The high concentration of heavy metal (Cu, Cr, Zn, Pb) in tannery sludge causes severe heavy metal emissions in the process of incineration. In the present investigation, the tannery sludge was treated with 85% phosph...The high concentration of heavy metal (Cu, Cr, Zn, Pb) in tannery sludge causes severe heavy metal emissions in the process of incineration. In the present investigation, the tannery sludge was treated with 85% phosphoric acid before the incineration process in the tube furnace to control the heavy metal emissions. The thermal behavior and heavy metal vaporization of pre-treated tannery sludge were investigated, and X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were also implemente...展开更多
The effect of arc plasma on electrode erosion in a liquid metal current limiter (LMCL) is studied. Based on a simplified two-dimensional magnetohydrodynamic model, the elongated GaInSn metal vapor arc and its contra...The effect of arc plasma on electrode erosion in a liquid metal current limiter (LMCL) is studied. Based on a simplified two-dimensional magnetohydrodynamic model, the elongated GaInSn metal vapor arc and its contraction process in a liquid metal current limiter are simulated. The distributions of temperature, pressure and velocity of the arc plasma are calculated. The simulation results indicate that the electrode erosion is mainly caused by two high temperature gas jet flows arising from the pressure gradient, which is a result of the non-uniform arc temperature distribution. The gas flows, which act as jets onto the electrode surface, lead to the evaporation of the electrode material form the surface. A redesign structure of the electrode is proposed and implemented according to the analysis, which greatly increased the service life of the electrode.展开更多
The metal vapor synthesis (MVS) methed was used to prepare activatedcarbon supported nickel electrode. The electrocatalytic activity of the electrode forhydrogen evolution reaction(HGR) in alkaline solution was studie...The metal vapor synthesis (MVS) methed was used to prepare activatedcarbon supported nickel electrode. The electrocatalytic activity of the electrode forhydrogen evolution reaction(HGR) in alkaline solution was studied. Cathodicpolarization curves showed the electrocatalytic activity of Ni/C electrode prepared byMVS method was higher than that of the one prepared by conventional method.展开更多
Fine ground powders of Nd-Fe-B sintered magnet bulks (particle size=46~125 μm in diameter) were coated and alloyed with Yb metal by sorbing them. A significant recovery of the decreased magnetic properties of the gr...Fine ground powders of Nd-Fe-B sintered magnet bulks (particle size=46~125 μm in diameter) were coated and alloyed with Yb metal by sorbing them. A significant recovery of the decreased magnetic properties of the ground powders (remanence B r=~0.95 T, coercivity H cj =~227 kA·m -1 and maximum energy product (BH) max=~48 8 kJ·m -3) was observed in accordance with increasing temperature up to 800 ℃. The sorbing temperature and time for Yb metal vapor were optimized and after heating at 800 ℃ for 90 min and annealing subsequently at 610 ℃ for 60 min, the B r, H cj and (BH) max values were increased to be 0.98 T, 712 kA·m -1 and 173 kJ·m -3, respectively. From the microstructural characterizations of resulting samples by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe X-ray microanalyzer (EPMA), it is found that the sorbed Yb metal uniformly covers the surface and diffuses to the Nd-rich grain boundary of fine ground powders of Nd-Fe-B sintered magnet bulks forming a (Nd,Yb)Fe 2 phase.展开更多
AISI 304 stainless steel was ion implanted with Co, and the tribological property on the surface of the stainless steelwas investigated. The Co ion implantation was carried out using a metal vapor vacuum arc (Mevva) b...AISI 304 stainless steel was ion implanted with Co, and the tribological property on the surface of the stainless steelwas investigated. The Co ion implantation was carried out using a metal vapor vacuum arc (Mevva) broad-beam ionsource with an extraction voltage of 40 kV, implantation doses of 3×10^(17)/cm^2 and 5×10^(17)/cm^2, and ion currentdensities of 13, 22 and 32μA/cm^2. The results showed that the near-surface hardness of Co-implanted stainless steelsample was increased by 50% or more, and it increased with increasing ion current density at first and then declined.The friction coefficient decreased from 0.74 to 0.20 after Co implantation. The wear rate after Co implantationreduced by 25% or more as compared to the unimplanted sample. The wear rate initially decreased with increasingion current density and then an increase was observed. Within the range of experimental parameters, there existsa critical ion current density for the Co-implanted stainless steel, at which the wear rate decreased with increasingretained dose, going through a minimum and then increased. The critical ion current density in this paper is about22μA/cm^2.展开更多
The metal vapor synthesis technique was employed to prepare Co nanoparticles. The characteristics and properties of the particles were studied by transmission electron microscopy, X-ray diffraction, temperature-progra...The metal vapor synthesis technique was employed to prepare Co nanoparticles. The characteristics and properties of the particles were studied by transmission electron microscopy, X-ray diffraction, temperature-programmed desorption, chemisorption and magnetic measurements. The experimental results showed that the particle size of Co powders depended on the initial Co concentration in the toluene matrix, reaching average crystallite diameter of 1.5 nm for the highest concentration (6.4 at. pct) investigated. The particles with size of 10 nm exist, due to the agglomerates of microcrystallites. The Co particles were surrounded by a thin carbonaceous layer formed due to toluene decomposition on cocondate melt-down and subsequent warming to room temperature. The carbonaceous layer was composed primarily of C1 fragments. The Co powders demonstrated ferromagnetic behavior.展开更多
In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The r...In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method.展开更多
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium ...High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.展开更多
CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposit...CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.展开更多
We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the re...We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the reactor to avoid the occurrence of the parasitic reaction. Through adjusting the duty cycle ratio of TMAl to ammonia from 0.8 to 3.0, the growth rate of Al N epilayers could be controlled in the range of 0.24 m/h to 0.93 m/h. The high-resolution x-ray diffraction(HRXRD) measurement showed that the full width at half maximum(FWHM) of the(0002) and(10-12) reflections for a sample would be 194 arcsec and 421 arcsec, respectively. The step-flow growth mode was observed in the sample with the atomic level flat surface steps, in which a root-mean-square(RMS) roughness was lower to 0.2 nm as tested by atomic force microscope(AFM). The growth process of Al N epilayers was discussed in terms of crystalline quality, surface morphology,and residual stress.展开更多
<正> Three kinds of metal catalysts Ni/D4, Ni-Mn/D4, Ni-Mn-La/D4, wrapped in organosilicon compound were prepared by metal vapor synthesis. Their feature was characterized with XRD, TEM, XPS, FMR and static magn...<正> Three kinds of metal catalysts Ni/D4, Ni-Mn/D4, Ni-Mn-La/D4, wrapped in organosilicon compound were prepared by metal vapor synthesis. Their feature was characterized with XRD, TEM, XPS, FMR and static magnetic measurement. The metal particle size in catalysts was less than 3.5 am. The results of XPS showed that the metals in the catalysts existed in zero and other valent state. Inner metal, as an organosilicon compound folded around the metal particle, was protected from oxidation. FMR and static magnetic measuremeat revealed that metal particles were spheroidal and of superparamagnetism. Of all the caralysts the catalytic activity of Ni-Mn-La/D4was the highest in hydrogenating furfuraldehyde into furfuralcohol.展开更多
Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy...Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 x 10^13 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cruZ/V-s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices.展开更多
Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and mic...Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and microstructures of the produced films were comparatively analyzed to achieve the optimum growth parameters. It was demonstrated that the optimized Ga Sb thin film has a narrow full width at half maximum(358 arc sec) of the(004) ω-rocking curve, and a smooth surface with a low root-mean-square roughness of about 6 nm, which is typical in the case of the heteroepitaxial single-crystal films. In addition, we studied the effects of layer thickness of Ga Sb thin film on the density of dislocations by Raman spectra. It is believed that our research can provide valuable information for the fabrication of high-crystalline Ga Sb films and can promote the integration probability of mid-infrared devices fabricated on mainstream performance electronic devices.展开更多
The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-r...The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-ray diffrac- tion. The SiNx interlayer reduces the c-type dislocation density from 2.5 ×10^10 cm^-2 to 5 ×10^8 cm 2. The SiNx interlayer produces regions that are free from basal plane stacking faults (BSFs) and dislocations. The overall BSF density is reduced from 2.1×10^5 cm-1 to 1.3×10^4 cm^-1. The large dislocations and BSF reduction in semipolar (1122) GaN with the SiNx, interlayer result from two primary mechanisms. The first mechanism is the direct dislocation blocking by the SiNx interlayer, and the second mechanism is associated with the unique structure character of (1122) semipolar GaN.展开更多
Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of...Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of the samples are characterized by atomic force microscopy. The full width at half maximum (FWHM) of the HVPE sample shows a W-shape and that of the MOVPE sample shows an M-shape plane with the degree of 0 in the high-resolution x-ray diffraction (HRXRD) results. The surface morphology attributes to this significant anisotropic. HRXRD reveals that there is a significant reduction in the FWHM, both on-axis and off-axis for HVPE GaN are compared with the MOVPE template. The decrease of the FWHM of E2 (high) Raman scat tering spectra further indicates the improvement of crystal quality after HVPE. By comparing the results of secondary- ion-mass spectroscope and photoluminescence spectrum of the samples grown by HVPE and MOVPE, we propose that C-involved defects are originally responsible for the yellow luminescence.展开更多
Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostruct...Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively.展开更多
We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the...We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum.展开更多
Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is...Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results.展开更多
基金the Education Ministryof China (No. 305005)the Department of Sci-ence and Technology of Zhejiang Province, China (No.2007C210054)
文摘The high concentration of heavy metal (Cu, Cr, Zn, Pb) in tannery sludge causes severe heavy metal emissions in the process of incineration. In the present investigation, the tannery sludge was treated with 85% phosphoric acid before the incineration process in the tube furnace to control the heavy metal emissions. The thermal behavior and heavy metal vaporization of pre-treated tannery sludge were investigated, and X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were also implemente...
基金supported by National Natural Science Foundation of China(No.51207125)State Key Laboratory of Electrical Insulation and Power Equipment of China(No.EIPE13312)
文摘The effect of arc plasma on electrode erosion in a liquid metal current limiter (LMCL) is studied. Based on a simplified two-dimensional magnetohydrodynamic model, the elongated GaInSn metal vapor arc and its contraction process in a liquid metal current limiter are simulated. The distributions of temperature, pressure and velocity of the arc plasma are calculated. The simulation results indicate that the electrode erosion is mainly caused by two high temperature gas jet flows arising from the pressure gradient, which is a result of the non-uniform arc temperature distribution. The gas flows, which act as jets onto the electrode surface, lead to the evaporation of the electrode material form the surface. A redesign structure of the electrode is proposed and implemented according to the analysis, which greatly increased the service life of the electrode.
文摘The metal vapor synthesis (MVS) methed was used to prepare activatedcarbon supported nickel electrode. The electrocatalytic activity of the electrode forhydrogen evolution reaction(HGR) in alkaline solution was studied. Cathodicpolarization curves showed the electrocatalytic activity of Ni/C electrode prepared byMVS method was higher than that of the one prepared by conventional method.
文摘Fine ground powders of Nd-Fe-B sintered magnet bulks (particle size=46~125 μm in diameter) were coated and alloyed with Yb metal by sorbing them. A significant recovery of the decreased magnetic properties of the ground powders (remanence B r=~0.95 T, coercivity H cj =~227 kA·m -1 and maximum energy product (BH) max=~48 8 kJ·m -3) was observed in accordance with increasing temperature up to 800 ℃. The sorbing temperature and time for Yb metal vapor were optimized and after heating at 800 ℃ for 90 min and annealing subsequently at 610 ℃ for 60 min, the B r, H cj and (BH) max values were increased to be 0.98 T, 712 kA·m -1 and 173 kJ·m -3, respectively. From the microstructural characterizations of resulting samples by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe X-ray microanalyzer (EPMA), it is found that the sorbed Yb metal uniformly covers the surface and diffuses to the Nd-rich grain boundary of fine ground powders of Nd-Fe-B sintered magnet bulks forming a (Nd,Yb)Fe 2 phase.
文摘AISI 304 stainless steel was ion implanted with Co, and the tribological property on the surface of the stainless steelwas investigated. The Co ion implantation was carried out using a metal vapor vacuum arc (Mevva) broad-beam ionsource with an extraction voltage of 40 kV, implantation doses of 3×10^(17)/cm^2 and 5×10^(17)/cm^2, and ion currentdensities of 13, 22 and 32μA/cm^2. The results showed that the near-surface hardness of Co-implanted stainless steelsample was increased by 50% or more, and it increased with increasing ion current density at first and then declined.The friction coefficient decreased from 0.74 to 0.20 after Co implantation. The wear rate after Co implantationreduced by 25% or more as compared to the unimplanted sample. The wear rate initially decreased with increasingion current density and then an increase was observed. Within the range of experimental parameters, there existsa critical ion current density for the Co-implanted stainless steel, at which the wear rate decreased with increasingretained dose, going through a minimum and then increased. The critical ion current density in this paper is about22μA/cm^2.
文摘The metal vapor synthesis technique was employed to prepare Co nanoparticles. The characteristics and properties of the particles were studied by transmission electron microscopy, X-ray diffraction, temperature-programmed desorption, chemisorption and magnetic measurements. The experimental results showed that the particle size of Co powders depended on the initial Co concentration in the toluene matrix, reaching average crystallite diameter of 1.5 nm for the highest concentration (6.4 at. pct) investigated. The particles with size of 10 nm exist, due to the agglomerates of microcrystallites. The Co particles were surrounded by a thin carbonaceous layer formed due to toluene decomposition on cocondate melt-down and subsequent warming to room temperature. The carbonaceous layer was composed primarily of C1 fragments. The Co powders demonstrated ferromagnetic behavior.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274039 and 51177175)the National Basic Research Program of China(Grant No.2011CB301903)+5 种基金the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20110171110021)the International Science and Technology Collaboration Program of China(Grant No.2012DFG52260)the International Science and Technology Collaboration Program of Guangdong Province,China(Grant No.2013B051000041)the Science and Technology Plan of Guangdong Province,China(Grant No.2013B010401013)the National High Technology Research and Development Program of China(Grant No.2014AA032606)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics,China(Grant No.IOSKL2014KF17)
文摘In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method.
文摘High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.
基金Supported by the Key Program of the National Natural Science Foundation of China under Grant No 61334009the National High Technology Research and Development Program of China under Grant No 2014AA032604
文摘CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016801)Guangdong Provincial Scientific and Technologic Planning Program,China(Grant No.2014B010119002)
文摘We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the reactor to avoid the occurrence of the parasitic reaction. Through adjusting the duty cycle ratio of TMAl to ammonia from 0.8 to 3.0, the growth rate of Al N epilayers could be controlled in the range of 0.24 m/h to 0.93 m/h. The high-resolution x-ray diffraction(HRXRD) measurement showed that the full width at half maximum(FWHM) of the(0002) and(10-12) reflections for a sample would be 194 arcsec and 421 arcsec, respectively. The step-flow growth mode was observed in the sample with the atomic level flat surface steps, in which a root-mean-square(RMS) roughness was lower to 0.2 nm as tested by atomic force microscope(AFM). The growth process of Al N epilayers was discussed in terms of crystalline quality, surface morphology,and residual stress.
文摘<正> Three kinds of metal catalysts Ni/D4, Ni-Mn/D4, Ni-Mn-La/D4, wrapped in organosilicon compound were prepared by metal vapor synthesis. Their feature was characterized with XRD, TEM, XPS, FMR and static magnetic measurement. The metal particle size in catalysts was less than 3.5 am. The results of XPS showed that the metals in the catalysts existed in zero and other valent state. Inner metal, as an organosilicon compound folded around the metal particle, was protected from oxidation. FMR and static magnetic measuremeat revealed that metal particles were spheroidal and of superparamagnetism. Of all the caralysts the catalytic activity of Ni-Mn-La/D4was the highest in hydrogenating furfuraldehyde into furfuralcohol.
基金supported by the National Natural Science Foundation of China(Grant Nos.61306017,61334002,61474086,and 11435010)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61306017)
文摘Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 x 10^13 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cruZ/V-s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.61076010)the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun,China(Grant No.12ZX68)
文摘Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and microstructures of the produced films were comparatively analyzed to achieve the optimum growth parameters. It was demonstrated that the optimized Ga Sb thin film has a narrow full width at half maximum(358 arc sec) of the(004) ω-rocking curve, and a smooth surface with a low root-mean-square roughness of about 6 nm, which is typical in the case of the heteroepitaxial single-crystal films. In addition, we studied the effects of layer thickness of Ga Sb thin film on the density of dislocations by Raman spectra. It is believed that our research can provide valuable information for the fabrication of high-crystalline Ga Sb films and can promote the integration probability of mid-infrared devices fabricated on mainstream performance electronic devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61204006 and 61574108the Fundamental Research Funds for the Central Universities under Grant No JB141101the Foundation of Key Laboratory of Nanodevices and Applications of Suzhou Institute of Nano-Tech and Nano-Bionics of Chinese Academy of Sciences under Grant No 15CS01
文摘The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-ray diffrac- tion. The SiNx interlayer reduces the c-type dislocation density from 2.5 ×10^10 cm^-2 to 5 ×10^8 cm 2. The SiNx interlayer produces regions that are free from basal plane stacking faults (BSFs) and dislocations. The overall BSF density is reduced from 2.1×10^5 cm-1 to 1.3×10^4 cm^-1. The large dislocations and BSF reduction in semipolar (1122) GaN with the SiNx, interlayer result from two primary mechanisms. The first mechanism is the direct dislocation blocking by the SiNx interlayer, and the second mechanism is associated with the unique structure character of (1122) semipolar GaN.
基金Supported by the National Natural Science Foundation of China under Grant No 61204006the Fundamental Research Funds for the Central Universities under Grant No 7214570101the National Key Science and Technology Special Project under Grant No 2008ZX01002-002
文摘Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of the samples are characterized by atomic force microscopy. The full width at half maximum (FWHM) of the HVPE sample shows a W-shape and that of the MOVPE sample shows an M-shape plane with the degree of 0 in the high-resolution x-ray diffraction (HRXRD) results. The surface morphology attributes to this significant anisotropic. HRXRD reveals that there is a significant reduction in the FWHM, both on-axis and off-axis for HVPE GaN are compared with the MOVPE template. The decrease of the FWHM of E2 (high) Raman scat tering spectra further indicates the improvement of crystal quality after HVPE. By comparing the results of secondary- ion-mass spectroscope and photoluminescence spectrum of the samples grown by HVPE and MOVPE, we propose that C-involved defects are originally responsible for the yellow luminescence.
基金Supported by the National Science and Technology Major Project of China under Grant No 2013ZX02308-002the National Natural Sciences Foundation of China under Grant Nos 61574108,61334002,61474086 and 61306017
文摘Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively.
文摘We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204008,11075176,and 60976090)the National Key Basic Research Special Foundation of China(Grant No.2013CB328705)
文摘Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results.