South China is characterized by large-area multistage magmatism.It boasts a huge number of polymetallic deposits such as W-Sn,Cu-Au,rare earth deposits,thus serving as a"giant granary"of metal mineral resour...South China is characterized by large-area multistage magmatism.It boasts a huge number of polymetallic deposits such as W-Sn,Cu-Au,rare earth deposits,thus serving as a"giant granary"of metal mineral resources in China(Lüet al.,2021).展开更多
Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,20...Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).展开更多
The Xinlong gold deposit is located in Niyma County,Naqu area of Tibet and was discovered by the Institute of Mineral Resources,Chinese Academy of Geological Sciences through the 1∶50000 mineral geological survey.The...The Xinlong gold deposit is located in Niyma County,Naqu area of Tibet and was discovered by the Institute of Mineral Resources,Chinese Academy of Geological Sciences through the 1∶50000 mineral geological survey.The ore bodies occur in the Zenong Group volcanic rocks in the middle section of the central Lhasa subterrane and are structurally controlled by the NNW-striking faults.Four ore bodies have been found,exhibiting cloddy,dense-sparse,disseminated,and breccia structures.The ore minerals are mainly tetrahedrite group minerals,and other ore minerals include pyrite,chalcopyrite,nevskite,bornite,anglesite,native gold,and silver-gold bearing selenide,etc.The types of alteration are dominated by silicification,as well as middle-and high-graded argillization.The alteration mineral assemblages contain quzrtz,pyrophyllite,and kaolinite.The Zaliela Formation volcanic rocks of Zenong Group are silicified by later hydrothermal fluid with vuggy quartz in some fractured zones.The middle-and high-graded argillization are characterized by pyrophyllitization and kaolinization.The Xinlong gold deposit shows great metallogenetic potentiality and has been revealed by 1∶10000 geological mapping,IP sounding,and trial trenching in the mining area.Combined with the regional metallogenic geological setting,we suppose that a potential epithermal gold belt probably exists in the middle of the Lhasa terrane.The discovery of the Xinlong gold deposit opens a new chapter for the gold prospecting in Northern Tibet.展开更多
The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controver...The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.展开更多
The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicat...The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicate that the porphyry mineralization was closely related to the Early Cretaceous intermediate-felsic intrusions(ca. 123–120 Ma). Various epithermal ore and gangue mineral types were discovered in the middle-shallow part of the orebody, indicating the presence of epithermal mineralization at Tiegelongnan. Potassic, propylitic, phyllic and advanced argillic alteration zones were identified. 40Ar/39Ar dating of hydrothermal biotite(potassic zone), sericite(phyllic zone), and alunite(advanced argillic zone) in/around the ore-bearing granodiorite porphyry yielded 121.1±0.6 Ma(1σ), 120.8±0.7 Ma(1σ) and 117.9±1.6 Ma(1σ), respectively. Five hydrothermal mineralization stages were identified, of which the Stage IV pyrite was Rb-Sr dated to be 117.5±1.8 Ma(2σ), representing the end of epithermal mineralization. Field geology and geochronology suggest that both the epithermal and porphyry mineralization belong to the same magmatic-hydrothermal system. The Tiegelongnan super-large Cu-(Au) deposit may have undergone a prolonged magmatichydrothermal evolution, with the major mineralization event occurring at ca.120–117Ma.展开更多
The newly discovered Yangchongli gold deposit is a unique independent gold deposit in the Tongling ore-cluster region controlled by the tectonic alteration firstly discovered in the Lower Yangtze Metallogenic Belt (L...The newly discovered Yangchongli gold deposit is a unique independent gold deposit in the Tongling ore-cluster region controlled by the tectonic alteration firstly discovered in the Lower Yangtze Metallogenic Belt (LYMB). The host magmatic rocks mainly consist of monzodiorite and K-feldspar granite. The LA-ICP-MS U-Pb zircons dating yielded weighted mean 206pb/23SU ages of 140.7 ± 1.8 Ma and 126.4 ±1.2 Ma for the monzodiorite and K-feldspar granite, respectively. Monzodiorites are enriched in Sr, Ba, Rb, and depleted in Y, Yb with high Sr/Y and La/Yb ratios, similar to the geochemical features of adakite, considered as products of differentiation of mafic magmas originating from lithospheric mantle melt/fluids caused by metasomatism during paleo-Pacific Plate subduction in the Mesozic. In contrast, the compositions of K-feldspar granites are A-type granites, indicating an extensional tectonic background. Gold ores hosted in the fracture zone occurred as quartz vein within cataclastic rock. Sulfur and lead isotopes from pyrites show crust-mantle mixing characteristics. Metal components from strata also took part in the gold mineralization, and resulted from two episodes of magmatism that were probably related to tectonic transition from a compressive to an extensional setting between 140-126 Ma, which led to the Mesozoic large-scale polymetallic mineralization events in eastern China.展开更多
The Tongling area is one of the 7 ore-cluster areas in the Middle-Lower Yangtze metallogenic belt, East China, and has tectonically undergone a long-term geologic history from the late Paleozoic continental rifting, t...The Tongling area is one of the 7 ore-cluster areas in the Middle-Lower Yangtze metallogenic belt, East China, and has tectonically undergone a long-term geologic history from the late Paleozoic continental rifting, through the Middle Triassic continent-continent collision to the Jurassic-Cretaceous intracontinental tectono-magmatic activation. The Carboniferous sedimentary-exhalative processes in the area produced widespread massive sulfides with ages of 303-321 Ma, which partly formed massive pyrite-Cu deposits, but mostly provided significant sulfur and metals to the skarn Cu mineralization associated with the Yanshanian felsic intrusions.To understand the Carboniferous submarine hydrothermal system, an area of about 1046 km^2 was chosen to carry out the geological fluid mapping. Associated with massive sulfide formation, footwall sequences 948 m to 1146 m thick, composed of the Lower Silurian-Upper Devonian sandstone, siltstone and thin-layered shale, were widely altered. This hydrothermal alteration is interpreted to reflect largescale hydrothermal fluid flow associated with the late Paleozoic crustal rifting and subsidence. Three hydrothermal alteration types, i.e., deep-level semiconformable siliclfication (S1), fracture-controlled quartz-sericite-pyrite alteration (S2-3), and upper-level sub-discordant quartz-sericite-chlorite alteration (D3), were developed to form distinct zones in the mapped area. About 50-m thick semiconformable silicification zones are located at -1-km depth below massive sulfides and developed between an impermeable shale caprock (S1) and the underlying Ordovician unaltered limestone. Comparisons with modern geothermal systems suggest that the alteration zones record a sub-seafioor aquifer with the most productive hydrothermal fluid flow. Fracture-controlled quartz-sericite-pyrite alteration formed transgressive zones, which downward crosscut the semiconformable alteration zones, and upwards grade into sub-discordant alteration zones that enveloped no economic stringer- stockwork zones beneath massive sulfides. This transgressive zone likely marks an upfiow path of high- flux fluids from the hydrothermal aquifer. Lateral zonation of the sub-discordant alteration zones and their relationship to overlying massive sulfide lenses suggest lateral flows and diffusive discharging of the hydrothermal fluids in a permeable sandstone sequence. Three large-sized, 14 middle-small massive sulfide deposits, and 40 massive sulfide sites have been mapped in detail. They show regional strata- bound characters and two major styles, i.e., the layered sheet plus strata-bound stringer-style and the mound-style. Associated exhalite and chemical sedimentary rock suites include (1) anhydrite-barite, (2) jasper-chert, (3) Mg-rich mudstone-pyrite shale, (4) barite lens, (5) siderite-Fe-bearing dolomite, and (6) Mn-rich shale-mudstone, which usually comprise three sulfide-exhalite cyclic units in the area.The spatial distribution of these alteration zones (minerals) and associated massive sulfdes and exhalites, and regional variation in δ^34S of hydrothermal pyrite and in δ^18O-δ^34C of hanging wall carbonates, suggest three WNW-extending domains of fluid flow, controlled by the basement faults and syn-depositional faults. Each fluid domain appears to have at least two upflow zones, with estimated even spacing of about 5-8 km in the mapped area. The repeated appearance of sulfide-sulfate or sulfide-carbonate rhythmic units in the area suggests episodically venting of fluids through the upfiow conduits by breaking the overlying seals of the hydrothermal aquifer.展开更多
Among the abundant aluminum ore resources in China, bauxite is dominated, which is mainly distributed in 19 provinces and regions, including Shanxi, Henan, Guizhou and Guangxi. The major deposit type of bauxite is pal...Among the abundant aluminum ore resources in China, bauxite is dominated, which is mainly distributed in 19 provinces and regions, including Shanxi, Henan, Guizhou and Guangxi. The major deposit type of bauxite is paleo-weathering crust sedimentary type, and the other one is the accumulation type. The main metallogenic period is the late Paleozoic Era followed by the Cenozoic Era. The metallogenic tectonic background is characterized by a cratonic environment. This paper summarizes the bauxite metallogenic regularity based on the characteristics of bauxite resources, bauxite deposit type, bauxite metallogenic belt and metallogenic series in China, and 15 bauxite metallogenic belts, 8 bauxite metallogenic series and 7 bauxite ore concentrated areas were identified in the study. This paper also provides a theoretical basis for the evaluation of the potential of bauxite resources.展开更多
The western Hunan-eastern Guizhou Zn-Pb metallogenic belt is one of the important Zn-Pb mineralization regions in China.The Dadongla deposit,located in the northeast of Guizhou Province,is one of the typical Zn-Pb dep...The western Hunan-eastern Guizhou Zn-Pb metallogenic belt is one of the important Zn-Pb mineralization regions in China.The Dadongla deposit,located in the northeast of Guizhou Province,is one of the typical Zn-Pb deposits in the region and has estimated resources more than 12 million metric tons(Mt)with an average grade of 4.11 wt%Zn+Pb.Its orebodies are hosted in the lower Cambrian Aoxi Formation dolomite,occurring as bedded,para-bedded in shape,and in conformity with the wall rock.The ore mineral assemblage is simple,dominated by sphalerite with minor pyrite and galena,and the gangue minerals are composed of dolomite,calcite with minor bitumen and barite.In view of the lack of geological and geochemical researches,the genesis of Zn-Pb ore is still unclear.Laser ablation-inductively coupled plasma mass spectrometry(LA-ICPMS)spot and mapping analyses were used to obtain sphalerite trace element chemistry in the Dadongla Zn-Pb deposit in Guizhou,China,aiming to constrain its ore genesis.The results show that sphalerite is characterized by the enrichment of Cd,Fe,Ge and Hg,corresponding with that of typical MVT deposits.Four zones were identified in the sphalerite crystal from Dadongla from the center to margin according to the color bands.in which the zone in the center,representing the early ore-stage sphalerite,is characterized by enrichment of Cd relatively,while the zone forming at late ore-stage is enriched in Ge and Hg relatively.The finding was controlled by differential leached metals content in ore-forming fluid from its source rock.Notably,critical element Ge trends to be enriched at the late ore-stage and follows a substitution of 2 Zn^2+(?)Ge^4++□(vacancy).Moreover,the calculated ore-forming temperature ranges from 79.9℃to 177.6℃by the empirical formula,which is similar to that of typical Mississippi Valley-type(MVT)deposits.Compared with the features of trace elements in sphalerite from different types of deposits,together with the geology,the Dadongla deposit belongs to an MVT Zn-Pb deposit.展开更多
The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed i...The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.展开更多
The newly discovered Paodaoling porphyry Au deposit from the Guichi region, Lower Yangtze River Metallogenic Belt (LYRB), contains 〉35 tons of Au at an average grade of -1.7 g/t. It is a porphyry 'Au-only' deposi...The newly discovered Paodaoling porphyry Au deposit from the Guichi region, Lower Yangtze River Metallogenic Belt (LYRB), contains 〉35 tons of Au at an average grade of -1.7 g/t. It is a porphyry 'Au-only' deposit, as revealed by current exploration in the depths, mostly above -400 m, which is quite uncommon among coeval porphyry mineralization along the LYRB. Additionally, there are also Cu-Au bearing porphyries and barren alkaline granitoids in the Paodaoling district. Zircon LA-ICP-MS U-Pb dating of the Cu-Au-bearing porphyries yield an age of 141-140 Ma, falling within the main magmatic stage of the LYRB, whereas the barren granites give an age of 125-120 Ma, coeval with the regional A- type granites. The Cu-Au-bearing porphyries are LILE-, LREE-enriched and HFSE-depleted, typical of arc magmatic affinities. The barren granites are HFSE-enriched, with lower LREE/HREE ratios and pronounced negative Eu anomalies. The Cu-Au-bearing porphyries in the Paodaoling district have high oxygen fugacities and high water content. Pyrite sulfur isotopes of the Paodaoling gold deposit indicate a magmatic-sedimentary mixed source for the ore-forming fluids. Based on the alteration and poly-metal zonation of the deepest exploration drill hole from the Paodaoling Au deposit, we propose that Cu ore bodies could lie at depth beneath the current Au ore bodies. The magmatism and associated Cu-Au mineralization of the Paodaoling district are likely to have formed in a subduction setting, during slab rollback of the paleo-Pacific plate.展开更多
Studies of the Pb, Sr and Nd isotopic composition of Mesozoic intrusive rocks indicate that the basement of the copper-gold metallogenic belt of the middle and lower reaches of the Yangtze River has “two-layer struct...Studies of the Pb, Sr and Nd isotopic composition of Mesozoic intrusive rocks indicate that the basement of the copper-gold metallogenic belt of the middle and lower reaches of the Yangtze River has “two-layer structure” and partly has “multi-layered structure”, and is inhomogeneous and shows the distinct feature of E-W provincialism. The calculated model lead ages (t1) are mostly greater than 2600 Ma, and the model neodymium ages (TDM) vary from 953 to 2276 Ma and concentrate in two time intervals: 1800–2000 Ma and 1200–1600 Ma. It is concluded that the basement of the MBYR is composed of the Late Archaeozoic to Middle Proterozoic metamorphic series and that the crust was initiated in the Archaean and continued to grow in the Early and Middle Proterozoic, and the proportion of new crust formed by mantle differentiation during the Late Proterozoic is low.展开更多
Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting h...Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting huge reserves and large numbers of deposits.However,most of the fluorite deposits are on a small or medium scale.The main fluorite deposits in China were studied in this paper.Their geological features and metallogenic regularity were summarized and compared.Meanwhile,based on their main genetic factors including metallogenic fluid sources and main metallogenic geological processes,they were divided into two groups,namely meso-epithermal deposits and magmatic-hydrothermal deposits.Furthermore,based on the prospecting achievements and research progress obtained in fluorite deposits in recent years,prospecting potential predictions were made for the metallogenic prospect areas and major prospecting areas of fluorite in China.This aims to provide a theoretical basis and direction for future fluorite prospecting in China.展开更多
Tungsten ore resources are abundant in China with relatively complete types of deposits. Skarn type and quartz vein type deposits are dominated in the tungsten resources, whereas quartz vein type wolframite deposits a...Tungsten ore resources are abundant in China with relatively complete types of deposits. Skarn type and quartz vein type deposits are dominated in the tungsten resources, whereas quartz vein type wolframite deposits are most important in terms of exploitation and utilization. Skarn type tungsten deposits are concentratedly distributed in the central Nanling region, such as South Hunan, South Anhui and the eastern Qinling region, while quartz vein type tungsten deposits occur mainly in South China, such as West Fujian, South Jiangxi, North Guangdong and South Hunan. The most important metallogenic epoch of tungsten is the Mesozoic, while the metallogenic tectonic setting is featured by an intracontinental environment after orogeny with sever tectonic movements, deep-seated faults and frequent magmatic activities, especially Mesozoic granitoids closely related to tungsten-tin mineralization. 22 metallogenic series of ore deposits characterized by or significantly related to tungsten were defined based on precise statistic information of 1199 tungsten mining areas and thorough the summary of metallogenic regularities. Based on studies of the metallogenic regularity of tungsten deposits, skarn type (or greisen type), quartz vein type and massif-type of tungsten deposits are thought to be the key prediction types. 65 tungsten-forming belts and 22 key ore concentration areas were ascertained and a distribution map of tungsten-forming belts of China was compiled, which provided a theoretical basis for evaluation and prediction of potential tungsten resources.展开更多
China is rich in abundant lithium resources characterized by considerable reserves and a concentrated distribution of metallogenic zones or belts,with proven reserves of 4046.8×10^(3) t(calculated based on Li_(2)...China is rich in abundant lithium resources characterized by considerable reserves and a concentrated distribution of metallogenic zones or belts,with proven reserves of 4046.8×10^(3) t(calculated based on Li_(2)O)by 2021.China is also a big consumer of lithium.By 2019,China’s lithium consumption in the battery sector alone had reached 99×10^(3) t,with an average annual growth rate of nearly 26%.China has become the world’s largest importer of lithium resources,showing a severely unbalanced relationship between supply and demand for lithium resources.Therefore,there is an urgent need for the prospecting,exploitation,and study of lithium resources in China.This study collected,organized,and summarized the data on the major lithium deposits in China,analyzed and compared the spatial-temporal distribution patterns,geological characteristics,and metallogenic regularity of these lithium deposits,and summarized the prospecting and research achievements over the last decade.The major lithium deposits in China are distributed in provinces and regions such as Qinghai,Jiangxi,Sichuan,Tibet,and Xinjiang.These deposits are mostly small in scale.According to different genetic types,this study divided lithium deposits into granitic pegmatite type,granite type,saline lake brine type,underground brine type,and sedimentary type,as well as new types including hot spring type and magmatic-hydrothermal type,and summarized the characteristics and key metallogenic factors of these different types of deposits.Sixteen metallogenic prospect areas of lithium deposits were delineated according to the deposit types and the distribution patterns of metallogenic belts.The paper introduced the research progress in major metallogenic models and lithium extraction techniques made over the past decade.Based on the comprehensive analysis of the prospecting potential of lithium deposits,the authors concluded that the future prospecting of lithium resources in China should focus on lithium metallogenic belts,the deep and peripheral areas of currently determined large-scale pegmatite-type lithium deposits,geophysical-geochemical anomalous areas with mineralization clues,and areas with developed large-scale low-grade associated granite-type and sedimentary lithium resources.The study aims to serve as a guide for the future prospecting of lithium deposits in China.展开更多
Magnetite, as a genetic indicator of ores, has been studied in various deposits in the world. In this paper, we present textural and compositional data of magnetite from the Qimantag metallogenic belt of the Kunlun Or...Magnetite, as a genetic indicator of ores, has been studied in various deposits in the world. In this paper, we present textural and compositional data of magnetite from the Qimantag metallogenic belt of the Kunlun Orogenic Belt in China, to provide a better understanding of the formation mechanism and genesis of the metallogenic belt and to shed light on analytical protocols for the in situ chemical analysis of magnetite. Magnetite samples from various occurrences, including the ore-related granitoid pluton, mineralised endoskarn and vein-type iron ores hosted in marine carbonate intruded by the pluton, were examined using scanning electron microscopy and analysed for major and trace elements using electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The field and microscope observation reveals that early-stage magnetite from the Hutouya and Kendekeke deposits occurs as massive or banded assemblages, whereas late- stage magnetite is disseminated or scattered in the ores. Early-stage magnetite contains high contents of Ti, V, Ga, AI and low in Mg and Mn. In contrast, late-stage magnetite is high in Mg, Mn and low in Ti, V, Ga, AI. Most magnetite grains from the Qimantag metallogenic belt deposits except the Kendekeke deposit plot in the " Skarn " field in the Ca+AI+Mn vs Ti+V diagram, far from typical magmatic Fe deposits such as the Damiao and Panzhihua deposits. According to the (MgO+MnO)- TiO^-AI203 diagram, magnetite grains from the Kaerqueka and Galingge deposits and the No.7 ore body of the Hutouya deposit show typical characteristics of skarn magnetite, whereas magnetite grains from the Kendekeke deposit and the No.2 ore body of the Hutouya deposit show continuous elemental variation from magmatic type to skarn type. This compositional contrast indicates that chemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Moreover, a combination of petrography and magnetite geochemistry indicates that the formation of those ore deposits in the Qimantag metallogenic belt involved a magmatic-hydrothermal process.展开更多
Chile is a very important country that forms part of the Andean metallogenic belts. The Atacama and Domeyko fault systems in northern Chile control the tectonic- magmatic activities that migrate eastward and the types...Chile is a very important country that forms part of the Andean metallogenic belts. The Atacama and Domeyko fault systems in northern Chile control the tectonic- magmatic activities that migrate eastward and the types of mineral resources. In this paper, we processed and interpreted aeromagnetic data from northern Chile using reduction to pole, upward field continuation, the second derivative calculation in the vertical direction, inclination angle calculation, and analytical signal amplitude analysis. We revealed the locations and planar distribution characteristics of the regional deep faults along the NNE and NS directions. Furthermore, we observed that the major reasons for the formation of the tectonic-magmatic rocks belts were the nearly parallel deep faults distributed from west to east and multiple magmatic activities along these faults. We ascertained the locations of volcanic mechanisms and the relationships between them using these regional deep faults. We deduced the spatial distributions of the basic-intermediate, basic, and acidic igneous rocks, intrusive rocks, and sedimentary sequences. We showed the linear positive magnetic anomalies and magnetic anomaly gradient zones by slowly varying the background, negative magnetic anomaly field, which indicated the presence of strong magmatic activities in these regional deep faults; it also revealed the favorable areas of copper and polymetallic mineralization. This study provides some basic information for further research on the geology, structural characteristics, and mineral resource prospecting in northern Chile.展开更多
China is rich in tin resources,and contains many types of tin deposits.Among the tin deposit types,the cassiterite-sulfide type,skarn type and quartz vein type occupy a large proportion of tin resources and reserves.F...China is rich in tin resources,and contains many types of tin deposits.Among the tin deposit types,the cassiterite-sulfide type,skarn type and quartz vein type occupy a large proportion of tin resources and reserves.From the aspect of exploitation and utilization,the most important types are cassiterite-sulfide type and quartz vein type.The cassiterite-sulfide type tin deposits are mainly located in Northern Guangxi and Eastern Yunnan,skarn type deposits are mainly distributed in the ore-concentration areas of South Hunan in Middle Nanling,and the quartz vein type tin deposits are mainly distributed in South China,such as Western Fujian,Middle Jiangxi,Northern Guangzhou and Southern Hunan.The most important metallogenic epoch for tin deposits is the Mesozoic era.The metallogenic geotectonic background is mainly continental environments after orogeny process,with strong tectonic changes,interlaced deep fracture and frequent magmatism.And the most distinctive feature is the well developed Mesozoic granites,which have a close relationship with tin mineralization.Based on the detailed study of the data from 873 tin deposits in China,this paper summarized the metallogenic regularity of tin deposits,classified 20 important metallogenic series of tin or tin-associated deposits,and inferred that the cassiterite-sulfide type,skarn type,quartz vein type and greisen type are the main prediction types of tin resources.Forty-four tin-mineralization belts were divided,among which,19 belts are the most important.In addition,a series of maps about tin metallogenic belts and tin metallogenic regularity were compiled,aiming to provide theoretical basis for potential estimation and prediction of tin mineral resources.展开更多
A systematic study combining U-Pb zircon dating,lithogeochemical and Sr-Nd isotopic analyses was carried out upon the Xinping granodiorite porphyry in the Dayaoshan metallogenic belt to understand its petrogenesis and...A systematic study combining U-Pb zircon dating,lithogeochemical and Sr-Nd isotopic analyses was carried out upon the Xinping granodiorite porphyry in the Dayaoshan metallogenic belt to understand its petrogenesis and tectonic significance.LA-ICP-MS U-Pb zircon dating yielded a 442.7±5.8 Ma age,indicating that the granodiorite porphyry was emplaced during the Llandovery Silurian of the Early Paleozoic.The granodiorite porphyry shares the same geochemical characteristics such as Eu negative anomaly as other syn-tectonic granite plutons in the region,including the granodiorite porphyry in Dawangding and granite porphyries in the Dali Cu-Mo deposit and Longtoushang old deposit,indicating a similar magma evolution process.The Xinping granodiorite porphyry has high contents of SiO2(67.871.8%)and K2O(1.78-3.42%)and is metaluminous-peraluminous with A/CNK ratios ranging from 0.97 to 1.06,indicative of high-potassium calc-alkaline to calc-alkaline affinity.It is a I-type granite enriched in large ion lithophile elements Rb,Sr,while depleted in Ba and high field-strength element Nb.Tectonically,a collision between the Yunkai Block from the south and the Guangxi Yunnan-North Vietnam Block from the north during the Early Paleozoic was followed by uplifting of the Dayaoshan terrane.The Xinping granodiorite porphyry was likely emplaced during the collision.Sr-Nd isotopic analyses show that the granodiorite porphyry has initial 87Sr/86Sr ratios(Isr)of 0.7080-0.7104,εNd(t)range from-0.08 to-4.09,and t2DM between 1.19 and 1.51 Ga,well within the north-east low-value zone of the Cathaysia block,indicating a Paleoproterozoic Cathaysia basement source and an involvement of under plating mantle magma.Field observations,geochronological data,and 3D spatial distribution all lead to the conclusion that the Early Paleozoic Xinping granodiorite porphyry does not have any metallogenic and temporal relationships with the Xinping gold deposit(which has a Jurassic-Early Cretaceous age based on previous studies)but a close metallogenic relation to W-Mo mineralization.展开更多
Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentr...Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentrating district.Recent studies show that the newly discovered Yanshanian porphyry Cu-Mo polymetallic mineralization superimposed in the Indosinian porphyry copper belt in this area.展开更多
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.92062108,41630320 and 41574133)the China Geological Survey project(Grant Nos.DD20190012 and DD20160082)the National Key R&D Program of China(Grant No.2016YFC0600201)
文摘South China is characterized by large-area multistage magmatism.It boasts a huge number of polymetallic deposits such as W-Sn,Cu-Au,rare earth deposits,thus serving as a"giant granary"of metal mineral resources in China(Lüet al.,2021).
基金supported by Qinghai Provincial Association for Science and Technology Youth Science and Technology Talent Support Project(Grant No.2023QHSKXRCTJ47)Exploration Foundation of Qinghai Province(Grant No.2023085029ky004)。
文摘Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).
基金funded by the National Natural Science Foundation of China(41902099)the China Geological Survey Project(DD20230054)Fundamental Research Funds from the Institute of Mineral Resources and Chinese Academy of Geological Sciences(No.KK2215).
文摘The Xinlong gold deposit is located in Niyma County,Naqu area of Tibet and was discovered by the Institute of Mineral Resources,Chinese Academy of Geological Sciences through the 1∶50000 mineral geological survey.The ore bodies occur in the Zenong Group volcanic rocks in the middle section of the central Lhasa subterrane and are structurally controlled by the NNW-striking faults.Four ore bodies have been found,exhibiting cloddy,dense-sparse,disseminated,and breccia structures.The ore minerals are mainly tetrahedrite group minerals,and other ore minerals include pyrite,chalcopyrite,nevskite,bornite,anglesite,native gold,and silver-gold bearing selenide,etc.The types of alteration are dominated by silicification,as well as middle-and high-graded argillization.The alteration mineral assemblages contain quzrtz,pyrophyllite,and kaolinite.The Zaliela Formation volcanic rocks of Zenong Group are silicified by later hydrothermal fluid with vuggy quartz in some fractured zones.The middle-and high-graded argillization are characterized by pyrophyllitization and kaolinization.The Xinlong gold deposit shows great metallogenetic potentiality and has been revealed by 1∶10000 geological mapping,IP sounding,and trial trenching in the mining area.Combined with the regional metallogenic geological setting,we suppose that a potential epithermal gold belt probably exists in the middle of the Lhasa terrane.The discovery of the Xinlong gold deposit opens a new chapter for the gold prospecting in Northern Tibet.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2901903)the Geological Comprehensive Research Project of China’s Metallurgical Geology Bureau(Grant No.[2022]CMGBDZYJ005),the National Natural Science Foundation of China(Grant No.42002097)the Geological Investigation Project(Grant Nos.DD20230031,DD20221690,DD20230049,DD20230337).
文摘The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.
基金jointly sponsored by the Public Science and Technology Research Funds Projects,Ministry of Land Resources of the People’s Republic of China(project No.201511017 and 201511022-02)the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant No.YYWF201608)+3 种基金the National Natural Science Foundation of China(Grant No.41402178)Geological Survey Project of the China Geological Survey(project 1212011405040)Golden Dragon Mining Co.Ltd.(project XZJL-2013-JS03)China Scholarship Council
文摘The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicate that the porphyry mineralization was closely related to the Early Cretaceous intermediate-felsic intrusions(ca. 123–120 Ma). Various epithermal ore and gangue mineral types were discovered in the middle-shallow part of the orebody, indicating the presence of epithermal mineralization at Tiegelongnan. Potassic, propylitic, phyllic and advanced argillic alteration zones were identified. 40Ar/39Ar dating of hydrothermal biotite(potassic zone), sericite(phyllic zone), and alunite(advanced argillic zone) in/around the ore-bearing granodiorite porphyry yielded 121.1±0.6 Ma(1σ), 120.8±0.7 Ma(1σ) and 117.9±1.6 Ma(1σ), respectively. Five hydrothermal mineralization stages were identified, of which the Stage IV pyrite was Rb-Sr dated to be 117.5±1.8 Ma(2σ), representing the end of epithermal mineralization. Field geology and geochronology suggest that both the epithermal and porphyry mineralization belong to the same magmatic-hydrothermal system. The Tiegelongnan super-large Cu-(Au) deposit may have undergone a prolonged magmatichydrothermal evolution, with the major mineralization event occurring at ca.120–117Ma.
基金supported by the DREAM project of MOST China (No.2016YFC0600404)the Natural Science Foundation of China (Grant Nos.41372087, 41673040)the Project of Geological Science and Technology of Anhui Province (2015-K-01)
文摘The newly discovered Yangchongli gold deposit is a unique independent gold deposit in the Tongling ore-cluster region controlled by the tectonic alteration firstly discovered in the Lower Yangtze Metallogenic Belt (LYMB). The host magmatic rocks mainly consist of monzodiorite and K-feldspar granite. The LA-ICP-MS U-Pb zircons dating yielded weighted mean 206pb/23SU ages of 140.7 ± 1.8 Ma and 126.4 ±1.2 Ma for the monzodiorite and K-feldspar granite, respectively. Monzodiorites are enriched in Sr, Ba, Rb, and depleted in Y, Yb with high Sr/Y and La/Yb ratios, similar to the geochemical features of adakite, considered as products of differentiation of mafic magmas originating from lithospheric mantle melt/fluids caused by metasomatism during paleo-Pacific Plate subduction in the Mesozic. In contrast, the compositions of K-feldspar granites are A-type granites, indicating an extensional tectonic background. Gold ores hosted in the fracture zone occurred as quartz vein within cataclastic rock. Sulfur and lead isotopes from pyrites show crust-mantle mixing characteristics. Metal components from strata also took part in the gold mineralization, and resulted from two episodes of magmatism that were probably related to tectonic transition from a compressive to an extensional setting between 140-126 Ma, which led to the Mesozoic large-scale polymetallic mineralization events in eastern China.
文摘The Tongling area is one of the 7 ore-cluster areas in the Middle-Lower Yangtze metallogenic belt, East China, and has tectonically undergone a long-term geologic history from the late Paleozoic continental rifting, through the Middle Triassic continent-continent collision to the Jurassic-Cretaceous intracontinental tectono-magmatic activation. The Carboniferous sedimentary-exhalative processes in the area produced widespread massive sulfides with ages of 303-321 Ma, which partly formed massive pyrite-Cu deposits, but mostly provided significant sulfur and metals to the skarn Cu mineralization associated with the Yanshanian felsic intrusions.To understand the Carboniferous submarine hydrothermal system, an area of about 1046 km^2 was chosen to carry out the geological fluid mapping. Associated with massive sulfide formation, footwall sequences 948 m to 1146 m thick, composed of the Lower Silurian-Upper Devonian sandstone, siltstone and thin-layered shale, were widely altered. This hydrothermal alteration is interpreted to reflect largescale hydrothermal fluid flow associated with the late Paleozoic crustal rifting and subsidence. Three hydrothermal alteration types, i.e., deep-level semiconformable siliclfication (S1), fracture-controlled quartz-sericite-pyrite alteration (S2-3), and upper-level sub-discordant quartz-sericite-chlorite alteration (D3), were developed to form distinct zones in the mapped area. About 50-m thick semiconformable silicification zones are located at -1-km depth below massive sulfides and developed between an impermeable shale caprock (S1) and the underlying Ordovician unaltered limestone. Comparisons with modern geothermal systems suggest that the alteration zones record a sub-seafioor aquifer with the most productive hydrothermal fluid flow. Fracture-controlled quartz-sericite-pyrite alteration formed transgressive zones, which downward crosscut the semiconformable alteration zones, and upwards grade into sub-discordant alteration zones that enveloped no economic stringer- stockwork zones beneath massive sulfides. This transgressive zone likely marks an upfiow path of high- flux fluids from the hydrothermal aquifer. Lateral zonation of the sub-discordant alteration zones and their relationship to overlying massive sulfide lenses suggest lateral flows and diffusive discharging of the hydrothermal fluids in a permeable sandstone sequence. Three large-sized, 14 middle-small massive sulfide deposits, and 40 massive sulfide sites have been mapped in detail. They show regional strata- bound characters and two major styles, i.e., the layered sheet plus strata-bound stringer-style and the mound-style. Associated exhalite and chemical sedimentary rock suites include (1) anhydrite-barite, (2) jasper-chert, (3) Mg-rich mudstone-pyrite shale, (4) barite lens, (5) siderite-Fe-bearing dolomite, and (6) Mn-rich shale-mudstone, which usually comprise three sulfide-exhalite cyclic units in the area.The spatial distribution of these alteration zones (minerals) and associated massive sulfdes and exhalites, and regional variation in δ^34S of hydrothermal pyrite and in δ^18O-δ^34C of hanging wall carbonates, suggest three WNW-extending domains of fluid flow, controlled by the basement faults and syn-depositional faults. Each fluid domain appears to have at least two upflow zones, with estimated even spacing of about 5-8 km in the mapped area. The repeated appearance of sulfide-sulfate or sulfide-carbonate rhythmic units in the area suggests episodically venting of fluids through the upfiow conduits by breaking the overlying seals of the hydrothermal aquifer.
基金funded by Geological Survey Projects of the CGS(Grant No.12120115065601,1212011121037,12120114039601,121201120369)
文摘Among the abundant aluminum ore resources in China, bauxite is dominated, which is mainly distributed in 19 provinces and regions, including Shanxi, Henan, Guizhou and Guangxi. The major deposit type of bauxite is paleo-weathering crust sedimentary type, and the other one is the accumulation type. The main metallogenic period is the late Paleozoic Era followed by the Cenozoic Era. The metallogenic tectonic background is characterized by a cratonic environment. This paper summarizes the bauxite metallogenic regularity based on the characteristics of bauxite resources, bauxite deposit type, bauxite metallogenic belt and metallogenic series in China, and 15 bauxite metallogenic belts, 8 bauxite metallogenic series and 7 bauxite ore concentrated areas were identified in the study. This paper also provides a theoretical basis for the evaluation of the potential of bauxite resources.
基金supported by the National Natural Science Foundation of China(41673056 and U1812402)the Key Program of Guizhou Natural Science Foundation(Qiankehejichu[2017]1421)+1 种基金the State Key Program of National Natural Science Foundation of China(41430315)National Key R&D Program of China(2017YFC0602500)。
文摘The western Hunan-eastern Guizhou Zn-Pb metallogenic belt is one of the important Zn-Pb mineralization regions in China.The Dadongla deposit,located in the northeast of Guizhou Province,is one of the typical Zn-Pb deposits in the region and has estimated resources more than 12 million metric tons(Mt)with an average grade of 4.11 wt%Zn+Pb.Its orebodies are hosted in the lower Cambrian Aoxi Formation dolomite,occurring as bedded,para-bedded in shape,and in conformity with the wall rock.The ore mineral assemblage is simple,dominated by sphalerite with minor pyrite and galena,and the gangue minerals are composed of dolomite,calcite with minor bitumen and barite.In view of the lack of geological and geochemical researches,the genesis of Zn-Pb ore is still unclear.Laser ablation-inductively coupled plasma mass spectrometry(LA-ICPMS)spot and mapping analyses were used to obtain sphalerite trace element chemistry in the Dadongla Zn-Pb deposit in Guizhou,China,aiming to constrain its ore genesis.The results show that sphalerite is characterized by the enrichment of Cd,Fe,Ge and Hg,corresponding with that of typical MVT deposits.Four zones were identified in the sphalerite crystal from Dadongla from the center to margin according to the color bands.in which the zone in the center,representing the early ore-stage sphalerite,is characterized by enrichment of Cd relatively,while the zone forming at late ore-stage is enriched in Ge and Hg relatively.The finding was controlled by differential leached metals content in ore-forming fluid from its source rock.Notably,critical element Ge trends to be enriched at the late ore-stage and follows a substitution of 2 Zn^2+(?)Ge^4++□(vacancy).Moreover,the calculated ore-forming temperature ranges from 79.9℃to 177.6℃by the empirical formula,which is similar to that of typical Mississippi Valley-type(MVT)deposits.Compared with the features of trace elements in sphalerite from different types of deposits,together with the geology,the Dadongla deposit belongs to an MVT Zn-Pb deposit.
基金supported by geological survey projects of the China Geological Survey (1212011120863, 12120114039401, 12120114005901 and 12120115029401)
文摘The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.
基金supported by the National Key R&D Program of China(No.2016YFC0600404)the National Natural Science Foundation of China(Grant Nos.41673040 and 41611540339)the Project of National Land Resource Science and Technology of Anhui Province(2014-K-4)
文摘The newly discovered Paodaoling porphyry Au deposit from the Guichi region, Lower Yangtze River Metallogenic Belt (LYRB), contains 〉35 tons of Au at an average grade of -1.7 g/t. It is a porphyry 'Au-only' deposit, as revealed by current exploration in the depths, mostly above -400 m, which is quite uncommon among coeval porphyry mineralization along the LYRB. Additionally, there are also Cu-Au bearing porphyries and barren alkaline granitoids in the Paodaoling district. Zircon LA-ICP-MS U-Pb dating of the Cu-Au-bearing porphyries yield an age of 141-140 Ma, falling within the main magmatic stage of the LYRB, whereas the barren granites give an age of 125-120 Ma, coeval with the regional A- type granites. The Cu-Au-bearing porphyries are LILE-, LREE-enriched and HFSE-depleted, typical of arc magmatic affinities. The barren granites are HFSE-enriched, with lower LREE/HREE ratios and pronounced negative Eu anomalies. The Cu-Au-bearing porphyries in the Paodaoling district have high oxygen fugacities and high water content. Pyrite sulfur isotopes of the Paodaoling gold deposit indicate a magmatic-sedimentary mixed source for the ore-forming fluids. Based on the alteration and poly-metal zonation of the deepest exploration drill hole from the Paodaoling Au deposit, we propose that Cu ore bodies could lie at depth beneath the current Au ore bodies. The magmatism and associated Cu-Au mineralization of the Paodaoling district are likely to have formed in a subduction setting, during slab rollback of the paleo-Pacific plate.
基金This study was supported by the National Natural Science Foundation of China grant 49802007.
文摘Studies of the Pb, Sr and Nd isotopic composition of Mesozoic intrusive rocks indicate that the basement of the copper-gold metallogenic belt of the middle and lower reaches of the Yangtze River has “two-layer structure” and partly has “multi-layered structure”, and is inhomogeneous and shows the distinct feature of E-W provincialism. The calculated model lead ages (t1) are mostly greater than 2600 Ma, and the model neodymium ages (TDM) vary from 953 to 2276 Ma and concentrate in two time intervals: 1800–2000 Ma and 1200–1600 Ma. It is concluded that the basement of the MBYR is composed of the Late Archaeozoic to Middle Proterozoic metamorphic series and that the crust was initiated in the Archaean and continued to grow in the Early and Middle Proterozoic, and the proportion of new crust formed by mantle differentiation during the Late Proterozoic is low.
基金funded by Geological Survey Program of China Geological Survey(DD20190816,DD20160057,DD20190606).
文摘Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting huge reserves and large numbers of deposits.However,most of the fluorite deposits are on a small or medium scale.The main fluorite deposits in China were studied in this paper.Their geological features and metallogenic regularity were summarized and compared.Meanwhile,based on their main genetic factors including metallogenic fluid sources and main metallogenic geological processes,they were divided into two groups,namely meso-epithermal deposits and magmatic-hydrothermal deposits.Furthermore,based on the prospecting achievements and research progress obtained in fluorite deposits in recent years,prospecting potential predictions were made for the metallogenic prospect areas and major prospecting areas of fluorite in China.This aims to provide a theoretical basis and direction for future fluorite prospecting in China.
基金supported by the National Natural Science Foundation (Grant No.41202025,41302058)Funds on Basic Researches for Central Public Welfare Academic Institutes (Grant No.ZS1103,K1325,YK1401)the Chinese Geological Survey Project--Geology of Mineral Resources in China (No.1212011220369,1212010633903,12120114039601 and 1212011121037)
文摘Tungsten ore resources are abundant in China with relatively complete types of deposits. Skarn type and quartz vein type deposits are dominated in the tungsten resources, whereas quartz vein type wolframite deposits are most important in terms of exploitation and utilization. Skarn type tungsten deposits are concentratedly distributed in the central Nanling region, such as South Hunan, South Anhui and the eastern Qinling region, while quartz vein type tungsten deposits occur mainly in South China, such as West Fujian, South Jiangxi, North Guangdong and South Hunan. The most important metallogenic epoch of tungsten is the Mesozoic, while the metallogenic tectonic setting is featured by an intracontinental environment after orogeny with sever tectonic movements, deep-seated faults and frequent magmatic activities, especially Mesozoic granitoids closely related to tungsten-tin mineralization. 22 metallogenic series of ore deposits characterized by or significantly related to tungsten were defined based on precise statistic information of 1199 tungsten mining areas and thorough the summary of metallogenic regularities. Based on studies of the metallogenic regularity of tungsten deposits, skarn type (or greisen type), quartz vein type and massif-type of tungsten deposits are thought to be the key prediction types. 65 tungsten-forming belts and 22 key ore concentration areas were ascertained and a distribution map of tungsten-forming belts of China was compiled, which provided a theoretical basis for evaluation and prediction of potential tungsten resources.
基金funded by the Major Research Plan of the National Natural Science Foundation of China(Grant No.92062217)the project of China Geological Survey(DD20190405).
文摘China is rich in abundant lithium resources characterized by considerable reserves and a concentrated distribution of metallogenic zones or belts,with proven reserves of 4046.8×10^(3) t(calculated based on Li_(2)O)by 2021.China is also a big consumer of lithium.By 2019,China’s lithium consumption in the battery sector alone had reached 99×10^(3) t,with an average annual growth rate of nearly 26%.China has become the world’s largest importer of lithium resources,showing a severely unbalanced relationship between supply and demand for lithium resources.Therefore,there is an urgent need for the prospecting,exploitation,and study of lithium resources in China.This study collected,organized,and summarized the data on the major lithium deposits in China,analyzed and compared the spatial-temporal distribution patterns,geological characteristics,and metallogenic regularity of these lithium deposits,and summarized the prospecting and research achievements over the last decade.The major lithium deposits in China are distributed in provinces and regions such as Qinghai,Jiangxi,Sichuan,Tibet,and Xinjiang.These deposits are mostly small in scale.According to different genetic types,this study divided lithium deposits into granitic pegmatite type,granite type,saline lake brine type,underground brine type,and sedimentary type,as well as new types including hot spring type and magmatic-hydrothermal type,and summarized the characteristics and key metallogenic factors of these different types of deposits.Sixteen metallogenic prospect areas of lithium deposits were delineated according to the deposit types and the distribution patterns of metallogenic belts.The paper introduced the research progress in major metallogenic models and lithium extraction techniques made over the past decade.Based on the comprehensive analysis of the prospecting potential of lithium deposits,the authors concluded that the future prospecting of lithium resources in China should focus on lithium metallogenic belts,the deep and peripheral areas of currently determined large-scale pegmatite-type lithium deposits,geophysical-geochemical anomalous areas with mineralization clues,and areas with developed large-scale low-grade associated granite-type and sedimentary lithium resources.The study aims to serve as a guide for the future prospecting of lithium deposits in China.
基金supported by the Geological Survey Program of China Geological Survey (1212011121220)
文摘Magnetite, as a genetic indicator of ores, has been studied in various deposits in the world. In this paper, we present textural and compositional data of magnetite from the Qimantag metallogenic belt of the Kunlun Orogenic Belt in China, to provide a better understanding of the formation mechanism and genesis of the metallogenic belt and to shed light on analytical protocols for the in situ chemical analysis of magnetite. Magnetite samples from various occurrences, including the ore-related granitoid pluton, mineralised endoskarn and vein-type iron ores hosted in marine carbonate intruded by the pluton, were examined using scanning electron microscopy and analysed for major and trace elements using electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The field and microscope observation reveals that early-stage magnetite from the Hutouya and Kendekeke deposits occurs as massive or banded assemblages, whereas late- stage magnetite is disseminated or scattered in the ores. Early-stage magnetite contains high contents of Ti, V, Ga, AI and low in Mg and Mn. In contrast, late-stage magnetite is high in Mg, Mn and low in Ti, V, Ga, AI. Most magnetite grains from the Qimantag metallogenic belt deposits except the Kendekeke deposit plot in the " Skarn " field in the Ca+AI+Mn vs Ti+V diagram, far from typical magmatic Fe deposits such as the Damiao and Panzhihua deposits. According to the (MgO+MnO)- TiO^-AI203 diagram, magnetite grains from the Kaerqueka and Galingge deposits and the No.7 ore body of the Hutouya deposit show typical characteristics of skarn magnetite, whereas magnetite grains from the Kendekeke deposit and the No.2 ore body of the Hutouya deposit show continuous elemental variation from magmatic type to skarn type. This compositional contrast indicates that chemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Moreover, a combination of petrography and magnetite geochemistry indicates that the formation of those ore deposits in the Qimantag metallogenic belt involved a magmatic-hydrothermal process.
基金supported by the National Science Foundation of China(No.41404070)China Geological Survey(No.DD20160102-02)
文摘Chile is a very important country that forms part of the Andean metallogenic belts. The Atacama and Domeyko fault systems in northern Chile control the tectonic- magmatic activities that migrate eastward and the types of mineral resources. In this paper, we processed and interpreted aeromagnetic data from northern Chile using reduction to pole, upward field continuation, the second derivative calculation in the vertical direction, inclination angle calculation, and analytical signal amplitude analysis. We revealed the locations and planar distribution characteristics of the regional deep faults along the NNE and NS directions. Furthermore, we observed that the major reasons for the formation of the tectonic-magmatic rocks belts were the nearly parallel deep faults distributed from west to east and multiple magmatic activities along these faults. We ascertained the locations of volcanic mechanisms and the relationships between them using these regional deep faults. We deduced the spatial distributions of the basic-intermediate, basic, and acidic igneous rocks, intrusive rocks, and sedimentary sequences. We showed the linear positive magnetic anomalies and magnetic anomaly gradient zones by slowly varying the background, negative magnetic anomaly field, which indicated the presence of strong magmatic activities in these regional deep faults; it also revealed the favorable areas of copper and polymetallic mineralization. This study provides some basic information for further research on the geology, structural characteristics, and mineral resource prospecting in northern Chile.
基金supported by the National Natural Science Foundation(grant No.41202025,41302058)Funds on basic researches for central public welfare academic institutes(grant No.K1325 and YK1401)the China Geological Survey Project(Nos.1212011220369, 1212010633903,12120114039601 and 12120114019401)
文摘China is rich in tin resources,and contains many types of tin deposits.Among the tin deposit types,the cassiterite-sulfide type,skarn type and quartz vein type occupy a large proportion of tin resources and reserves.From the aspect of exploitation and utilization,the most important types are cassiterite-sulfide type and quartz vein type.The cassiterite-sulfide type tin deposits are mainly located in Northern Guangxi and Eastern Yunnan,skarn type deposits are mainly distributed in the ore-concentration areas of South Hunan in Middle Nanling,and the quartz vein type tin deposits are mainly distributed in South China,such as Western Fujian,Middle Jiangxi,Northern Guangzhou and Southern Hunan.The most important metallogenic epoch for tin deposits is the Mesozoic era.The metallogenic geotectonic background is mainly continental environments after orogeny process,with strong tectonic changes,interlaced deep fracture and frequent magmatism.And the most distinctive feature is the well developed Mesozoic granites,which have a close relationship with tin mineralization.Based on the detailed study of the data from 873 tin deposits in China,this paper summarized the metallogenic regularity of tin deposits,classified 20 important metallogenic series of tin or tin-associated deposits,and inferred that the cassiterite-sulfide type,skarn type,quartz vein type and greisen type are the main prediction types of tin resources.Forty-four tin-mineralization belts were divided,among which,19 belts are the most important.In addition,a series of maps about tin metallogenic belts and tin metallogenic regularity were compiled,aiming to provide theoretical basis for potential estimation and prediction of tin mineral resources.
基金supported by the National Key R&D Program of China(2016YFC0600603)the Guangxi Science Foundation(2014GXNSFBA118230)the Foundation of Guilin University of Technology(GUTQDJJ2019166)。
文摘A systematic study combining U-Pb zircon dating,lithogeochemical and Sr-Nd isotopic analyses was carried out upon the Xinping granodiorite porphyry in the Dayaoshan metallogenic belt to understand its petrogenesis and tectonic significance.LA-ICP-MS U-Pb zircon dating yielded a 442.7±5.8 Ma age,indicating that the granodiorite porphyry was emplaced during the Llandovery Silurian of the Early Paleozoic.The granodiorite porphyry shares the same geochemical characteristics such as Eu negative anomaly as other syn-tectonic granite plutons in the region,including the granodiorite porphyry in Dawangding and granite porphyries in the Dali Cu-Mo deposit and Longtoushang old deposit,indicating a similar magma evolution process.The Xinping granodiorite porphyry has high contents of SiO2(67.871.8%)and K2O(1.78-3.42%)and is metaluminous-peraluminous with A/CNK ratios ranging from 0.97 to 1.06,indicative of high-potassium calc-alkaline to calc-alkaline affinity.It is a I-type granite enriched in large ion lithophile elements Rb,Sr,while depleted in Ba and high field-strength element Nb.Tectonically,a collision between the Yunkai Block from the south and the Guangxi Yunnan-North Vietnam Block from the north during the Early Paleozoic was followed by uplifting of the Dayaoshan terrane.The Xinping granodiorite porphyry was likely emplaced during the collision.Sr-Nd isotopic analyses show that the granodiorite porphyry has initial 87Sr/86Sr ratios(Isr)of 0.7080-0.7104,εNd(t)range from-0.08 to-4.09,and t2DM between 1.19 and 1.51 Ga,well within the north-east low-value zone of the Cathaysia block,indicating a Paleoproterozoic Cathaysia basement source and an involvement of under plating mantle magma.Field observations,geochronological data,and 3D spatial distribution all lead to the conclusion that the Early Paleozoic Xinping granodiorite porphyry does not have any metallogenic and temporal relationships with the Xinping gold deposit(which has a Jurassic-Early Cretaceous age based on previous studies)but a close metallogenic relation to W-Mo mineralization.
基金financially supported by the National Natural Science Foundation of China (grant No.41502076)the Leading Talents Plan Project of Science and Technology of Yunnan Province (grant No.2013HA001)the Science Research Fund of Yunnan Provincial Education Department (grant No.2015Y066)
文摘Objective The Geza arc in Yunnan Province,located in the southern Yidun arc,is an important part of the Sanjiang tectonic-magmatic belts in southwestern China and is a newly discovered copper polymetallic ore-concentrating district.Recent studies show that the newly discovered Yanshanian porphyry Cu-Mo polymetallic mineralization superimposed in the Indosinian porphyry copper belt in this area.