The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me...The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.展开更多
Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The dire...Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified.展开更多
Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculate...Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.展开更多
Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structur...Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed.展开更多
Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TM...Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.展开更多
As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants....As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.展开更多
Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)a...Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.展开更多
g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photo...g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photoabsorption.Rationally designing g-C_(3)N_(4)-based heterojunction is promising for improving photocatalytic activity.Besides,g-C_(3)N_(4) exhibits great potentials in electrochemical energy storage.In view of the excellent performance of typical transition metal oxides(TMOs)in photocatalysis and energy storage,this review summarized the advances of TMOs/g-C_(3)N_(4) heterojunctions in the above two areas.Firstly,we introduce several typical TMOs based on their crystal structures and band structures.Then,we summarize different kinds of TMOs/g-C_(3)N_(4) heterojunctions,including type Ⅰ/Ⅱ heterojunction,Z-scheme,p-n junction and Schottky junction,with diverse photocatalytic applications(pollutant degradation,water splitting,CO_(2) reduction and N_(2) fixation)and supercapacitive energy storage.Finally,some promising strategies for improving the performance of TMOs/g-C_(3)N_(4) were proposed.Particularly,the exploration of photocatalysis-assisted supercapacitors was discussed.展开更多
Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudoc...Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudocapacitors.Transition metal oxides and nitrides,as the two main kinds of pseudocapacitor electrode materials,can enhance energy density while maintaining high power capability.Recent advances in designing nanostructured architectures and preparing composites with high specific surface areas based on transition metal oxides and nitrides,including ruthenium oxides,nickel oxides,manganese oxides,vanadium oxides,cobalt oxides,iridium oxides,titanium nitrides,vanadium nitrides,molybdenum nitrides and niobium nitrides,are addressed,which would provide important significances for deep researches on pseudocapacitor electrode materials.展开更多
NF3 decomposition in the absence of water over Al2O3, Fe2O3, Co3O4 and NiO, and transition metal oxides (Fe203, CO3O4 and NiO) coated Al2O3 reagents was investigated. The results show that Al2O3 is an active reagent...NF3 decomposition in the absence of water over Al2O3, Fe2O3, Co3O4 and NiO, and transition metal oxides (Fe203, CO3O4 and NiO) coated Al2O3 reagents was investigated. The results show that Al2O3 is an active reagent for NF3 decomposition with 100% conversion lasting for 8.5 h at 400 ℃. Fe203, Co3O4 and NiO coated Al2O3 reagents are superior to bare Al2O3, and 5%Co3O4/Al2O3 has a high reactivity with NF3 full conversion maintaining for 10.5 h. It is suggested that the presence of transition metal oxide is beneficial to the reactivity of Al2O3, and results in a significant enhancement in the fluorination of Al2O3.展开更多
Co-grinding three nonferrous metal oxides(CuO,PbO and ZnO)with element sulphur under mild conditions and flotation of the ground samples were conducted to investigate the surface properties and floatability of the oxi...Co-grinding three nonferrous metal oxides(CuO,PbO and ZnO)with element sulphur under mild conditions and flotation of the ground samples were conducted to investigate the surface properties and floatability of the oxides.Phase transition,morphological features,electrochemical properties and surface chemical compositions of ground samples were studied.The results show that the floatability of CuO is improved after grinding with sulfur,by the formation of surface layer with properties similar to CuS due to the Cu-S bonding.The floatability of PbO is deteriorated after mechanochemical processing due to surface carbonation and the formation of PbS and PbSO4by disproportionation reaction with sulfur.ZnO shows no evident response to mechanochemical sulfidation.展开更多
Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of ex...Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materiaIs on electrochemical Li insertion/extraction performance was discussed. These two transition metal oxides belong to onegroup that the crystallinity of these oxides affects to the performance.展开更多
This review paper aims at analysing the state of the art for partial oxidation and oxidative dehydrogenation(ODH) reactions of lower alkanes C–Cinto olefins and oxygenated products(aldehydes, anhydrides,carboxylic...This review paper aims at analysing the state of the art for partial oxidation and oxidative dehydrogenation(ODH) reactions of lower alkanes C–Cinto olefins and oxygenated products(aldehydes, anhydrides,carboxylic acids) on metal oxide catalysts with cations of variable oxidation state, such as Mo and V in particular. Key parameters to be met by the catalysts, such as their redox properties, their structural aspects, active sites composed of ensembles of atoms isolated one from the others, mechanisms of reactions, are discussed. Main features of the different reactions of C–Calkanes and catalysts are analysed and their generalisation for determining more active and more selective catalysts is attempted. Prospective views for the future of the domain are proposed.展开更多
Globally,the efficient utilization of polymer wastes is one of the most important issues for current sustainable development topics.Herein,a green and efficient low-temperature combustion approach is proposed to deal ...Globally,the efficient utilization of polymer wastes is one of the most important issues for current sustainable development topics.Herein,a green and efficient low-temperature combustion approach is proposed to deal with polymer wastes and recover heat energy,simultaneously alleviating the environment and energy crisis.Non-noble metal oxides(Al_(2)O_(3),Fe_(2)O_(3),NiO_(2),ZrO_(2),La_(2)O_(3)and CeO_(2)) were prepared,characterized and screened to boost the low-temperature combustion of polyethylene waste at 300℃ in air.The mass change,heat release and CO_(x) formation were studied in details and employed to evaluate the combustion rate and efficiency.It was found that CeO_(2)significantly enhanced the combustion rate and efficiency,which was respectively 2 and 7 times that of non-catalytic case.An interesting phenomenon was observed that the catalytic performance of CeO_(2) in polyethylene low-temperature combustion was significantly improved by the 7-day storage in the room environment or water treatment.XPS analysis confirmed the co-existence of Ce^(3+) and Ce^(4+) in CeO_(2),and the 7-day storage and water treatment promoted the amount of Ce^(3+),which facilitated the formation of the oxygen vacancies.That may be the reason why CeO_(2) exhibited excellent catalytic performance in polyethylene low-temperature combustion.展开更多
NF3 decomposition over transition metal oxides coated MgO reagents in the absence of water is investigated. The results show that NF3 can be decomposed completely over pure MgO but the time of NF3 steady full conversi...NF3 decomposition over transition metal oxides coated MgO reagents in the absence of water is investigated. The results show that NF3 can be decomposed completely over pure MgO but the time of NF3 steady full conversion kept as short as 80 min, while the reactivities of coated MgO reagents were remarkably enhanced by transition metal oxides, for example the time of NF3 complete conversion over 12%Fe/MgO extended to 380 min. It is suggested that not only an increase in surface area but also a significant enhancement in the fluorination of MgO substrate caused by the surface transition metal oxides result in an improved reactivity of coated MgO reagents for NF3 decomposition.展开更多
Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and...Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and showed a wide range of crystallinity. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materials on electrochemical Li insertion/extraction pedermance was discussed. These three transition metal oxides were classified as one group on the basis of whether the crystallinity of these oxides affects to the performance or not; LiMn_2O_4 and LiCo_(0.5)O_2 belongs to the former group and TiO_2, V_2O_5 and MoO_3 to the latter.展开更多
In order to improve the pyrotechnical reagent with potassium perchlorate,composite catalyst of active carbon supporting transition metal oxides (TMO),Fe2O3 and CuO,were prepared and added into pyrotechnical reagent ...In order to improve the pyrotechnical reagent with potassium perchlorate,composite catalyst of active carbon supporting transition metal oxides (TMO),Fe2O3 and CuO,were prepared and added into pyrotechnical reagent with potassium perchlorate.Accelerating rate calorimeter (ARC) was used to study the catalysis of pyrotechnical reagent which is consisted of potassium perchlorate and composite catalyst.Composite catalyst of both Fe2O3 and CuO supported by active carbon can catalyze pyrotechnical reagent with potassium perchlorate.Furthermore,it can lower the apparent activation energy and accelerate the reaction with a smaller quantity than that with Fe2O3 and CuO.The maximal reaction rate of pyrotechnical reagent with potassium perchlorate mixed with Fe2O3/active carbon and CuO/active carbon is 8.31 min-1 and 9.13 min-1,which is 1.74 times and 1.91 times of pyrotechnical reagent mixed with no catalyst;time to maximal rate was 18.99 min and 1.96 min respectively,which is lower than pyrotechnical reagent mixed with no catalyst by 86.46% and 98.67% ;the apparent activation energy is 368.10 kJ·mol-1 and 325.29 kJ·mol-1,which is lower than pyrotechnical reagent mixed with no catalyst by 31.89% and 39.81% respectively.展开更多
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applicatio...Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applications.As an important approach,light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity,speed and selectivity.This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field.First,recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted.Later,excellent gas sensing performance of emerging two-dimensional materialsbased sensors under light illumination is discussed in details with proposed gas sensing mechanism.Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics.Finally,the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.展开更多
Difference of montmorillonite (Mt), illite (It) and kaolinite (Kt) in lead sorption characteristics and the effects of amorphous Fe and Al oxide coatings on the characteristics were experimentally studied with logisti...Difference of montmorillonite (Mt), illite (It) and kaolinite (Kt) in lead sorption characteristics and the effects of amorphous Fe and Al oxide coatings on the characteristics were experimentally studied with logistic model. The sorption curves had sigmoid feature due to use of acetate-type buffer solution. With the model the sorption process could be divided into four stages and the sorption characteristics at the stages were discussed. The results showed that, after Mt, It and Kt were coated by amorphous Fe oxide, their maximum sorption capacity (MSC) and percentage of high-SSC concentration scope (HCS) of Pb2+ increased markedly, but the specific sorption capacity (SSC) decreased. With regard to effects of amorphous Al oxide coating, except for It+AI, the SSC of other samples showed a downtrend, despite that their MSC remained unchanged. Eventually, the gray correlation degrees to Pb2+ sorption for different physicochemical characteristics of the clay minerals were indicated to be higher for hydronium, zero point of surface charge and hydroxy, but lower for specific surface area, density of surface charge and amount of surface charges.展开更多
The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was ca...The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8 similar to 14 mu m at room temperature, the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8 similar to 14 mu m at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics.展开更多
基金funded by the National Natural Science Foundation of China,China (Nos.52272303 and 52073212)the General Program of Municipal Natural Science Foundation of Tianjin,China (Nos.17JCYBJC22700 and 17JCYBJC17000)the State Scholarship Fund of China Scholarship Council,China (Nos.201709345012 and 201706255009)。
文摘The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction.
基金Financial support from the National Key Research and Development Program of China(2022YFB3805602)the National Natural Science Foundation of China(22138001,22288102)the Fundamental Research Funds for the Central Universities。
文摘Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified.
基金supported by Key Science and Technology Innovation Team of Shaanxi Province(No.2022TD-33)National Natural Science Foundation of China(Grant Nos.21373161,21504067)。
文摘Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.
基金supported by National Key R&D Program of China(2021YFA1502803)the National Natural Science Foundation of China(NSFC)(21972066,91745202)+3 种基金NSFC-Royal Society Joint Program(21661130149)L.P.thanks the Royal Society and Newton Fund for a Royal Society-Newton Advanced Fellowshipsupported by the Research Funds for the Frontiers Science Centre for Critical Earth Material Cycling,Nanjing Universitya Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed.
基金Science and Technology Commission of Shanghai Municipality(21ZR1472900,22ZR1471600)。
文摘Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.
基金This work was financially supported by the Science and Technology project of Jiangsu province(BN2015021,XZ-SZ201819).
文摘As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.
基金supported by the National Key R&D Program of China(2017YFC0211503,2016YFC0207100)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA23030300)+2 种基金the National Natural Science Foundation of China(21401200,51672273)the Open Research Fund of State Key Laboratory of Multi-phase Complex Systems(MPCS-2017-D-06)the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(CERAE201805)~~
文摘Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.
基金financially supported by the National Natural Science Foundation (No.52072347, 51972288, 51672258 and 51572246)the Fundamental Research Funds for the Central Universities (No. 2652019144 and 2652018287)+1 种基金the financial supports from the Science and Technology Program of Guangdong Province (2019A050510012)Shenzhen Science, Technology and Innovation Commission (SGDX2019081623240364).
文摘g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photoabsorption.Rationally designing g-C_(3)N_(4)-based heterojunction is promising for improving photocatalytic activity.Besides,g-C_(3)N_(4) exhibits great potentials in electrochemical energy storage.In view of the excellent performance of typical transition metal oxides(TMOs)in photocatalysis and energy storage,this review summarized the advances of TMOs/g-C_(3)N_(4) heterojunctions in the above two areas.Firstly,we introduce several typical TMOs based on their crystal structures and band structures.Then,we summarize different kinds of TMOs/g-C_(3)N_(4) heterojunctions,including type Ⅰ/Ⅱ heterojunction,Z-scheme,p-n junction and Schottky junction,with diverse photocatalytic applications(pollutant degradation,water splitting,CO_(2) reduction and N_(2) fixation)and supercapacitive energy storage.Finally,some promising strategies for improving the performance of TMOs/g-C_(3)N_(4) were proposed.Particularly,the exploration of photocatalysis-assisted supercapacitors was discussed.
基金Project(51274248) supported by the National Natural Science Foundation of ChinaProjects(2015DFR50580,2013DFA31440) supported by the International Scientific and Technological Cooperation Projects of China
文摘Faraday pseudocapacitors take both advantages of secondary battery with high energy density and supercapacitors with high power density,and electrode material is the key to determine the performance of Faraday pseudocapacitors.Transition metal oxides and nitrides,as the two main kinds of pseudocapacitor electrode materials,can enhance energy density while maintaining high power capability.Recent advances in designing nanostructured architectures and preparing composites with high specific surface areas based on transition metal oxides and nitrides,including ruthenium oxides,nickel oxides,manganese oxides,vanadium oxides,cobalt oxides,iridium oxides,titanium nitrides,vanadium nitrides,molybdenum nitrides and niobium nitrides,are addressed,which would provide important significances for deep researches on pseudocapacitor electrode materials.
基金supported by the National Natural Science Foundation of China (No. 20573089, 20976149)
文摘NF3 decomposition in the absence of water over Al2O3, Fe2O3, Co3O4 and NiO, and transition metal oxides (Fe203, CO3O4 and NiO) coated Al2O3 reagents was investigated. The results show that Al2O3 is an active reagent for NF3 decomposition with 100% conversion lasting for 8.5 h at 400 ℃. Fe203, Co3O4 and NiO coated Al2O3 reagents are superior to bare Al2O3, and 5%Co3O4/Al2O3 has a high reactivity with NF3 full conversion maintaining for 10.5 h. It is suggested that the presence of transition metal oxide is beneficial to the reactivity of Al2O3, and results in a significant enhancement in the fluorination of Al2O3.
文摘Co-grinding three nonferrous metal oxides(CuO,PbO and ZnO)with element sulphur under mild conditions and flotation of the ground samples were conducted to investigate the surface properties and floatability of the oxides.Phase transition,morphological features,electrochemical properties and surface chemical compositions of ground samples were studied.The results show that the floatability of CuO is improved after grinding with sulfur,by the formation of surface layer with properties similar to CuS due to the Cu-S bonding.The floatability of PbO is deteriorated after mechanochemical processing due to surface carbonation and the formation of PbS and PbSO4by disproportionation reaction with sulfur.ZnO shows no evident response to mechanochemical sulfidation.
文摘Electrochemical insertion/extraction of Li on cathode materials of spinel type LiMn2O4 and ordered rock-salt type LiCo0.5 Ni0.5O2 was measured on samples of which structures were well characterized. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materiaIs on electrochemical Li insertion/extraction performance was discussed. These two transition metal oxides belong to onegroup that the crystallinity of these oxides affects to the performance.
文摘This review paper aims at analysing the state of the art for partial oxidation and oxidative dehydrogenation(ODH) reactions of lower alkanes C–Cinto olefins and oxygenated products(aldehydes, anhydrides,carboxylic acids) on metal oxide catalysts with cations of variable oxidation state, such as Mo and V in particular. Key parameters to be met by the catalysts, such as their redox properties, their structural aspects, active sites composed of ensembles of atoms isolated one from the others, mechanisms of reactions, are discussed. Main features of the different reactions of C–Calkanes and catalysts are analysed and their generalisation for determining more active and more selective catalysts is attempted. Prospective views for the future of the domain are proposed.
基金the financial support from the National Natural Science Foundation of China(21908010)Jilin Provincial Department of Science and Technology(20220101089JC)the Education Department of Jilin Province(JJKH20220694KJ)。
文摘Globally,the efficient utilization of polymer wastes is one of the most important issues for current sustainable development topics.Herein,a green and efficient low-temperature combustion approach is proposed to deal with polymer wastes and recover heat energy,simultaneously alleviating the environment and energy crisis.Non-noble metal oxides(Al_(2)O_(3),Fe_(2)O_(3),NiO_(2),ZrO_(2),La_(2)O_(3)and CeO_(2)) were prepared,characterized and screened to boost the low-temperature combustion of polyethylene waste at 300℃ in air.The mass change,heat release and CO_(x) formation were studied in details and employed to evaluate the combustion rate and efficiency.It was found that CeO_(2)significantly enhanced the combustion rate and efficiency,which was respectively 2 and 7 times that of non-catalytic case.An interesting phenomenon was observed that the catalytic performance of CeO_(2) in polyethylene low-temperature combustion was significantly improved by the 7-day storage in the room environment or water treatment.XPS analysis confirmed the co-existence of Ce^(3+) and Ce^(4+) in CeO_(2),and the 7-day storage and water treatment promoted the amount of Ce^(3+),which facilitated the formation of the oxygen vacancies.That may be the reason why CeO_(2) exhibited excellent catalytic performance in polyethylene low-temperature combustion.
基金financially supported by the National Natural Science Foundation of China(No.20976149)
文摘NF3 decomposition over transition metal oxides coated MgO reagents in the absence of water is investigated. The results show that NF3 can be decomposed completely over pure MgO but the time of NF3 steady full conversion kept as short as 80 min, while the reactivities of coated MgO reagents were remarkably enhanced by transition metal oxides, for example the time of NF3 complete conversion over 12%Fe/MgO extended to 380 min. It is suggested that not only an increase in surface area but also a significant enhancement in the fluorination of MgO substrate caused by the surface transition metal oxides result in an improved reactivity of coated MgO reagents for NF3 decomposition.
文摘Electrochemical insertion/extraction of Li on cathode materials of anatase type TiO_2, quasilayered structure V_2O_5 and layered structure MoO_3 was measured on samples of which structures were well characterized and showed a wide range of crystallinity. On the basis of experimental results on structure, morphology and charge-discharge characteristics, the effect of crystallinity of the cathode materials on electrochemical Li insertion/extraction pedermance was discussed. These three transition metal oxides were classified as one group on the basis of whether the crystallinity of these oxides affects to the performance or not; LiMn_2O_4 and LiCo_(0.5)O_2 belongs to the former group and TiO_2, V_2O_5 and MoO_3 to the latter.
基金Sponsored by the National Natural Science Foundation of China(50874017)
文摘In order to improve the pyrotechnical reagent with potassium perchlorate,composite catalyst of active carbon supporting transition metal oxides (TMO),Fe2O3 and CuO,were prepared and added into pyrotechnical reagent with potassium perchlorate.Accelerating rate calorimeter (ARC) was used to study the catalysis of pyrotechnical reagent which is consisted of potassium perchlorate and composite catalyst.Composite catalyst of both Fe2O3 and CuO supported by active carbon can catalyze pyrotechnical reagent with potassium perchlorate.Furthermore,it can lower the apparent activation energy and accelerate the reaction with a smaller quantity than that with Fe2O3 and CuO.The maximal reaction rate of pyrotechnical reagent with potassium perchlorate mixed with Fe2O3/active carbon and CuO/active carbon is 8.31 min-1 and 9.13 min-1,which is 1.74 times and 1.91 times of pyrotechnical reagent mixed with no catalyst;time to maximal rate was 18.99 min and 1.96 min respectively,which is lower than pyrotechnical reagent mixed with no catalyst by 86.46% and 98.67% ;the apparent activation energy is 368.10 kJ·mol-1 and 325.29 kJ·mol-1,which is lower than pyrotechnical reagent mixed with no catalyst by 31.89% and 39.81% respectively.
基金the financial support of the Department of Science and Engineering Research Board (SERB) (Sanction Order No. CRG/2019/000112)。
文摘Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap,low power consumption and portable sensors for rapidly growing Internet of things applications.As an important approach,light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity,speed and selectivity.This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field.First,recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted.Later,excellent gas sensing performance of emerging two-dimensional materialsbased sensors under light illumination is discussed in details with proposed gas sensing mechanism.Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics.Finally,the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
文摘Difference of montmorillonite (Mt), illite (It) and kaolinite (Kt) in lead sorption characteristics and the effects of amorphous Fe and Al oxide coatings on the characteristics were experimentally studied with logistic model. The sorption curves had sigmoid feature due to use of acetate-type buffer solution. With the model the sorption process could be divided into four stages and the sorption characteristics at the stages were discussed. The results showed that, after Mt, It and Kt were coated by amorphous Fe oxide, their maximum sorption capacity (MSC) and percentage of high-SSC concentration scope (HCS) of Pb2+ increased markedly, but the specific sorption capacity (SSC) decreased. With regard to effects of amorphous Al oxide coating, except for It+AI, the SSC of other samples showed a downtrend, despite that their MSC remained unchanged. Eventually, the gray correlation degrees to Pb2+ sorption for different physicochemical characteristics of the clay minerals were indicated to be higher for hydronium, zero point of surface charge and hydroxy, but lower for specific surface area, density of surface charge and amount of surface charges.
基金The research is supported by the Foundation for Excellent Youth of Wuhan Science and Technology Commission and Opening Foundation of Stae Key Laboratory of Advanced Technology for Materials Synthesis and Process of Wuhan University of Technology.
文摘The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8 similar to 14 mu m at room temperature, the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8 similar to 14 mu m at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics.