2024年第9期131-157,共27页
This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-ma... This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-macro correlation in the anti-penetration process.Finally,it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration.From the macro perspective,nine frequent penetration failure modes of metal materials are summarized,with a focus on the analysis of the cratering,compression shear,penetration,and plugging stages of the penetration process.The reasons for the formation of adiabatic shear bands(ASBs)in metal materials with different crystal structures are elaborated,and the formation mechanism of the equiaxed grains in the ASB is explored.Both the strength and the toughness of metal materials are related to the materials’crystal structures and microstructures.The toughness is mainly influenced by the deformation mechanism,while the strength is explained by the strengthening mechanism.Therefore,the mechanical properties of metal materials depend on their microstructures,which are subject to the manufacturing process and material composition.Regarding numerical simulation,the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice.In summary,this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials,along with their mechanisms and correlation during the anti-penetration and impact-resistance processes,thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials. 展开更多
关键词 metal materials Failure model Adiabatic shear band Strengthening mechanisms Numerical simulation
下载PDF
Fractal dimension for porous metal materials of FeCrAl fiber 被引量:1
3
作者 王建忠 奚正平 +3 位作者 汤慧萍 黄卫东 朱纪磊 敖庆波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1046-1051,共6页
The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was d... The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively. 展开更多
关键词 porous metal materials FeCrA1 fiber fractal dimension POROSITY MAGNIFICATION
下载PDF
Modeling and finite element analysis of transduction process of electromagnetic acoustic transducers for nonferromagnetic metal material testing 被引量:13
4
作者 郝宽胜 黄松岭 +2 位作者 赵伟 段汝娇 王珅 《Journal of Central South University》 SCIE EI CAS 2011年第3期749-754,共6页
Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a... Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a multi-field coupled model was established and the finite element method (FEM) was presented to calculate the entire transduction process. The multi-field coupled model included the static magnetic field, pulsed eddy current field and mechanical field. The FEM equations of the three fields were derived by Garlerkin FEM method. Thus, the entire transduction process of the EMAT was calculated through sequentially coupling the three fields. The transduction process of a Lamb wave EMAT was calculated according to the present model and method. The results show that, by the present method, it is valid to calculate the particle displacement under the given excitation signal and non-uniformly distributed static magnetic field. Calculation error will be brought about if the non-uniform distribution of the static bias magnetic field is neglected. 展开更多
关键词 metal material nondestructive testing electromagnetic acoustic transducer multi-field coupling Garlerkin method finite element
下载PDF
Underwater Laser Welding/Cladding for High-performance Repair of Marine Metal Materials:A Review 被引量:8
5
作者 Guifang Sun Zhandong Wang +3 位作者 Yi Lu Mingzhi Chen Kun Yang Zhonghua Ni 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期31-49,共19页
With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must... With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must be performed in underwater environments.The underwater laser welding/cladding technique is a promising and advanced technique which could be widely applied to the maintenance of the damaged equipment.The present review paper aims to present a critical analysis and engineering overview of the underwater laser welding/cladding technique.First,we elaborated recent advances and key issues of drainage nozzles all over the world.Next,we presented the underwater laser processing and microstructural-mechanical behavior of repaired marine materials.Then,the newly developed powder-feeding based and wire-feeding based underwater laser direct metal deposition techniques were reviewed.The differences between the convection,conduction,and the metallurgical kinetics in the melt pools during underwater laser direct metal deposition and in-air laser direct metal deposition were illustrated.After that,several challenges that need to be overcame to achieve the full potential of the underwater laser welding/cladding technique are proposed.Finally,suggestions for future directions to aid the development of underwater laser welding/cladding technology and underwater metallurgical theory are provided.The present review will not only enrich the knowledge in the underwater repair technology,but also provide important guidance for the potential applications of the technology on the marine engineering. 展开更多
关键词 Underwater laser welding Underwater laser direct metal deposition Drainage nozzle Marine metal materials Mechanical property Diffusible hydrogen
下载PDF
Laguerre Simulation and Visualization for Microstructure of Metal Materials 被引量:2
6
作者 盛捷 李俊琛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第1期164-167,共4页
Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visual... Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visualization was done and simulation was realized in user-specified arbitrary area for simulation of metal materials microstructure, which facilitated the practical application and secondary development of Laguerre diagram in the field of material science engineering. Finally, the utilization of a developed software package exemplified the simulation application of microstructure about metal materials and proved its validity. 展开更多
关键词 microstructure of metal materials Laguerre algorithm SIMULATION VISUALIZATION
下载PDF
Preparation of New Type Ni-P Micro/Nano Metal Material Based on Bacteria Shape 被引量:1
7
作者 Xin Liang Jianhua Liut Songmei Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第1期58-62,共5页
A new type of Ni-P alloy with rod-shape was prepared by electroless deposition method based on the shape of Nocadia, a kind of bacteria. The material was characterized by microbiological method, scanning electron micr... A new type of Ni-P alloy with rod-shape was prepared by electroless deposition method based on the shape of Nocadia, a kind of bacteria. The material was characterized by microbiological method, scanning electron microscope, energy dispersion spectroscopy, transmission electron microscopy, fourier transform infrared spectroscopy, X-ray diffraction and vibrant sample magnetometer. It was found that Ni-P alloy deposited on Nocadia surface was amorphous when pH=8.0. The amount of Ni crystalline increased with pH of plating solution. Ni-P nano-particles deposited on active locations on the surface at the initial stage, and then homogeneous Ni-P film formed with time. Nocadia remained their original rod shape after Ni-P nano-particles deposition. The new type metal material formed of Ni-P alloy with nano-particles was prepared. The mag- netization of the material prepared at pH=9.7 is greater than that prepared at pH=8.0. The magnetic loss of the material prepared at pH=9.7 is less than 0.1. The dielectric loss exceeds 0.3 when frequency is higher than 14 GHz, which is 1.5 at 18 GHz. The new type Ni-P metal material with Nocadia shape has dielectric loss property. 展开更多
关键词 Ni-P metal material Nocadia Bio-limited forming technology Magnetic behavior
下载PDF
Comprehensive utilization of metal materials for steelmaking at Baosteel
8
作者 MA Zhigang DI Yongzhong +1 位作者 WU Weimin HU Hantao 《Baosteel Technical Research》 CAS 2013年第4期33-37,共5页
Optimization of scrap utilization, through maintaining a reasonable heavy scrap ratio, determination of scrap yield, development of substitutes for scrap, recycling of high-alloy scrap and optimization of scrap utiliz... Optimization of scrap utilization, through maintaining a reasonable heavy scrap ratio, determination of scrap yield, development of substitutes for scrap, recycling of high-alloy scrap and optimization of scrap utilization technology, was investigated in this paper, in terms of the supply of metal materials, production cost, production quality and environment protection. Then, recycling of solid waste resources was discussed, and the utilization conditions and methods of slag-steel, slag-iron, steel-slag, etc. were determined. Finally, the management system for comprehensive resource utilization was introduced. 展开更多
关键词 metal materials SCRAP comprehensive utilization
下载PDF
Automotive Metal Material Database Development and Application in Vehicle Design
9
作者 MENG Xianming ZHANG Sai +1 位作者 FANG Rui ZHU Yaohui 《Journal of Mechanics Engineering and Automation》 2017年第4期235-242,共8页
This paper introduced the metal material database development and usage in car body design for automatic process. According to the common automotive steel product from the major steel plant in China and usage situatio... This paper introduced the metal material database development and usage in car body design for automatic process. According to the common automotive steel product from the major steel plant in China and usage situation in local automotive OEMs (original equipment manufacturers), a standard LS-DYNA material database contains 129 kinds of commonly used metal material and database is developed by CATARC. Considering the frequent use of material data and applied to different parts in FE model, engineers can save time with this standard tool and meet the future request of the automation modeling process. 展开更多
关键词 metal material CATARC database structure design.
下载PDF
Theoretical characterization of the temperature-dependent saturation magnetization of magnetic metallic materials
10
作者 吴金龙 董攀 +6 位作者 贺屹 马艳丽 李梓源 姚沁远 邱俊 麻建坐 李卫国 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期577-585,共9页
Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the... Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy;then the relationship between the magnetic anisotropy constant and saturation magnetization is considered.Finally,we formulate a temperature-dependent model for saturation magnetization,revealing the inherent relationship between temperature and saturation magnetization.Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures,exhibiting satisfactory agreement with experimental data.Additionally,the experimental data used as reference points are at or near room temperature.Compared to other phenomenological theoretical models,this model is considerably more accessible than the data required at 0 K.The index included in our model is set to a constant value,which is equal to 10/3 for materials other than Fe,Co,and Ni.For transition metals(Fe,Co,and Ni in this paper),the index is 6 in the range of 0 K to 0.65T_(cr)(T_(cr) is the critical temperature),and 3 in the range of 0.65T_(cr) to T_(cr),unlike other models where the adjustable parameters vary according to each material.In addition,our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures. 展开更多
关键词 magnetic metallic materials temperature dependent saturation magnetization MODELING
下载PDF
Capillary Property of Entangled Porous Metallic Wire materials and Its Application in Fluid Buffers:Theoretical Analysis and Experimental Study
11
作者 Yu Tang Yiwan Wu +1 位作者 Hu Cheng Rong Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期400-416,共17页
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en... Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.). 展开更多
关键词 Entangled porous metallic wire materials Capillary property Viscousfluid Low-speed impact Damping force
下载PDF
Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy materials 被引量:9
12
作者 Lei WANG Jing LIU 《Frontiers in Energy》 SCIE CSCD 2013年第3期317-332,共16页
As the basis of modern industry, the roles materials play are becoming increasingly vital in this day and age. With many superior physical properties over conventional fluids, the low melting point liquid metal materi... As the basis of modern industry, the roles materials play are becoming increasingly vital in this day and age. With many superior physical properties over conventional fluids, the low melting point liquid metal material, especially room-temperature liquid metal, is recently found to be uniquely useful in a wide variety of emerging areas from energy, electronics to medical sciences. However, with the coming enormous utilization of such materials, serious issues also arise which urgently need to be addressed. A biggest concern to impede the large scale application of room-temperature liquid metal technologies is that there is currently a strong shortage of the materials and species available to meet the tough requirements such as cost, melting point, electrical and thermal conductivity, etc. Inspired by the Material Genome Initiative as issued in 2011 by the United States of America, a more specific and focused project initiative was proposed in this paper--the liquid metal material genome aimed to discover advanced new functional alloys with low melting point so as to fulfill various increasing needs. The basic schemes and road map for this new research program, which is expected to have a worldwide significance, were outlined. The theoretical strategies and experimental methods in the research and development of liquid metal material genome were introduced. Particularly, the calculation of phase diagram (CALPHAD) approach as a highly effective way for material design was discussed. Further, the first-principles (FP) calculation was suggested to combine with the statistical thermo- dynamics to calculate the thermodynamic functions so as to enrich the CALPHAD database of liquid metals. When the experimental data are too scarce to perform a regular treatment, the combination of FP calculation, cluster variation method (CVM) or molecular dynamics (MD), and CALPHAD, referred to as the mixed FP-CVM- CALPHAD method can be a promising way to solve the problem. Except for the theoretical strategies, several parallel processing experimental methods were also analyzed, which can help improve the efficiency of finding new liquid metal materials and reducing the cost. The liquid metal material genome proposal as initiated in this paper will accelerate the process of finding and utilization of new functional materials. 展开更多
关键词 liquid metal material genome energy material material discovery advanced material room-tempera- ture liquid alloy thermodynamics phase diagram
原文传递
Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal materials 被引量:1
13
作者 Jin ZHANG Xuefeng HUANG +3 位作者 Xinzhen KANG Hao YI Qianyue WANG Huajun CAO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第2期33-97,共65页
Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.... Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids.However,the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials.The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing,making it a focus of academic and industrial research.In this review,the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials,including titanium alloys,nickel-based alloys,and high-strength steel,are systematically explored.The laser energy field,ultrasonic energy field,and cryogenic minimum quantity lubrication energy fields are introduced.By analyzing the effects of changing the energy field and cutting parameters on tool wear,chip morphology,cutting force,temperature,and surface quality of the workpiece during milling,the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated.Finally,the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail,providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future. 展开更多
关键词 difficult-to-machine metal material green machining high-speed dry milling laser energy fieldassisted milling ultrasonic energy field-assisted milling cryogenic minimum quantity lubrication energy field-assisted milling
原文传递
Corrosion behavior of pure metals(Ni and Ti)and alloys(316H SS and GH3535)in liquid GaInSn 被引量:1
14
作者 Jian-Hui Yu Hong-Xia Xu +3 位作者 Xiang-Xi Ye Bin Leng Han-Xun Qiu Xing-Tai Zhou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期70-83,共14页
In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to... In this study,the interactions between a Ga-based liquid metal,GaInSn,and several metal materials,including pure metals(Ni and Ti)and alloys(316H stainless steel(SS)and GH3535),at 650℃were investigated.The aim was to evaluate the corrosion performance and select a suitable candidate material for use as a molten salt manometer diaphragm in thermal energy storage systems.The results indicated that the alloys(316H SS and GH3535)exhibited less corrosion than pure metals(Ni and Ti)in liquid GaInSn.Ga-rich binary intermetallic compounds were found to form on the surfaces of all the tested metal materials exposed to liquid GaInSn,as a result of the decomposition of liquid GaInSn and its reaction with the constituent elements of the metal materials.The corrosion mechanism for all the tested materials exposed to liquid GaInSn was also investigated and proposed,which may aid in selecting the optimal candidate material when liquid GaInSn is used as the pressure-sensing medium. 展开更多
关键词 metal materials Liquid GaInSn CORROSION Intermetallic compounds Thermal energy storage systems
下载PDF
A review on in vitro corrosion performance test of biodegradable metallic materials 被引量:12
15
作者 甄珍 奚廷斐 郑玉峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2283-2293,共11页
Extensive in vitro corrosion test systems have been carried out to simulate the in vivo corrosion behavior of biodegradable metallic materials. Various methods have their own unique benefits and limitations. The corro... Extensive in vitro corrosion test systems have been carried out to simulate the in vivo corrosion behavior of biodegradable metallic materials. Various methods have their own unique benefits and limitations. The corrosion mechanism of biodegradable alloys and in vitro corrosion test systems on biodegradable metallic materials are reviewed, to build a reasonable simulated in vitro test system for mimicking the in vivo animal test from the aspects of electrolyte solution selection, surface roughness influence, test methods and evaluation methodology of corrosion rate. Buffered simulated body fluid containing similar components to human blood plasma should be applied as electrolyte solution, such as simulated body fluid (SBF) and culture medium with serum. Surface roughness of samples and ratio of solution volume to sample surface area should be adopted based on the real implant situation, and the dynamic corrosion is preferred. As to the evaluation methodology of corrosion rate, different methods may complement one another. 展开更多
关键词 biodegradable metallic material in vitro corrosion test Mg FE
下载PDF
Experimental study on the influences of cutter geometry and material on scraper wear during shield TBM tunnelling in abrasive sandy ground
16
作者 Shaohui Tang Xiaoping Zhang +3 位作者 Quansheng Liu Qi Zhang Xinfang Li Haojie Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期410-425,共16页
When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on sc... When shield TBM tunnelling in abrasive sandy ground,the rational design of cutter parameters is critical to reduce tool wear and improve tunnelling efficiency.However,the influence mechanism of cutter parameters on scraper wear remains unclear due to the lack of a reliable test method.Geometry and material optimisation are often based on subjective experience,which is unfavourable for improving scraper geological adaptability.In the present study,the newly developed WHU-SAT soil abrasion test was used to evaluate the variation in scraper wear with cutter geometry,material and hardness.The influence mechanism of cutter parameters on scraper wear has been revealed according to the scratch characteristics of the scraper surface.Cutter geometry and material parameters have been optimised to reduce scraper wear.The results indicate that the variation in scraper wear with cutter geometry is related to the cutting resistance,frictional resistance and stress distribution.An appropriate increase in the front angle(or back angle)reduces the cutting resistance(or frictional resistance),while an excessive increase in the front angle(or back angle)reduces the edge angle and causes stress concentration.The optimal front angle,back angle and edge angle for quartz sand samples areα=25°,β=10°andγ=55°,respectively.The wear resistance of the modelled scrapers made of different metal materials is related to the chemical elements and microstructure.The wear resistances of the modelled scrapers made of 45#,06Cr19Ni10,42CrMo4 and 40CrNiMoA are 0.569,0.661,0.691 and 0.728 times those made of WC-Co,respectively.When the alloy hardness is less than 47 HRC(or greater than 58 HRC),scraper wear decreases slowly with increasing alloy hardness as the scratch depth of the particle asperity on the metal surface stabilizes at a high(or low)level.However,when the alloy hardness is between 47 HRC and 58 HRC,scraper wear decreases rapidly with increasing alloy hardness as the scratch depth transitions from high to low levels.The sensitive hardness interval and recommended hardness interval for quartz sand are[47,58]and[58,62],respectively.The present study provides a reference for optimising scraper parameters and improving cutterhead adaptability in abrasive sandy ground tunnelling. 展开更多
关键词 Shield TBM Scraper wear Cutter shape metal material Alloy hardness
下载PDF
Tongling Nonferrous Metals Group Holding Co., Ltd. Develops the Metal Materials for Aircraft Engines
17
《China Nonferrous Metals Monthly》 2018年第7期6-6,共1页
Tongling Nonferrous Metals Group Holding Co.,Ltd.has signed a joint venture agreement with a subsidiary of Aero Engine Corporation of China,proposing to establish a JV to engage in the R&D and production of specia... Tongling Nonferrous Metals Group Holding Co.,Ltd.has signed a joint venture agreement with a subsidiary of Aero Engine Corporation of China,proposing to establish a JV to engage in the R&D and production of special aerial metal materials.Presently,the JV project 展开更多
关键词 Develops the metal materials for Aircraft Engines LTD
原文传递
EFFECT OF STRAIN RATE(?) ON STRAIN HARDENING EXPONENT n OF SOME METALLIC MATERIALS 被引量:4
18
作者 TANG Changguo, ZHU Jinhua, ZHANG Yuhua, ZHOU HuijiuResearch Institute for Strength of Metals. Xi’an Jiaotong University. Xi’an. China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1994年第3期183-186,共4页
Variable strain rate tension tests for 4 metallic materials show that as the strain rate in creases the strain hardening exponent n decreases. The trend follows a two stage linear relation between n and Ig (?). When (... Variable strain rate tension tests for 4 metallic materials show that as the strain rate in creases the strain hardening exponent n decreases. The trend follows a two stage linear relation between n and Ig (?). When (?) < (?)cp, i.e. under quasi-static loading, n can be considered as a constant, but when (?)>(?)cp, n decreases rapidly till an ideal plastic state. n = 0. The characterizations and mechanisms of softening induced by high (?) are discussed. 展开更多
关键词 strain rate strain hardening EXPONENT metallic material
下载PDF
Degree of polarization based on the three-component pBRDF model for metallic materials 被引量:6
19
作者 Kai Wang Jing-Ping Zhu Hong Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期254-259,共6页
An expression of degree of polarization(DOP) for metallic material is presented based on the three-component polarized bidirectional reflectance distribution function(p BRDF) model with considering specular reflec... An expression of degree of polarization(DOP) for metallic material is presented based on the three-component polarized bidirectional reflectance distribution function(p BRDF) model with considering specular reflection, directional diffuse reflection and ideal diffuse reflection. The three-component p BRDF model with a detailed reflection assumption is validated by comparing simulations with measurements. The DOP expression presented in this paper is related to surface roughness, which makes it more reasonable in physics. Test results for two metallic samples show that the DOP based on the three-component p BRDF model accords well with the measurement and the error of existing DOP expression is significantly reduced by introducing the diffuse reflection. It indicates that our DOP expression describes the polarized reflection properties of metallic surfaces more accurately. 展开更多
关键词 degree of polarization(DOP) polarized bidirectional reflectance distribution function(pBRDF) metallic materials
下载PDF
Combined powder metallurgy routes to improve thermal and mechanical response of Al−Sn composite phase change materials 被引量:2
20
作者 Chiara CONFALONIERI Maxime PERRIN Elisabetta GARIBOLDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第12期3226-3239,共14页
Powder metallurgy processes are suitable to produce form-stable solid−liquid phase change materials from miscibility gap alloys.They allow to obtain a composite metallic material with good dispersion of low-melting ac... Powder metallurgy processes are suitable to produce form-stable solid−liquid phase change materials from miscibility gap alloys.They allow to obtain a composite metallic material with good dispersion of low-melting active phase particles in a high-melting passive matrix,preventing leakage of the particles during phase transition and,therefore,increasing the stability of thermal response.Also,the matrix provides structural properties.The aim of this work is to combine conventional powder mixing techniques(simple mixing and ball milling)to improve active phase isolation and mechanical properties of an Al−Sn alloy.As matter of fact,ball milling of Sn powder allows to reduce hardness difference with Al powder;moreover,ball milling of the two powders together results in fine microstructure with improved mechanical properties.In addition,different routes applied showed that thermal response depends on the microstructure and,in particular,on the particle size of the active phase.In more detail,coarse active phase particles provide a fast heat release with small undercooling,while small particles solidify more slowly in a wide range of temperature.On the other hand,melting and,consequently,heat storage are independent of the particle size of the active phase.This potentially allows to“tailor”the thermal response by producing alloys with suitable microstructure. 展开更多
关键词 metallic phase change materials powder metallurgy thermal stability mechanical properties miscibility gap alloys
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部