Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculat...Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).展开更多
Effects of multivalent metallic cations, such as Ca2+ and Fe3+, on the flotation of spodumene and beryl were studied. The results show that Fe3+ and Ca2+ exhibit efficient activation on the flotation of spodumene and ...Effects of multivalent metallic cations, such as Ca2+ and Fe3+, on the flotation of spodumene and beryl were studied. The results show that Fe3+ and Ca2+ exhibit efficient activation on the flotation of spodumene and beryl. The ac- tivation of Fe3+ happens quite well within a pH range of 6-9 while the concentration of Fe3+ is 35 mg/L. Efficient acti- vation of Ca2+ takes place over at a pH over 11.6 at a concentration of 140 mg/L. The zeta potential of beryl and spo- dumene shifts slightly to positive values when activated by Ca2+, but markedly by Fe3+. New stretching frequencies of 1594.24 cm-1 and 1587.13 cm-1 have been found in the FTIR spectra of the two minerals after their interaction with Fe3+ and the collector. These new stretching frequencies are the asymmetric stretching frequencies of COO-(carboxyl anion), so thecollector may be chemically absorbed on the surface of Fe3+-activated beryl and spodumene.展开更多
To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The ...To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The approaches of micro-flotation,adsorption test and zeta potential measurement were adopted to reveal the mechanism of ion activation.The results show that Pb^(2+),Cu^(2+) and Fe^(3+) are effective activators for the flotation of quartz in butyl xanthate solution because of their absorption on activated quartz surface.Average recoveries of fine particles(<37 μm) are greater than those of coarser particles(37-74 μm),suggesting that the former is easier to be activated and more likely to be floated and thus entrained in sulphide concentrate.From another perspective,addition of metallic ions(Pb^(2+),Cu^(2+) and Fe^(3+)) renders zeta potentials move positively,and addition of the same metallic ions and butyl xanthate makes zeta potential drop apparently,which support a mechanism where they adsorb onto quartz surface,resulting in an expected increase in butyl xanthate collector adsorption with a concomitant increase in the flotation recoveries.展开更多
The electronic structure and bonding nature of adsorbing bonding complexes which consist of Amphoteric Collector-I and Mg^(2+), Ca^(2+), MgPO_4^-, CaPO_^-4, CaCO_3, as well aa MgCO_3, are studied using quantum chemist...The electronic structure and bonding nature of adsorbing bonding complexes which consist of Amphoteric Collector-I and Mg^(2+), Ca^(2+), MgPO_4^-, CaPO_^-4, CaCO_3, as well aa MgCO_3, are studied using quantum chemistry CNDO/2, It is predicted that magnesium salts are more liable to form adsorbing chelates with Amphoteric Collector-I than calcium salts, and all results coincide with that obtained in flotation.展开更多
Amino-functionalized zirconia was synthesized by the co-condensation method using zirconium butanol and 3-aminopropyltriethoxy silane for the simultaneous removal of various impurities from aqueous 30% H_(2)O_(2) solu...Amino-functionalized zirconia was synthesized by the co-condensation method using zirconium butanol and 3-aminopropyltriethoxy silane for the simultaneous removal of various impurities from aqueous 30% H_(2)O_(2) solution.The results of Fourier transform infrared(FTIR)and Zeta potential showed that the content of N in amino-functionalized zirconia increased with the added amount of 3-aminopropyltriethoxy silane.Accordingly,the removal efficiency of total oxidizable carbon,phosphate and metallic ions from the H_(2)O_(2) solution increased.The adsorbent with an N content of 1.62%exhibited superior adsorption performance.The removal efficiency of 82.7% for total oxidizable carbon,34.2%for phosphate,87.1% for Fe^(3+),83.2%for Al^(3+),55.1%for Ca^(2+)and 66.6%for Mg^(2+),with a total adsorption capacity of 119.6 mg·g^(-1),could be achieved.The studies conducted using simulated solutions showed that the adsorption process of phosphate on amino-functionalized zirconia is endothermic and spontaneous,and the behaviors could be well described by the pseudo-second-order model and Langmuir model with a maximum adsorption capacity of 186.7 mg·g^(-1).The characterizations of the spent adsorbents by Zeta potential,FTIR and X-ray photoelectron spectroscopy revealed that the adsorption mechanism of phosphate is predominantly electrostatic attraction by the protonated functional groups and complementary ligand exchange with zirconium hydroxyl groups.展开更多
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel...Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.展开更多
With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diame...With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.展开更多
Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the prob...Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the problem of resource utilization of solid waste from agar production.Our previous study confirmed that recovered perlite from agar extraction residue had better pore size and specific surface area than commercial perlite.However,the adsorption efficiency and adsorption mechanism of recovered perlite were the main factors limiting its adsorption application.The adsorption process of Ni^(2+)and Cd^(2+)by recovered perlite in aqueous solution was described by the pseudo-second-order kinetic equation,and the relevant adsorption mechanism was mainly chemisorption.Compared with commercial perlite,the adsorption removal rate of Ni^(2+)and Cd^(2+)by enzymatic recovered perlite could reach 92.9%and 89.2%,respectively,and were improved by 12.63%and 13.03%.Langmuir isothermal adsorption model could better describe the isothermal adsorption process of recovered perlite on heavy metal Ni^(2+)and Cd^(2+),and the relevant adsorption mechanism was mainly monolayer adsorption.The X-ray photoelectron spectroscopy(XPS)results indicated that the decrease of Si—O Si^(2+)hydroxyl coordination bond and the increase of C—Si bond might make the binding effect of recovered perlite with heavy metals stronger.The competitive adsorption of Ni^(2+)and Cd^(2+)by recovered perlite was still dominated by chemisorption and monolayer adsorption.This study was expected to provide a theoretical basis and technical support for the removal of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite from seaweed residue.展开更多
Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering th...Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.展开更多
Two systems of La_(2-x)Sr_xCuO_(4±λ) and La_(2-x)Th_xCuO_(4±λ) mixed oxides with K_2NiF_4structure were synthesized.The compositions and structures of the catalysts were characterized by means of XRD,XPS,c...Two systems of La_(2-x)Sr_xCuO_(4±λ) and La_(2-x)Th_xCuO_(4±λ) mixed oxides with K_2NiF_4structure were synthesized.The compositions and structures of the catalysts were characterized by means of XRD,XPS,chemical analysis and so on.The catalytic behavior for the direct decomposition of NO has been investigated.The results show that the catalytic activity is closely related to the oxygen vacancy and lower valence metallic ion in the direct decomposition of NO.The presence of oxygen vacancy is necessary for mixed oxide to have steady activity in NO decomposition.展开更多
Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a n...Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a necessity.We present a nanocomposite-based miniaturized electrode for the concurrent measurement of Pb2+and Cu^(2+)by exploiting the electroanalytical technique of square wave voltammetry.We also propose a facile in situ hydrothermal calcination method to directly grow binder-free mesoporous Ni O on a three-dimensional nickel foam,which is then electrochemically seeded with gold nanoparticles(Au NPs).The meticulous design of a low-barrier Ohmic contact between mesoporous Ni O and Au NPs facilitates target-mediated nanochannel-confined electron transfer within mesoporous Ni O.As a result,the heavy metals Pb2+(0.020 mg.L^(-1)detection limit;2.0–16.0 mg.L^(-1)detection range)and Cu^(2+)(0.013 mg.L^(-1)detection limit;0.4–12.8 mg.L^(-1)detection range)can be detected simultaneously with high precision.Furthermore,other heavy metal ions and common interfering ions found in groundwater showed negligible impacts on the electrode’s performance,and the recovery rate of groundwater samples varied between 96.3%±2.1%and 109.4%±0.6%.The compactness,flexible shape,low power consumption,and ability to remotely operate our electrode pave the way for onsite detection of heavy metals in groundwater,thereby demonstrating the potential to revolutionize the field of environmental monitoring.展开更多
Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents c...Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions.展开更多
Immunotherapy has efficiently revolutionized the treatment of human neoplastic diseases.However,the overall responsive rate of current immunotherapy is still unsatisfactory,benefiting only a small proportion of patien...Immunotherapy has efficiently revolutionized the treatment of human neoplastic diseases.However,the overall responsive rate of current immunotherapy is still unsatisfactory,benefiting only a small proportion of patients.Therefore,significant attention has been paid to the modulation of tumor microenvironment(TME)for the enhancement of immunotherapy.Interestingly,recent studies have shown that cyclic GMP-AMP synthasestimulator of interferon gene(cGAS-STING)was initially found as an innate immune sensor to recognize cytoplasmic DNA(such as bacterial,viral,micronuclei,and mitochondrial).It is a promising signaling pathway to activate antitumor immune responses via type I interferon production.Notably,Mn^(2+)was found to be a critical molecule to sensitize the activation of the cGAS-STING pathway for better immunotherapy.This activation led to the development of Mn^(2+)-based strategies for tumor immunotherapy via the activation of the cGAS-STING pathway.In this critical review,we aimed to summarize the recent progress of this field,focusing on the following three aspects.First,we briefly introduced the signaling pathway of cGAS-STING activation,and its regulation effect on the antitumor immunity cycle has been discussed.Along with this,several agonists of the cGAS-STING pathway were introduced with their potential as immunotherapeutic drugs.Then,the basic biological functions of Mn^(2+)have been illustrated,focusing on its critical roles in the cGAS-STING pathway activation.Next,we systematically reviewed the Mn^(2+)-based strategies for tumor immunotherapy,which can be classified by the methods based on Mn^(2+)alone or Mn^(2+)combined with other therapeutic modalities.We finally speculated the future perspectives of the field and provided rational suggestions to develop better Mn^(2+)-based therapeutics.展开更多
A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+)...A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+),Cu^(2+),and Hg^(2+).On the one hand,Py N-SBA-15 was used as a fluorescence sensor and displayed high sensitivity toward Al^(3+),Cu^(2+),and Hg^(2+)cations (limit of detection:8.0×10^(-7),1.1×10^(-7),and 2.9×10^(-6)mol·L^(–1),respectively) among various analytes with“turn-off”response.On the other hand,the adsorption studies for these toxic analytes (Cu^(2+),Hg^(2+),and Al^(3+)) showed that the ion removal capacity could reach up to 45,581,and 85 mg·g^(-1),respectively.Moreover,the Langmuir isotherm models were better fitted with the adsorption data,indicating that the adsorption was mono-layer adsorption.Kinetic analysis revealed that the adsorption process was well described by the pseudo-second-order kinetic model for Cu^(2+)and Hg^(2+)and pseudo-first-order kinetic model for Al^(3+).The prepared silica material could be reused in four recycles without significantly decreasing its adsorption capacity.Therefore,the Py N-SBA-15 material can serve as a promising candidate for the simultaneous rapid detection and efficient adsorption of metal ions.展开更多
The stimuli-responsive anticorrosion coatings have drawn great attention as a prospective corrosion protection approach due to their smart self-repairing properties.In contrast to passive protection mechanism based on...The stimuli-responsive anticorrosion coatings have drawn great attention as a prospective corrosion protection approach due to their smart self-repairing properties.In contrast to passive protection mechanism based on post-corrosion microenvironmental changes,a unique active protection strategy based on nanocatalytic oxygen depletion is proposed in this work to inhibit the occurrence of corrosion.Porous FeeNeC catalysts with outstanding oxygen reduction reaction(ORR)activity(half-wave potential of 0.89 V)is firstly synthesized through pre-coordination with organosilane precursor to obtain homogeneously distributed active sites.When this catalyst is introduced into the coating matrix,uniformly distributed FeeNeC not only compensates the defects but plays a crucial role in adsorption and consumption of diffused oxygen in the coating.Under this dual action,the penetration of corrosive medium,especially oxygen,through coating to metal substrate is greatly suppressed,resulting in effective corrosion inhibition and a significant increase in corrosion resistance of the composite coating compared to pure epoxy coating.This work provides a new perspective and the starting point for the design of high-performance smart coating with active anticorrosion properties.展开更多
Understanding alkali metal ions’(e.g.,Li^(+)/Na^(+)/K^(+))transport mechanism is challenging but critical to improving the performance of alkali metal batteries.Herein using a-MnO_(2)nanowires as cathodes,the transpo...Understanding alkali metal ions’(e.g.,Li^(+)/Na^(+)/K^(+))transport mechanism is challenging but critical to improving the performance of alkali metal batteries.Herein using a-MnO_(2)nanowires as cathodes,the transport kinetics of Li^(+)/Na^(+)/K^(+)in the 2×2 channels of a-MnO_(2)with a growth direction of[001]is revealed.We show that ion radius plays a decisive role in determining the ion transport and electrochemistry.Regardless of the ion radii,Li^(+)/Na^(+)/K^(+)can all go through the 2×2 channels of a-MnO_(2),generating large stress and causing channel merging or opening.However,smaller ions such as Li^(+)and Na^(+)cannot only transport along the[001]direction but also migrate along the<110>direction to the nanowire surface;for large ion such as K^(+),diffusion along the<110>direction is prohibited.The different ion transport behavior has grand consequences in the electrochemistry of metal oxygen batteries(MOBs).For Li-O_(2)battery,Li^(+)transports uniformly to the nanowire surface,forming a uniform layer of oxide;Na^(+)also transports to the nanowire surface but may be clogged locally due to its larger radius,therefore sporadic pearl-like oxides form on the nanowire surface;K^(+)cannot transport to the nanowire surface due to its large radius,instead,it breaks the nanowire locally,causing local deposition of potassium oxides.The study provides atomic scale understanding of the alkali metal ion transport mechanism which may be harnessed to improve the performance of MOBs.展开更多
Interactions between deoxyribonucleic acid(DNA) and metal ions are vital for maintaining life functions, however,there are still unsolved questions about its mechanisms. It is of great practical significance to study ...Interactions between deoxyribonucleic acid(DNA) and metal ions are vital for maintaining life functions, however,there are still unsolved questions about its mechanisms. It is of great practical significance to study these issues for medical chip design, drug development, health care, etc. In this investigation, the conductivity properties of λ-DNA solutions with mono-/divalent metal ions(Na+, K^(+), Mg^(2+), and Ca^(2+)) are experimentally studied as they are electrically driven through a 5 μm microfluidic channel. Experimental data indicate that the conductivities of λ-DNA solutions with metal ions(M+/M2+) basically tend to reduce firstly and then increase as the voltage increases, of which the turning points varied with the metal ions. When the voltage surpasses turning points, the conductivity of λ-DNA-M+solutions increases with the concentration of metal ions, while that of λ-DNA-M^(2+)solutions decrease. Moreover, the conductivity of λ-DNA-M^(2+)solutions is always smaller than that of λ-DNA-M+solutions, and with high-concentration M^(2+), it is even smaller than that of the λ-DNA solution. The main reasons for the above findings could be attributed to the polarization of electrodes and different mechanisms of interactions between metal ions and λ-DNA molecules. This investigation is helpful for the precise manipulation of single DNA molecules in micro-/nanofluidic space and the design of new biomedical micro-/nanofluidic sensors.展开更多
Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO ...Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries.展开更多
Malignant tumor has become a major threat affecting human health,and is one of the main causes of human death.Recent studies have shown that many traditional Chinese medicines(TCM)have good anti-tumor activity,which m...Malignant tumor has become a major threat affecting human health,and is one of the main causes of human death.Recent studies have shown that many traditional Chinese medicines(TCM)have good anti-tumor activity,which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity.However,the efficacy of TCM alone for the treatment of tumors is limited.Metal ions are essential substances for maintaining normal physiological activities.This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.展开更多
基金Project (2005CB623701) supported by the National Basic Research Program of China
文摘Dispersion experiments were conducted to study the influence of metallic cations on the dispersibility of diaspore. The reaction mechanisms were investigated based on the analysis of zeta (ξ) potential and calculations of solution chemistry and DLVO theory. The results show that the valence of cations, instead of the cation type, plays an important role in the dispersibility of diaspore The impact of multivalent metallic cations is greater than that of monovalent cations. In the presence of Ca^2+ and Mg^2+, the dispersion of diaspore doesn't change in the range of pH value below 10. However, Ca^2+ and Mg^2+ may induce strong coagulation of particles when pH value is higher than 10. The adsorption of species of calcium and magnesium ions on diaspore can cause the compression of electric double layer, the decrease of the absolute value of zeta potential and the repulsion force between diaspore particles. The new IEP (isoelectric point) appeared at pH value of 11 may attribute to the adsorption of Mg(OH)2(s).
基金Project 2005CB623701 supported by the National Key Basic Research & Development Program (973) of China
文摘Effects of multivalent metallic cations, such as Ca2+ and Fe3+, on the flotation of spodumene and beryl were studied. The results show that Fe3+ and Ca2+ exhibit efficient activation on the flotation of spodumene and beryl. The ac- tivation of Fe3+ happens quite well within a pH range of 6-9 while the concentration of Fe3+ is 35 mg/L. Efficient acti- vation of Ca2+ takes place over at a pH over 11.6 at a concentration of 140 mg/L. The zeta potential of beryl and spo- dumene shifts slightly to positive values when activated by Ca2+, but markedly by Fe3+. New stretching frequencies of 1594.24 cm-1 and 1587.13 cm-1 have been found in the FTIR spectra of the two minerals after their interaction with Fe3+ and the collector. These new stretching frequencies are the asymmetric stretching frequencies of COO-(carboxyl anion), so thecollector may be chemically absorbed on the surface of Fe3+-activated beryl and spodumene.
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China+1 种基金Project(2016RS2016)supported by Hunan Provincial Science and Technology Leader(Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources),ChinaProject supported by the Postdoctoral Research Station of Central South University,China
文摘To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The approaches of micro-flotation,adsorption test and zeta potential measurement were adopted to reveal the mechanism of ion activation.The results show that Pb^(2+),Cu^(2+) and Fe^(3+) are effective activators for the flotation of quartz in butyl xanthate solution because of their absorption on activated quartz surface.Average recoveries of fine particles(<37 μm) are greater than those of coarser particles(37-74 μm),suggesting that the former is easier to be activated and more likely to be floated and thus entrained in sulphide concentrate.From another perspective,addition of metallic ions(Pb^(2+),Cu^(2+) and Fe^(3+)) renders zeta potentials move positively,and addition of the same metallic ions and butyl xanthate makes zeta potential drop apparently,which support a mechanism where they adsorb onto quartz surface,resulting in an expected increase in butyl xanthate collector adsorption with a concomitant increase in the flotation recoveries.
文摘The electronic structure and bonding nature of adsorbing bonding complexes which consist of Amphoteric Collector-I and Mg^(2+), Ca^(2+), MgPO_4^-, CaPO_^-4, CaCO_3, as well aa MgCO_3, are studied using quantum chemistry CNDO/2, It is predicted that magnesium salts are more liable to form adsorbing chelates with Amphoteric Collector-I than calcium salts, and all results coincide with that obtained in flotation.
基金supported by the State Key Laboratory of Safety and Control for Chemicals (Grant No.10010104-19-ZC0613-0180)China Petrochemical Corporation Foundation (Grant No.419005).
文摘Amino-functionalized zirconia was synthesized by the co-condensation method using zirconium butanol and 3-aminopropyltriethoxy silane for the simultaneous removal of various impurities from aqueous 30% H_(2)O_(2) solution.The results of Fourier transform infrared(FTIR)and Zeta potential showed that the content of N in amino-functionalized zirconia increased with the added amount of 3-aminopropyltriethoxy silane.Accordingly,the removal efficiency of total oxidizable carbon,phosphate and metallic ions from the H_(2)O_(2) solution increased.The adsorbent with an N content of 1.62%exhibited superior adsorption performance.The removal efficiency of 82.7% for total oxidizable carbon,34.2%for phosphate,87.1% for Fe^(3+),83.2%for Al^(3+),55.1%for Ca^(2+)and 66.6%for Mg^(2+),with a total adsorption capacity of 119.6 mg·g^(-1),could be achieved.The studies conducted using simulated solutions showed that the adsorption process of phosphate on amino-functionalized zirconia is endothermic and spontaneous,and the behaviors could be well described by the pseudo-second-order model and Langmuir model with a maximum adsorption capacity of 186.7 mg·g^(-1).The characterizations of the spent adsorbents by Zeta potential,FTIR and X-ray photoelectron spectroscopy revealed that the adsorption mechanism of phosphate is predominantly electrostatic attraction by the protonated functional groups and complementary ligand exchange with zirconium hydroxyl groups.
基金This work was supported by the National Natural Science Foundation of China(52373306,52172233,and 51832004)the Natural Science Foundation of Hubei Province(2023AFA053)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021CXLH0007).
文摘Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
基金National Natural Science Foundation of China(52202299)the Analytical&Testing Center of Northwestern Polytechnical University(2022T006).
文摘With the rapid development of portable electronics and electric road vehicles,high-energy-density batteries have been becoming front-burner issues.Traditionally,homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode,which are essential for high-voltage batteries.Meanwhile,homogeneous electrolyte is difficult to achieve bi-or multi-functions to meet different requirements of electrodes.In comparison,the asymmetric electrolyte with bi-or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte.Consequently,the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan.In this review,we comprehensively divide asymmetric electrolytes into three categories:decoupled liquid-state electrolytes,bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes.The design principles,reaction mechanism and mutual compatibility are also studied,respectively.Finally,we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density,and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
基金financially supported by National Natural Science Foundation of China(22038012,32172339,and 22178142)National Key Research and Development Program(2023YF D2100603)。
文摘Ni^(2+)and Cd^(2+)in wastewater accumulated through the ecological chain and could jeopardize human health.Adsorption of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite was an important way to solve the problem of resource utilization of solid waste from agar production.Our previous study confirmed that recovered perlite from agar extraction residue had better pore size and specific surface area than commercial perlite.However,the adsorption efficiency and adsorption mechanism of recovered perlite were the main factors limiting its adsorption application.The adsorption process of Ni^(2+)and Cd^(2+)by recovered perlite in aqueous solution was described by the pseudo-second-order kinetic equation,and the relevant adsorption mechanism was mainly chemisorption.Compared with commercial perlite,the adsorption removal rate of Ni^(2+)and Cd^(2+)by enzymatic recovered perlite could reach 92.9%and 89.2%,respectively,and were improved by 12.63%and 13.03%.Langmuir isothermal adsorption model could better describe the isothermal adsorption process of recovered perlite on heavy metal Ni^(2+)and Cd^(2+),and the relevant adsorption mechanism was mainly monolayer adsorption.The X-ray photoelectron spectroscopy(XPS)results indicated that the decrease of Si—O Si^(2+)hydroxyl coordination bond and the increase of C—Si bond might make the binding effect of recovered perlite with heavy metals stronger.The competitive adsorption of Ni^(2+)and Cd^(2+)by recovered perlite was still dominated by chemisorption and monolayer adsorption.This study was expected to provide a theoretical basis and technical support for the removal of Ni^(2+)and Cd^(2+)from wastewater using recovered perlite from seaweed residue.
基金supported by the National Natural Science Foundation of China(21972049,21573080)。
文摘Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes.
文摘Two systems of La_(2-x)Sr_xCuO_(4±λ) and La_(2-x)Th_xCuO_(4±λ) mixed oxides with K_2NiF_4structure were synthesized.The compositions and structures of the catalysts were characterized by means of XRD,XPS,chemical analysis and so on.The catalytic behavior for the direct decomposition of NO has been investigated.The results show that the catalytic activity is closely related to the oxygen vacancy and lower valence metallic ion in the direct decomposition of NO.The presence of oxygen vacancy is necessary for mixed oxide to have steady activity in NO decomposition.
基金supported by the National Key Research and Development Project of China(2019YFC1804802)。
文摘Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a necessity.We present a nanocomposite-based miniaturized electrode for the concurrent measurement of Pb2+and Cu^(2+)by exploiting the electroanalytical technique of square wave voltammetry.We also propose a facile in situ hydrothermal calcination method to directly grow binder-free mesoporous Ni O on a three-dimensional nickel foam,which is then electrochemically seeded with gold nanoparticles(Au NPs).The meticulous design of a low-barrier Ohmic contact between mesoporous Ni O and Au NPs facilitates target-mediated nanochannel-confined electron transfer within mesoporous Ni O.As a result,the heavy metals Pb2+(0.020 mg.L^(-1)detection limit;2.0–16.0 mg.L^(-1)detection range)and Cu^(2+)(0.013 mg.L^(-1)detection limit;0.4–12.8 mg.L^(-1)detection range)can be detected simultaneously with high precision.Furthermore,other heavy metal ions and common interfering ions found in groundwater showed negligible impacts on the electrode’s performance,and the recovery rate of groundwater samples varied between 96.3%±2.1%and 109.4%±0.6%.The compactness,flexible shape,low power consumption,and ability to remotely operate our electrode pave the way for onsite detection of heavy metals in groundwater,thereby demonstrating the potential to revolutionize the field of environmental monitoring.
基金financial support from the National Natural Science Foundation of China (21838004)Priority Academic Program Development of Jiangsu Higher Education Institutions (PPZY2015A044)Top-notch Academic Programs Project of Jiangsu Higher Education Institution (TAPP)。
文摘Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions.
基金National Natural Science Foundation of China(No.U1903125,82073799)Natural Science Foundation of Hunan province in China(No.2021JJ20084)the Science and Technology Innovation Program of Hunan Province(No.2021RC3020)。
文摘Immunotherapy has efficiently revolutionized the treatment of human neoplastic diseases.However,the overall responsive rate of current immunotherapy is still unsatisfactory,benefiting only a small proportion of patients.Therefore,significant attention has been paid to the modulation of tumor microenvironment(TME)for the enhancement of immunotherapy.Interestingly,recent studies have shown that cyclic GMP-AMP synthasestimulator of interferon gene(cGAS-STING)was initially found as an innate immune sensor to recognize cytoplasmic DNA(such as bacterial,viral,micronuclei,and mitochondrial).It is a promising signaling pathway to activate antitumor immune responses via type I interferon production.Notably,Mn^(2+)was found to be a critical molecule to sensitize the activation of the cGAS-STING pathway for better immunotherapy.This activation led to the development of Mn^(2+)-based strategies for tumor immunotherapy via the activation of the cGAS-STING pathway.In this critical review,we aimed to summarize the recent progress of this field,focusing on the following three aspects.First,we briefly introduced the signaling pathway of cGAS-STING activation,and its regulation effect on the antitumor immunity cycle has been discussed.Along with this,several agonists of the cGAS-STING pathway were introduced with their potential as immunotherapeutic drugs.Then,the basic biological functions of Mn^(2+)have been illustrated,focusing on its critical roles in the cGAS-STING pathway activation.Next,we systematically reviewed the Mn^(2+)-based strategies for tumor immunotherapy,which can be classified by the methods based on Mn^(2+)alone or Mn^(2+)combined with other therapeutic modalities.We finally speculated the future perspectives of the field and provided rational suggestions to develop better Mn^(2+)-based therapeutics.
基金supported by the National Natural Science Foundation of China (21966006)。
文摘A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+),Cu^(2+),and Hg^(2+).On the one hand,Py N-SBA-15 was used as a fluorescence sensor and displayed high sensitivity toward Al^(3+),Cu^(2+),and Hg^(2+)cations (limit of detection:8.0×10^(-7),1.1×10^(-7),and 2.9×10^(-6)mol·L^(–1),respectively) among various analytes with“turn-off”response.On the other hand,the adsorption studies for these toxic analytes (Cu^(2+),Hg^(2+),and Al^(3+)) showed that the ion removal capacity could reach up to 45,581,and 85 mg·g^(-1),respectively.Moreover,the Langmuir isotherm models were better fitted with the adsorption data,indicating that the adsorption was mono-layer adsorption.Kinetic analysis revealed that the adsorption process was well described by the pseudo-second-order kinetic model for Cu^(2+)and Hg^(2+)and pseudo-first-order kinetic model for Al^(3+).The prepared silica material could be reused in four recycles without significantly decreasing its adsorption capacity.Therefore,the Py N-SBA-15 material can serve as a promising candidate for the simultaneous rapid detection and efficient adsorption of metal ions.
基金financially supported by the“National Natural Science Foundation of China”(52304072)“Funded by Shandong Postdoctora1 Science Foundation”(SDBX2023019)+1 种基金the“Fundamental Research Funds for the Central Universities”(23CX06022A)the“Applied Research Project of Qingdao Postdoctoral Researchers”(QDBSH20230202010).
文摘The stimuli-responsive anticorrosion coatings have drawn great attention as a prospective corrosion protection approach due to their smart self-repairing properties.In contrast to passive protection mechanism based on post-corrosion microenvironmental changes,a unique active protection strategy based on nanocatalytic oxygen depletion is proposed in this work to inhibit the occurrence of corrosion.Porous FeeNeC catalysts with outstanding oxygen reduction reaction(ORR)activity(half-wave potential of 0.89 V)is firstly synthesized through pre-coordination with organosilane precursor to obtain homogeneously distributed active sites.When this catalyst is introduced into the coating matrix,uniformly distributed FeeNeC not only compensates the defects but plays a crucial role in adsorption and consumption of diffused oxygen in the coating.Under this dual action,the penetration of corrosive medium,especially oxygen,through coating to metal substrate is greatly suppressed,resulting in effective corrosion inhibition and a significant increase in corrosion resistance of the composite coating compared to pure epoxy coating.This work provides a new perspective and the starting point for the design of high-performance smart coating with active anticorrosion properties.
基金financially supported by the National Natural Science Foundation of China(22279112,52022088,51971245,51772262,21406191,U20A20336,21935009)the Natural Science Foundation of Hebei Province,China(B2022203018,F2021203097,B2020203037,B2018203297)+2 种基金the Hunan Innovation Team,China(2018RS3091)the Beijing Natural Science Foundation,China(2202046)the Fok Ying-Tong Education Foundation of China(171064)。
文摘Understanding alkali metal ions’(e.g.,Li^(+)/Na^(+)/K^(+))transport mechanism is challenging but critical to improving the performance of alkali metal batteries.Herein using a-MnO_(2)nanowires as cathodes,the transport kinetics of Li^(+)/Na^(+)/K^(+)in the 2×2 channels of a-MnO_(2)with a growth direction of[001]is revealed.We show that ion radius plays a decisive role in determining the ion transport and electrochemistry.Regardless of the ion radii,Li^(+)/Na^(+)/K^(+)can all go through the 2×2 channels of a-MnO_(2),generating large stress and causing channel merging or opening.However,smaller ions such as Li^(+)and Na^(+)cannot only transport along the[001]direction but also migrate along the<110>direction to the nanowire surface;for large ion such as K^(+),diffusion along the<110>direction is prohibited.The different ion transport behavior has grand consequences in the electrochemistry of metal oxygen batteries(MOBs).For Li-O_(2)battery,Li^(+)transports uniformly to the nanowire surface,forming a uniform layer of oxide;Na^(+)also transports to the nanowire surface but may be clogged locally due to its larger radius,therefore sporadic pearl-like oxides form on the nanowire surface;K^(+)cannot transport to the nanowire surface due to its large radius,instead,it breaks the nanowire locally,causing local deposition of potassium oxides.The study provides atomic scale understanding of the alkali metal ion transport mechanism which may be harnessed to improve the performance of MOBs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62275216 and 61775181)the Innovation Capability Support Program of Shaanxi Province of China (Grant Nos. S2018-ZC-TD-0061 and TZ0393)the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 51927804)。
文摘Interactions between deoxyribonucleic acid(DNA) and metal ions are vital for maintaining life functions, however,there are still unsolved questions about its mechanisms. It is of great practical significance to study these issues for medical chip design, drug development, health care, etc. In this investigation, the conductivity properties of λ-DNA solutions with mono-/divalent metal ions(Na+, K^(+), Mg^(2+), and Ca^(2+)) are experimentally studied as they are electrically driven through a 5 μm microfluidic channel. Experimental data indicate that the conductivities of λ-DNA solutions with metal ions(M+/M2+) basically tend to reduce firstly and then increase as the voltage increases, of which the turning points varied with the metal ions. When the voltage surpasses turning points, the conductivity of λ-DNA-M+solutions increases with the concentration of metal ions, while that of λ-DNA-M^(2+)solutions decrease. Moreover, the conductivity of λ-DNA-M^(2+)solutions is always smaller than that of λ-DNA-M+solutions, and with high-concentration M^(2+), it is even smaller than that of the λ-DNA solution. The main reasons for the above findings could be attributed to the polarization of electrodes and different mechanisms of interactions between metal ions and λ-DNA molecules. This investigation is helpful for the precise manipulation of single DNA molecules in micro-/nanofluidic space and the design of new biomedical micro-/nanofluidic sensors.
基金This work was financially supported by the High‐level Talents'Discipline Construction Fund of Shandong University(31370089963078)the Shandong Provincial Science and Technology Major Project(2018JM RH0211 and 2017CXGC1010)+3 种基金the Research Funds of Shandong University(10000089395121)the Natural Science Foundation of Shandong Province(ZR2019MEM052 and ZR2017MEM002)The National Natural Science Foundation of China(grant no.52002287)the Start‐up Funding of Wenzhou University are acknowledged.
文摘Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries.
文摘Malignant tumor has become a major threat affecting human health,and is one of the main causes of human death.Recent studies have shown that many traditional Chinese medicines(TCM)have good anti-tumor activity,which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity.However,the efficacy of TCM alone for the treatment of tumors is limited.Metal ions are essential substances for maintaining normal physiological activities.This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.