New field observations and petrological data from Early Cretaceous metamorphic rocks in the Central Cordillera of the Colombian Andes allowed the recognition of thermally overprinted high-pressure rocks derived from o...New field observations and petrological data from Early Cretaceous metamorphic rocks in the Central Cordillera of the Colombian Andes allowed the recognition of thermally overprinted high-pressure rocks derived from oceanic crust protoliths.The obtained metamorphic path suggests that the rocks evolved from blueschist to eclogite facies towards upper amphibolite to high-pressure granulite facies transitional conditions.Eclogite facies conditions,better recorded in mafic protoliths,are revealed by relic lawsonite and phengite,bleb-to worm-like diopside-albite symplectites,as well as garnet core composition.Upper amphibolite to high pressure granulite facies overprinting is supported by coarse-grained brown-colored Ti-rich amphibole,augite,and oligoclase recrystallization,as well as the record of partial melting leucosomes.Phase equilibria and pressure-temperature(P-T)path modeling suggest initial high-pressure metamorphic conditions M1 yielding 18.2-24.5 kbar and 465-580℃,followed by upper amphibolite to high pressure granulite facies overprinting stage M2 yielding 6.5-14.2 kbar and 580-720℃.Retrograde conditions M3 obtained through chlorite thermometry yield temperatures ranging around 286-400℃at pressures below 6.5-11 kbar.The obtained clockwise P-T path,the garnet zonation pattern revealing a decrease in X_(grs)/X_(prp)related to Mg#increment from core to rim,the presence of partial melting veins,as well as regional constraints,document the modification of the thermal structure of the active subduction zone in Northern Andes during the Early Cretaceous.Such increment of the metamorphic gradient within the subduction interface is associated with slab roll-back geodynamics where hot mantle inflow was triggered.This scenario is also argued by the reported trench-ward magmatic arc migration and multiple extensional basin formation during this period.The presented example constitutes the first report of Cretaceous roll-back-related metamorphism in the Caribbean and Andean realms,representing an additional piece of evidence for a margin-scale extensional event that modified the northwestern border of South America during the Early Cretaceous.展开更多
The first data on P-T metamorphic conditions coupled with U-Pb monazite and zircon age obtained for the Neoarchean Kitoy granulite-gneiss terrane(SW Siberian Craton).Alumina gneisses of the Kitoy terrane indicate two-...The first data on P-T metamorphic conditions coupled with U-Pb monazite and zircon age obtained for the Neoarchean Kitoy granulite-gneiss terrane(SW Siberian Craton).Alumina gneisses of the Kitoy terrane indicate two-staged metamorphic evolution.The first stage of regional metamorphism(M1)occurred at high-amphibolite facies conditions at T=780-800℃ and P=8-9 kbar.The second stage(M2)belongs to MT-HT/LP type of metamorphism with the wide temperature interval 600-750℃ and pressure 2-4 kbar.Two age peaks were established on the basis of U-Pb monazite and zircon dating in garnet-anthophyllite gneisses.Both of them correspond to the Neoarchean age:the age of M1 falls into the interval of ca.2489-2496 Ma,the age of M2-ca.2446-2456 Ma.The high-temperature metamorphism of the Kitoy block and nearly coeval granitoid magmatism can be an evidence for the Neoarchean collision in SW Siberian craton.展开更多
The east sector of the southern Qinling belt is, lithologically, composed mainly of metapelites, ***qüartzites, marbles and small amount of metabasites and gneisses, whose protoliths are the Silurian, Devonian an...The east sector of the southern Qinling belt is, lithologically, composed mainly of metapelites, ***qüartzites, marbles and small amount of metabasites and gneisses, whose protoliths are the Silurian, Devonian and less commonly the Sinian and Upper Palaeozoic. They have been subjected at least to two epochs of metamorphism. The early epoch belongs to progressive metamorphism which is centered on high amphibolite-granulite fades in the Fuping area and changed outwards into low amphibolite facies (staurolite-kyanite zone), epidote amphibolite facies (garnet zone) and greenschist facies (chlorite and biotite zones), the metamorphic age of which is about 220–260 Ma. This early-epoch metamorphism belongs to different pressure types: the rocks from greenschist to low amphibolite facies belong to the typical medium-pressure type which shows geothermal gradients of about 17–20 ***C/km and was probably produced by a crustal thickening process related to continental collision, and the high amphibolite-granulite facies belongs to the low-pressure type which shows geothermal gradients of about 25–38 ***C/km and was probably affected by some magmatic heats. Based on the basic characteristics of the P-T paths of the different facies calculated from the garnet zonations, it can be deduced that the metamorphism of medium-pressure facies series took place during an imbricated thickening process, rather than during the uplifting process after thickening. The late-epoch metamorphism belongs to dynamic metamorphism of greenschist facies which is overprinted on the early-epoch metamorphic rocks and is Yanshanian or Himalayan in age, probably related to intracontinental orogeny.展开更多
The Kadui blueschist is located in the central section of Yarlung Zangbo suture zone (YZSZ), southern Tibet, and has been subjected to the subduction of the Neo-Tethyan Ocean below the Asian Plate and provides impor...The Kadui blueschist is located in the central section of Yarlung Zangbo suture zone (YZSZ), southern Tibet, and has been subjected to the subduction of the Neo-Tethyan Ocean below the Asian Plate and provides important clues for better understanding the evolution of the India-Asia convergence zone. In this paper, the systematical petrographic and mineral chemical studies were carried out on the Kadui blueschist, which reveal a mineral assemblage of sodic amphibole, chlorite, epidote, albite and quartz with accessory minerals of titanite, calcite and zircon. Electron microprobe analyses demonstrate that amphibole shows zoned from actinolite core to ferrowinchite/riebeckite rim composition indicating that the sodic amphibole has formed during a prograde metamorphic event. The protolith of the blueschist is an intermediate-basic pyroclastic rock. The calculated pseudosection indicates a clockwise P-T path and constrains peak metamorphic conditions of about 5.9 kbar at 345 ℃. This condition is transitional between pumpellyite-actinolite, greenschist and blueschist facies with a burial depth of 20-22 km and a thermal gradient of 15-16 ℃/km. This thermal gradient belongs to high pressure intermediate P/T facies series and is possibly related to a warm subduction setting of young oceanic slabs. Our new findings indicate that the Kadui blueschist in the central part of YZSZ experienced a rapid subduction and exhumation process as a response to a northward subduction of the Neo-Tethyan oceanic lithosphere during the initial India-Asia collision stage.展开更多
The Qilian Orogen marks the junction of the North China, South China and Tarim cratons. The mechanism of continental growth during the formation of the orogen remains unclear. Based on detailed fieldwork, we present a...The Qilian Orogen marks the junction of the North China, South China and Tarim cratons. The mechanism of continental growth during the formation of the orogen remains unclear. Based on detailed fieldwork, we present a systematic study of petrography, mineral chemistry and phase equilibria of garnet amphibolites from the Hualong Group, which represents the Precambrian basement in the southern accretionary belt of the Qilian Orogen. The garnet amphibolites mainly consist of amphibole, plagioclase, garnet and quartz, with minor pyroxene, biotite and ilmenite. A peak stage of upper amphibolite facies to low-temperature granulite facies metamorphism and retrograde metamorphism in the amphibolite facies affected the samples. Garnet has a homogeneous composition of Alm66-71Grs14-17Prp9_12Sps3-s, amphibole is ferro-hornblende, biotite belongs to the ferro-biotite species and pyroxene is dominated by orthopyroxene with few clinopyroxene. Pseudosection modeling of the garnet amphibolite samples indicates clockwise P-T paths. The samples witness peak metamorphism at conditions of -4.9-6.3 kbar and -755-820 ℃ in the upper amphibolite facies to low- temperature granulite facies, and retrograde cooling and decompression at conditions of-2.5-3.1 kbar and -325-545 ℃. It is inferred that peak metamorphism with high temperature and low pressure occurred at ca. 450 Ma during northward subduction of the South Qilian oceanic crust beneath the central Qilian Block. When continental collision occurred between the central Qilian and the Qaidam blocks, the Hualong Block was aecreted onto the South Qilian accretionary complex and experienced amphibolite facies retrograde metamorphism at ca. 440 Ma.展开更多
The Motuo area is located in the east of the Eastern Himalayan Syntaxis.There outcrops a sequence of high-grade metamorphic rocks,such as metapelites.Petrology and mineralogy data suggest that these rocks have experie...The Motuo area is located in the east of the Eastern Himalayan Syntaxis.There outcrops a sequence of high-grade metamorphic rocks,such as metapelites.Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism.The prograde metamorphic mineral assemblages (M1) are mineral inclusions (biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts,and the peak metamorphic assemblages (M2) are represented by garnet with the lowest Xsps values and the lowest XFe# ratios and the matrix minerals (plagioclase + quartz ± K-feldspar + biotite + muscovite + kyanite ± siilimanite),whereas the retrograde assemblages (M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts.Thermobarometric computation shows that the metamorphic conditions are 562-714℃ at 7.3-7.4 kbar for the M1 stage,661-800℃ at 9.4-11.6 kbar for the M2 stage,and 579-713℃ at 5.5-6.6 kbar for the M3 stage.These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression (ITD) segments,which is inferred to be related to the collision of the India and Eurasia plates.展开更多
The mafic granulites in Dinggye,as various scale lense-shaped enclaves within the high Himalayan crystalline rock series,occur along mylonitic foliations at the junction between the Southern Tibetan Detachment System(...The mafic granulites in Dinggye,as various scale lense-shaped enclaves within the high Himalayan crystalline rock series,occur along mylonitic foliations at the junction between the Southern Tibetan Detachment System(STDS)and the Xainza-Dinggye normal fault system.The main lithological assemblage comprises garnet plagioclase pyroxenite,garnet two-pyroxene granulite,pyroxene garnet amphibolite and so on.The detailed petrological analyses show that these mafic granulites underwent at least four-stage metamorphic evolution.The first metamor-phic stage,the garnet+clinopyroxene+quart mineral assemblage(M1)was probably formed un-der eclogite facies,the second stage,the plagioclase+clinopyroxene symplectite mineral as-semblage(M2)was produced under high-pressure granulite facies by the early decompressive breakdown of M1 mineral assemblage,the third stage,the plagioclase+clinopyroxene+hypersthene symplectite mineral assemblage(M3)was formed at granulite facies by the late period decompressive breakdown of M1 and M2 mineral assemblages and the final stage,pla-gioclase+hornblende mineral assemblage(M4)was formed by hydrolysis of earlier mineral as-semblages during late uplifting.The detailed mineral composition analyses suggest that garnets and clinopyroxenes within M1 and M2 mineral assemblages display similar compositions to the equivalents in the B and C types of eclogites,whereas the M3 clinopyroxenes are akin to these of the same kind of minerals in the granulite.These mineral chemistry features and P-T estimates calculated by mineral thermometers and barometers indicate that the early stage relic porphyro-blasts(M1)could be formed at the eclogite facies,the early decompressive breakdown(M2)occurred at the high-pressures granulite facies of 1.35―1.48 GPa and 625―675℃,the M3 mineral assemblage recorded the granulite facies of 0.7―0.95 GPa and 775―900℃and M4 plagioglase+hornblende retrograde mineral assemblage was produced under the amphibolite facies metamorphism with pressure of 0.4 to 0.75 GPa and temperature at between 660 and 700℃.These construct P-T paths from crustal subduction overthickening to tectonic uplift tectono-thermal evolution.The mineral chemical characteristics and P-T condition at every metamorphic stage of these granulites indicate that these rocks experienced the eclogite facies metamorphism during the early stage.Subsequently,these mafic granulites underwent the three-stage exhuma-tion of the eclogite facies tectonic uplift,isostatic uplift related to the transformation from ec-logite/high-pressure granulite to granulite facies and extensional uplift.展开更多
Yushugou granulite-peridotite complex,located at the east part of the northern margin of South Tianshan,may represent an ophiolitic slice subducted to 40–50 km depth with high-pressure granulite facies metamorphism.A...Yushugou granulite-peridotite complex,located at the east part of the northern margin of South Tianshan,may represent an ophiolitic slice subducted to 40–50 km depth with high-pressure granulite facies metamorphism.Although a lot of studies have been conducted on rocks in this belt,the rock association and tectonic background of the ophiolitic slice are still in dispute.A detailed study on petrology,phase equilibrium modeling and U-Pb zircon ages have been performed on the metagabbro vein in peridotite unit to constrain the tectonic evolution of the Yushugou granulite-peridotite complex.Three stages of mineral assemblage in the metagabbro were defined as stage I:Cpx^A+Opx^A+Pl^A,which represents the original minerals of the metagabbro vein;stage II:Cpx^B+Opx^B+Pl^B+Spl,which represents the mineral assemblage of granulite facies metamorphism with peak P-T conditions of 4.2–6.9 kbar and 940–1070℃;stage III is characterized by the existence of prehnite,thomsonite and amphibole in the matrix,indicating that the metagabbro vein may be influenced by fluids during retrograde metamorphism.Combined with the crosscut relationship,it can be deduced that the metagabbro vein,together with the peridotite in Yushugou granulite-peridotite complex has experienced similar high-temperature granulite facies metamorphism.The zircon chronological data shows that the protolith age of the metagabbro vein is 400.5±6.2 Ma,reflecting Devonian magmatism event and the granulite facies metamorphism occurred at^270 Ma which may be related to the post-collisional magmatism.展开更多
There is a typical assemblage of garnet + kyanite + microperthite + quartz + rutile in high-pressure (HP) felsic granulite of Qinling complex in Songshugou area. East Qinling. The HP granulite was formed at 800 -900℃...There is a typical assemblage of garnet + kyanite + microperthite + quartz + rutile in high-pressure (HP) felsic granulite of Qinling complex in Songshugou area. East Qinling. The HP granulite was formed at 800 -900℃ and 1.3 -1.6GPa and has experienced two stages of retrograde metamorphism at 600- 650 ℃, 0.8-1.0GPa and 500-600℃, 0.3-0.6GPa, forming two retrograde metamorphic assemblages of margarite + plagiodase (PlI)+quartz and sillimanite + biotite + plagioclase(PlII) + microdine+quartz, respectively. They construct a two-stage clockwise P-T path which shows down-pressure cooling in both early and late stage.展开更多
The ultrahigh-temperature(UHT) pelitic granulites from the Khondalite Belt, North China Craton(NCC), contain ilmenite in the matrix, which has been partially replaced by rutile. Based on this observation and the growt...The ultrahigh-temperature(UHT) pelitic granulites from the Khondalite Belt, North China Craton(NCC), contain ilmenite in the matrix, which has been partially replaced by rutile. Based on this observation and the growth of biotite by garnet-consuming reaction, the UHT rocks are inferred to have recorded three metamorphic stages: the peak metamorphic stage(M1) and two retrograde metamorphic stages(M2 and M3). The M1 stage is represented by the assemblage of perthite+sillimanite+ ilmenite in the matrix, and quartz inclusions bearing(in the cores) garnet porphyroblasts. The M2 stage is defined by rutile-replacing ilmenite and growth of garnet mantles and rims containing acicular sillimanite inclusions, with the garnet+ perthite+ sillimanite+rutile+ ilmenite+ quartz assemblage. The M3 stage is recorded by the growth of biotite in the matrix, with the garnet+ biotite+ perthite+ sillimanite+rutile+ilmenite+quartz assemblage. Based on phase equilibrium modeling, an isobaric cooling path is reconstructed, which is consistent with the idea that mantle-derived magma provided the heat for the UHT metamorphism in the Khondalite Belt, NCC.展开更多
基金The National University of Colombia is acknowledged for its financial support。
文摘New field observations and petrological data from Early Cretaceous metamorphic rocks in the Central Cordillera of the Colombian Andes allowed the recognition of thermally overprinted high-pressure rocks derived from oceanic crust protoliths.The obtained metamorphic path suggests that the rocks evolved from blueschist to eclogite facies towards upper amphibolite to high-pressure granulite facies transitional conditions.Eclogite facies conditions,better recorded in mafic protoliths,are revealed by relic lawsonite and phengite,bleb-to worm-like diopside-albite symplectites,as well as garnet core composition.Upper amphibolite to high pressure granulite facies overprinting is supported by coarse-grained brown-colored Ti-rich amphibole,augite,and oligoclase recrystallization,as well as the record of partial melting leucosomes.Phase equilibria and pressure-temperature(P-T)path modeling suggest initial high-pressure metamorphic conditions M1 yielding 18.2-24.5 kbar and 465-580℃,followed by upper amphibolite to high pressure granulite facies overprinting stage M2 yielding 6.5-14.2 kbar and 580-720℃.Retrograde conditions M3 obtained through chlorite thermometry yield temperatures ranging around 286-400℃at pressures below 6.5-11 kbar.The obtained clockwise P-T path,the garnet zonation pattern revealing a decrease in X_(grs)/X_(prp)related to Mg#increment from core to rim,the presence of partial melting veins,as well as regional constraints,document the modification of the thermal structure of the active subduction zone in Northern Andes during the Early Cretaceous.Such increment of the metamorphic gradient within the subduction interface is associated with slab roll-back geodynamics where hot mantle inflow was triggered.This scenario is also argued by the reported trench-ward magmatic arc migration and multiple extensional basin formation during this period.The presented example constitutes the first report of Cretaceous roll-back-related metamorphism in the Caribbean and Andean realms,representing an additional piece of evidence for a margin-scale extensional event that modified the northwestern border of South America during the Early Cretaceous.
基金financial support of the Ministry of Science and Higher Education of the Russian Federationthe International Partnership Program of Chinese Academy of Sciences,Grant No.132744KYSB20190039。
文摘The first data on P-T metamorphic conditions coupled with U-Pb monazite and zircon age obtained for the Neoarchean Kitoy granulite-gneiss terrane(SW Siberian Craton).Alumina gneisses of the Kitoy terrane indicate two-staged metamorphic evolution.The first stage of regional metamorphism(M1)occurred at high-amphibolite facies conditions at T=780-800℃ and P=8-9 kbar.The second stage(M2)belongs to MT-HT/LP type of metamorphism with the wide temperature interval 600-750℃ and pressure 2-4 kbar.Two age peaks were established on the basis of U-Pb monazite and zircon dating in garnet-anthophyllite gneisses.Both of them correspond to the Neoarchean age:the age of M1 falls into the interval of ca.2489-2496 Ma,the age of M2-ca.2446-2456 Ma.The high-temperature metamorphism of the Kitoy block and nearly coeval granitoid magmatism can be an evidence for the Neoarchean collision in SW Siberian craton.
文摘The east sector of the southern Qinling belt is, lithologically, composed mainly of metapelites, ***qüartzites, marbles and small amount of metabasites and gneisses, whose protoliths are the Silurian, Devonian and less commonly the Sinian and Upper Palaeozoic. They have been subjected at least to two epochs of metamorphism. The early epoch belongs to progressive metamorphism which is centered on high amphibolite-granulite fades in the Fuping area and changed outwards into low amphibolite facies (staurolite-kyanite zone), epidote amphibolite facies (garnet zone) and greenschist facies (chlorite and biotite zones), the metamorphic age of which is about 220–260 Ma. This early-epoch metamorphism belongs to different pressure types: the rocks from greenschist to low amphibolite facies belong to the typical medium-pressure type which shows geothermal gradients of about 17–20 ***C/km and was probably produced by a crustal thickening process related to continental collision, and the high amphibolite-granulite facies belongs to the low-pressure type which shows geothermal gradients of about 25–38 ***C/km and was probably affected by some magmatic heats. Based on the basic characteristics of the P-T paths of the different facies calculated from the garnet zonations, it can be deduced that the metamorphism of medium-pressure facies series took place during an imbricated thickening process, rather than during the uplifting process after thickening. The late-epoch metamorphism belongs to dynamic metamorphism of greenschist facies which is overprinted on the early-epoch metamorphic rocks and is Yanshanian or Himalayan in age, probably related to intracontinental orogeny.
基金financially supported by the National Natural Science Foundation of China(No.41572044)the SDUST Research Fund(No.2015TDJH101)
文摘The Kadui blueschist is located in the central section of Yarlung Zangbo suture zone (YZSZ), southern Tibet, and has been subjected to the subduction of the Neo-Tethyan Ocean below the Asian Plate and provides important clues for better understanding the evolution of the India-Asia convergence zone. In this paper, the systematical petrographic and mineral chemical studies were carried out on the Kadui blueschist, which reveal a mineral assemblage of sodic amphibole, chlorite, epidote, albite and quartz with accessory minerals of titanite, calcite and zircon. Electron microprobe analyses demonstrate that amphibole shows zoned from actinolite core to ferrowinchite/riebeckite rim composition indicating that the sodic amphibole has formed during a prograde metamorphic event. The protolith of the blueschist is an intermediate-basic pyroclastic rock. The calculated pseudosection indicates a clockwise P-T path and constrains peak metamorphic conditions of about 5.9 kbar at 345 ℃. This condition is transitional between pumpellyite-actinolite, greenschist and blueschist facies with a burial depth of 20-22 km and a thermal gradient of 15-16 ℃/km. This thermal gradient belongs to high pressure intermediate P/T facies series and is possibly related to a warm subduction setting of young oceanic slabs. Our new findings indicate that the Kadui blueschist in the central part of YZSZ experienced a rapid subduction and exhumation process as a response to a northward subduction of the Neo-Tethyan oceanic lithosphere during the initial India-Asia collision stage.
基金funded by the National Natural Science Foundation of China (No. 41520104003)the National Key R & D Program of China (No. 2016YFC0600403)+1 种基金the China Geological Survey (No. DD20160201)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Nos. CUGL170404, CUG160232)
文摘The Qilian Orogen marks the junction of the North China, South China and Tarim cratons. The mechanism of continental growth during the formation of the orogen remains unclear. Based on detailed fieldwork, we present a systematic study of petrography, mineral chemistry and phase equilibria of garnet amphibolites from the Hualong Group, which represents the Precambrian basement in the southern accretionary belt of the Qilian Orogen. The garnet amphibolites mainly consist of amphibole, plagioclase, garnet and quartz, with minor pyroxene, biotite and ilmenite. A peak stage of upper amphibolite facies to low-temperature granulite facies metamorphism and retrograde metamorphism in the amphibolite facies affected the samples. Garnet has a homogeneous composition of Alm66-71Grs14-17Prp9_12Sps3-s, amphibole is ferro-hornblende, biotite belongs to the ferro-biotite species and pyroxene is dominated by orthopyroxene with few clinopyroxene. Pseudosection modeling of the garnet amphibolite samples indicates clockwise P-T paths. The samples witness peak metamorphism at conditions of -4.9-6.3 kbar and -755-820 ℃ in the upper amphibolite facies to low- temperature granulite facies, and retrograde cooling and decompression at conditions of-2.5-3.1 kbar and -325-545 ℃. It is inferred that peak metamorphism with high temperature and low pressure occurred at ca. 450 Ma during northward subduction of the South Qilian oceanic crust beneath the central Qilian Block. When continental collision occurred between the central Qilian and the Qaidam blocks, the Hualong Block was aecreted onto the South Qilian accretionary complex and experienced amphibolite facies retrograde metamorphism at ca. 440 Ma.
基金supported by the National Natural Science Foundation of China (40921001)the Geological Survey of China (1212010818094)
文摘The Motuo area is located in the east of the Eastern Himalayan Syntaxis.There outcrops a sequence of high-grade metamorphic rocks,such as metapelites.Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism.The prograde metamorphic mineral assemblages (M1) are mineral inclusions (biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts,and the peak metamorphic assemblages (M2) are represented by garnet with the lowest Xsps values and the lowest XFe# ratios and the matrix minerals (plagioclase + quartz ± K-feldspar + biotite + muscovite + kyanite ± siilimanite),whereas the retrograde assemblages (M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts.Thermobarometric computation shows that the metamorphic conditions are 562-714℃ at 7.3-7.4 kbar for the M1 stage,661-800℃ at 9.4-11.6 kbar for the M2 stage,and 579-713℃ at 5.5-6.6 kbar for the M3 stage.These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression (ITD) segments,which is inferred to be related to the collision of the India and Eurasia plates.
基金This work was suppotted by the Ministry of Saance and Techmology of the People's Republic of China(Gant No 2002CB412608)the Specific Project for the Aunthos of Best Dissertations of Chimese Univarsities and Colleges(Grant No.200022).
文摘The mafic granulites in Dinggye,as various scale lense-shaped enclaves within the high Himalayan crystalline rock series,occur along mylonitic foliations at the junction between the Southern Tibetan Detachment System(STDS)and the Xainza-Dinggye normal fault system.The main lithological assemblage comprises garnet plagioclase pyroxenite,garnet two-pyroxene granulite,pyroxene garnet amphibolite and so on.The detailed petrological analyses show that these mafic granulites underwent at least four-stage metamorphic evolution.The first metamor-phic stage,the garnet+clinopyroxene+quart mineral assemblage(M1)was probably formed un-der eclogite facies,the second stage,the plagioclase+clinopyroxene symplectite mineral as-semblage(M2)was produced under high-pressure granulite facies by the early decompressive breakdown of M1 mineral assemblage,the third stage,the plagioclase+clinopyroxene+hypersthene symplectite mineral assemblage(M3)was formed at granulite facies by the late period decompressive breakdown of M1 and M2 mineral assemblages and the final stage,pla-gioclase+hornblende mineral assemblage(M4)was formed by hydrolysis of earlier mineral as-semblages during late uplifting.The detailed mineral composition analyses suggest that garnets and clinopyroxenes within M1 and M2 mineral assemblages display similar compositions to the equivalents in the B and C types of eclogites,whereas the M3 clinopyroxenes are akin to these of the same kind of minerals in the granulite.These mineral chemistry features and P-T estimates calculated by mineral thermometers and barometers indicate that the early stage relic porphyro-blasts(M1)could be formed at the eclogite facies,the early decompressive breakdown(M2)occurred at the high-pressures granulite facies of 1.35―1.48 GPa and 625―675℃,the M3 mineral assemblage recorded the granulite facies of 0.7―0.95 GPa and 775―900℃and M4 plagioglase+hornblende retrograde mineral assemblage was produced under the amphibolite facies metamorphism with pressure of 0.4 to 0.75 GPa and temperature at between 660 and 700℃.These construct P-T paths from crustal subduction overthickening to tectonic uplift tectono-thermal evolution.The mineral chemical characteristics and P-T condition at every metamorphic stage of these granulites indicate that these rocks experienced the eclogite facies metamorphism during the early stage.Subsequently,these mafic granulites underwent the three-stage exhuma-tion of the eclogite facies tectonic uplift,isostatic uplift related to the transformation from ec-logite/high-pressure granulite to granulite facies and extensional uplift.
基金financially supported by the National Natural Science Foundation of China (Nos. 41802070,41572051)the China Postdoctoral Science Foundation (No. 2018M631319)the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources
文摘Yushugou granulite-peridotite complex,located at the east part of the northern margin of South Tianshan,may represent an ophiolitic slice subducted to 40–50 km depth with high-pressure granulite facies metamorphism.Although a lot of studies have been conducted on rocks in this belt,the rock association and tectonic background of the ophiolitic slice are still in dispute.A detailed study on petrology,phase equilibrium modeling and U-Pb zircon ages have been performed on the metagabbro vein in peridotite unit to constrain the tectonic evolution of the Yushugou granulite-peridotite complex.Three stages of mineral assemblage in the metagabbro were defined as stage I:Cpx^A+Opx^A+Pl^A,which represents the original minerals of the metagabbro vein;stage II:Cpx^B+Opx^B+Pl^B+Spl,which represents the mineral assemblage of granulite facies metamorphism with peak P-T conditions of 4.2–6.9 kbar and 940–1070℃;stage III is characterized by the existence of prehnite,thomsonite and amphibole in the matrix,indicating that the metagabbro vein may be influenced by fluids during retrograde metamorphism.Combined with the crosscut relationship,it can be deduced that the metagabbro vein,together with the peridotite in Yushugou granulite-peridotite complex has experienced similar high-temperature granulite facies metamorphism.The zircon chronological data shows that the protolith age of the metagabbro vein is 400.5±6.2 Ma,reflecting Devonian magmatism event and the granulite facies metamorphism occurred at^270 Ma which may be related to the post-collisional magmatism.
基金Project supported by the National Natural Science Foundation of China.
文摘There is a typical assemblage of garnet + kyanite + microperthite + quartz + rutile in high-pressure (HP) felsic granulite of Qinling complex in Songshugou area. East Qinling. The HP granulite was formed at 800 -900℃ and 1.3 -1.6GPa and has experienced two stages of retrograde metamorphism at 600- 650 ℃, 0.8-1.0GPa and 500-600℃, 0.3-0.6GPa, forming two retrograde metamorphic assemblages of margarite + plagiodase (PlI)+quartz and sillimanite + biotite + plagioclase(PlII) + microdine+quartz, respectively. They construct a two-stage clockwise P-T path which shows down-pressure cooling in both early and late stage.
基金supported by the National Basic Research Program of China(2012CB416606)the National Natural Science Foundation of China(41421002,41430209)+1 种基金MOST Special Fund from the State Key Laboratory of Continental Dynamics,the Natural Science Foundation of Education Department of Shaanxi Provincial Government(14JK1733)Program for Changjiang Scholars and Innovative Research Team in University(IRT1281)
文摘The ultrahigh-temperature(UHT) pelitic granulites from the Khondalite Belt, North China Craton(NCC), contain ilmenite in the matrix, which has been partially replaced by rutile. Based on this observation and the growth of biotite by garnet-consuming reaction, the UHT rocks are inferred to have recorded three metamorphic stages: the peak metamorphic stage(M1) and two retrograde metamorphic stages(M2 and M3). The M1 stage is represented by the assemblage of perthite+sillimanite+ ilmenite in the matrix, and quartz inclusions bearing(in the cores) garnet porphyroblasts. The M2 stage is defined by rutile-replacing ilmenite and growth of garnet mantles and rims containing acicular sillimanite inclusions, with the garnet+ perthite+ sillimanite+rutile+ ilmenite+ quartz assemblage. The M3 stage is recorded by the growth of biotite in the matrix, with the garnet+ biotite+ perthite+ sillimanite+rutile+ilmenite+quartz assemblage. Based on phase equilibrium modeling, an isobaric cooling path is reconstructed, which is consistent with the idea that mantle-derived magma provided the heat for the UHT metamorphism in the Khondalite Belt, NCC.