The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
Widespread magmatism, metamorphic core complexes(MCCs), and significant lithospheric thinning occurred during the Mesozoic in the North China Craton(NCC). It has been suggested that the coeval exhumation of MCCs with ...Widespread magmatism, metamorphic core complexes(MCCs), and significant lithospheric thinning occurred during the Mesozoic in the North China Craton(NCC). It has been suggested that the coeval exhumation of MCCs with uniform northwest-southeast shear senses and magmatism probably resulted from a decratonization event during the retreat of the paleo-Pacific Plate. Here we used two-dimensional finite element thermomechanical numerical models to investigate critical parameters controlling the formation of MCCs under far-field extensional stress. We observed three end-member deformation modes: the MCC mode, the symmetric-dome mode, and the pure-shear mode. The MCC mode requires a Moho temperature of ≥700 ℃ and an extensional strain rate of ≥5 × 10^(-16)s^(-1), implying that the lithosphere had already thinned when the MCC was formed in the Mesozoic. Considering that the widespread MCCs have the same northwest-southeast extension direction in the NCC, we suggest that the MCCs are surface expressions of both large-scale extension and craton destruction and that rollback of the paleo-Pacific slab might be the common driving force.展开更多
As one of the areas where typical late Archean crust is exposed in the Eastern Block of the North China Craton, the northern Laioning Complex consists principally of tonalitic-trondhjemitic-granodioritic (TTG) gneis...As one of the areas where typical late Archean crust is exposed in the Eastern Block of the North China Craton, the northern Laioning Complex consists principally of tonalitic-trondhjemitic-granodioritic (TTG) gneisses, massive granitoids and supracrustal rocks. The supracrustal rocks, named the Qingyuan Group, consist of interbedded amphibolite, hornblende granulite, biotite granulite and BIF. Petrological evidence indicates that the amphibolites experienced the early prograde (M1), peak (M2) and post-peak (M3) metamorphism. The early prograde assemblage (M1) is preserved as mineral inclusions, represented by actinotite + hornblende - plagioclase + epidote + quartz 4- sphene, within garnet porphyroblasts. The peak assemblage (M2) is indicated by garnet + clinopyroxene + hornblende + plagioclase + quartz + ilmenite, which occur as major mineral phases in the rock. The post-peak assemblage (M3) is characterized by the garnet 4- quartz symplectite. The P-T pseudosections in the NCFMASHTO system constructed by using THERMOCALC define the P-T conditions of M1, M2 and M3 at 490-550 C+(4.5 kbar, 780 810 C/7.65- 8.40 kbar and 630-670 +C]8.15-9.40 kbar, respectively. As a result, an anticlockwise P-T path involving isobaric cooling is inferred for the metamorphic evolution of the amphibolites. Such a P-T path suggests that the late Archean metamorphism of the northern Liaoning Complex was related to the intrusion and underplating of mantle-derived magmas. The underplating of voluminous mantle-derived magmas leading to metamorphism with an anticlockwise P-T path involving isobaric cooling may have occurred in continental magmatic arc regions, above hot spots driven by mantle plumes, or in continental rift envi- ronments. A mantle plume model is favored because this model can reasonably interpret many other geological features of late Archean basement rocks from the northern Liaoning Complex in the Eastern Block of the North China Craton as well as their anticlockwise P-T paths involving isobaric cooling.展开更多
The Longgang Block is one of the most important parts of the eastern North China Craton,characterized by extensive Late Neoarchean(~2.5 Ga)granulite facies metamorphism.However,it remains uncertain whether it was infl...The Longgang Block is one of the most important parts of the eastern North China Craton,characterized by extensive Late Neoarchean(~2.5 Ga)granulite facies metamorphism.However,it remains uncertain whether it was influenced by Paleoproterozoic magmatism-metamorphism.The authors provide a comprehensive analysis of amphibolite in Laojinchang area,southern Jilin Province,through petrographic,geochemical,mineralogical,and zircon dating.The main findings are as follows:The mineral assemblage of amphibolite is Hb+Pl+Cpx+Bi+Kf+Q,characteristic of amphibolite facies;zircon U-Pb dating indicates that the metamorphic age of amphibolite is 1834±33 Ma;the amphibolite has geochemical characteristics of calcium alkaline,with depletion of Nb,Ta,Ti and P.The plagioclase in the amphibolite is oligoclase,belonging to acidic plagioclase.It is speculated that the protolith of the amphibolite is diorite;using geothermobarometer,the peak metamorphic P-T conditions of amphibolite are determined to be 536–593℃/3.4–5.0 kbar,and the post-peak conditions are 429–566℃/1.3–3.1 kbar.The above results indicate that the Paleoproterozoic metamorphism has been superimposed on Longgang Block,linked to a new orogenic event on the northern edge of North China Craton.展开更多
A large-scale high-pressure granulite belt (HPGB), more than 700 km long, is recognized within the metamorphic basement of the North China craton. In the regional tectonic framework, the Hengshan-Chengde HPGB is locat...A large-scale high-pressure granulite belt (HPGB), more than 700 km long, is recognized within the metamorphic basement of the North China craton. In the regional tectonic framework, the Hengshan-Chengde HPGB is located in the central collision belt between the western block and eastern block, and represents the deep crustal structural level. The typical high-pressure granulite (HPG) outcrops are distributed in the Hengshan and Chengde areas. HPGs commonly occur as mafic xenoliths within ductile shear zones, and underwent multipile deformations. To the south, the Hengshan-Chengde HPGB is juxtaposed with the Wutai greenstone belt by several strike-slip shear zones. Preliminary isotopic age dating indicates that HPGs from North China were mainly generated at the end of the Neoarchaean, assocaited with tectonic assembly of the western and eastern blocks.展开更多
Aeromagnetic anomaly zonation of the Ordos Basin and adjacent areas was obtained by processing high-precision and large-scale aeromagnetic anomalies with an approach of reduction to the pole upward continuation. Compa...Aeromagnetic anomaly zonation of the Ordos Basin and adjacent areas was obtained by processing high-precision and large-scale aeromagnetic anomalies with an approach of reduction to the pole upward continuation. Comparative study on aeromagnetic and seismic tomography suggests that aeromagnetic anomalies in this area are influenced by both the magnetic property of the rock and the burial depth of the Precambrian crystalline basement. Basement depth might be the fundamental control factor for aeromagnetic anomalies because the positive and negative anomalies on the reduction to the pole- upward-continuation anomaly maps roughly coincide with the uplifts and depressions of the crystalline basement in the basin. The results, together with the latest understanding of basement faults, SHRIMP U-Pb zircon dating of metamorphic rock and granite, drilling data, detrital zircon ages, and gravity data interpretation, suggest that the Ordos block is not an entirety of Archean.展开更多
Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite norm...Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite normalized REE patterns. Rocks in Group #1 are characterized by nearly flat REE patterns (Lan/Ybn=0.86-1.3), the lowest total REEs (29-52 ppm), and weak negative to positive Eu anomalies (Eun/Eun=0.84-1.02), nearly flat primitive mantle normalized patterns and strong negative Zr(Hf) anomalies. Their geochemical characteristics in REEs and trace elements are similar to those of ocean plateau tholeiite, which imply that this group of rocks can represent remnants of Archean oceanic crust derived from a mantle plume. Rocks in Group #2 are characterized by moderate total REEs (34-116 ppm), LREE-enriched (Lan/Ybn=1.76-4.34) chondrite normalized REE patterns with weak Eu anomalies (Eun/Eun=0.76-1.16), and negative Nb, Ta, Zr(Hf), Ti anomalies in the primitive mantle normalized spider diagram. The REE and trace element characteristics indicate that they represent arc magmas originating from a sub-arc mantle wedge metasomatized by slab-derived fluids. Rocks in Group #3 are characterized by the highest total REEs (61-192 ppm), the strongest LREEs enrichment (Lan/Ybn=7.12-16) with slightly negative Eu anomalies (Eun/Eun=0.81-0.95) in the chondrite normalized diagram. In the primitive mantle normalized diagram, these rocks are characterized by large negative anomalies in Nb, Ta, Ti, negative to no Zr anomalies. They represent arc magmas originating from a sub-arc mantle wedge enriched in slab-derived melts. The three groups of rocks imply that the formation of the Neoarchean Wutai Complex is related to mantle plumes and island-arc interaction.展开更多
The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.H...The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.However, the Precambrian basement of the Alxa Block is still poorly studied. In this study, we present new in situ LA-ICPMS zircon U-Pb and Lu-Hf isotope data from the Diebusige Metamorphic Complex(DMC) which located in the eastern Alxa Block. Field and petrological studies show that the DMC consists mainly of metamorphic supracrustal rocks and minor metamorphic plutonic rocks and has experienced amphibolite-granulite facies metamorphism. Zircon U-Pb dating results suggested that the amphibolite sample yields a crystallization age of 2636 ± 14 Ma and metamorphic ages of 2517–2454 Ma and 1988–1952 Ma, proving the existence of exposed Archean rocks in the Langshan area and indicating that late Neoarchean to Paleoproterozoic metamorphic events existed in the Alxa Block. Two paragneiss samples show that the magmatic detrital zircons from the DMC yield 207Pb/206Pb ages ranging from 2.48 Ga to 2.10 Ga with two youngest peaks at 2.13 Ga and 2.16 Ga, respectively, and they were also overprinted by metamorphic events at 1.97–1.90 Ga and 1.89–1.79Ga. Compilation of U-Pb ages of magmatic detrital and metamorphic zircons suggested that the main part of the DMC may have been formed at 2.1–2.0 Ga. Zircon Lu-Hf isotope data show that the source materials of the main part of the DMC were originated from the reworking of ancient Archean crust(3.45–2.78 Ga). The Hf isotope characteristics and the tectonothermal event records exhibit different evolution history with the Khondalite Belt and the Yinshan Block and the other basements of the Alxa Block, indicating that the Langshan was likely an independent terrain before the middle Paleoproterozoic and was subjected to the middle to late Paleoproterozoic tectonothermal events with the Khondalite Belt as a whole.展开更多
Petrological analysis and LA-ICP-MS zircon U-Pb dating were conducted on high- pressure marie granulites, which occured as xenolith within TTG gneisses, from the Nanshankou Village of the Jiaobei terrane, Shandong Pen...Petrological analysis and LA-ICP-MS zircon U-Pb dating were conducted on high- pressure marie granulites, which occured as xenolith within TTG gneisses, from the Nanshankou Village of the Jiaobei terrane, Shandong Peninsula in the north-eastern part of the North China Craton (NCC). The mafic HP grannlite is composed of garnet, clinopyroxene, orthopyroxene, amphibole and symplectitic clinopyroxene, orthopyroxene, plagioclase, ilmente and magnetite which were formed after the decomposition of porphyroblastic garnet and clinopyroxene. Four stages of metamorphic mineral assemblages for the mafic HP granulites were constrained by detail petrological and mineralogical in- vestigations. The early prograde assemblage is represented by the mineral inclusions within garnet and clinopyroxene porphyroblasts (Opx1+Pl1+Qtz1), recording the metamorphic conditions at -754-757 ℃, 0.63-0.71 GPa; peak metamorphic conditions were determined at -874-891 ℃, 1.32-1.35 GPa with the mineral assemblage of Grt2+Cpx2+Amp2+Pl2+Qtz2. Retrograde minerals derived from symplectitic assemblage Opx3+Cpx3+Amp3+Pl3+Qtz3+Ilm3±Mag3 were formed at 693-796℃, 0.60-0.84 GPa. A final greensehist to sub-greenschist facies event was recorded by the exsolution of actinolite and albite within a retrograded clinopyroxene, as well as the occurrence of prehnite, chlorite and calcite minerals. Accordingly, a clockwise P-T path was concluded on the basis of the different stages of mineral asseblage. Cathodoluminescence imaging, trace element and U-Pb dating of zircons from the mafic HP granulites recorded similar charactistics for three episodes of Paleo-Meso Proterozoic metamorphic events. These are the metamorphic events preserved in mafic and pelitic granulites in the Jiao-Liao-Ji belt (JLJB) with 207 pb/206pb ages of 2.0-1.9 Ga for peak metamorphism and of 1.86-1.84 Ga for decomposing process, followed by a retrograde amphibolite facies metamorphic event related to the post-orogenic extension at the age of 1.76-1.74 Ga, resulting the exhumation of the granulite to the upper crust level.展开更多
Pelitic granulite from the Huangtuyao area,occurrs in the Huai'an Complex,is located in the Trans-North China Orogen of the North China Craton.On the basis of petrolography,mineral component,and phase equilibrium ...Pelitic granulite from the Huangtuyao area,occurrs in the Huai'an Complex,is located in the Trans-North China Orogen of the North China Craton.On the basis of petrolography,mineral component,and phase equilibrium modeling studies,the P-T conditions and mineral assemblages of pelitic granulites can be divided into four metamorphic stages:the prograde metamorphic stage M1 defined by the stable mineral assemblage of Grt1(garnet core)+Pl+Bt+Kfs+Qz+Rt,the peak pressure Pmax stage M2 indicated by Grt2(garnet mantle)+Kfs±(Ky)+Rt+Qz+Liq(melt),peak temperature Tmax stage M3 characterized by Grt3(garnet rim)+Sill+Pl+Kfs+Qz+Ilm+Liq,and retrograde stage M4 represented by Grt(in matrix)+Kfs+Sill+Bt+Pl+Qz+Ilm.By using the THERMOCALC V340,the P-T conditions are estimated at^13.8–14.1 kbar and^840–850℃at stage M2,and 7–7.2 kbar and 909–915℃for the Tmax stage M3,indicating an ultra-high temperature(UHT)metamorphic overprinting during decompression and heating process after high pressure granulite facies metamorphism.The mineral assemblages and their P-T conditions presented a clockwise P-T trajectory for the Huangtuyao pelitic granulites.The major metamorphic events at^1.95 and^1.88 Ga obtained by the zircon U-Pb dating suggest that pelitic granulites from the Huangtuyao area has undergone HP granulite metamorphism which probably occurred in the prograde metamorphism and related to the collision between the Ordos and the Yinshan blocks,and afterwards UHT metamorphism is related to crustal extension after continental-continental collision.展开更多
The studied mafic granulites are located at Xiwangshan,Xuanhua region in the north of the Trans-North China Orogen(TNCO),occurring as lens within tonalite-trondhjemite-granodiorite(TTG)gneisses in the eastern part of ...The studied mafic granulites are located at Xiwangshan,Xuanhua region in the north of the Trans-North China Orogen(TNCO),occurring as lens within tonalite-trondhjemite-granodiorite(TTG)gneisses in the eastern part of the Xiwangshan area.The rocks contain the representative granulite-facies minerals such as garnet,clinopyroxene,orthopyroxene,plagioclase,amphibolite,rutile and quartz,and also well-developed melt pseudomorph and antiperthite.Although the prograde metamorphic stage(M1)cannot be retrieved due to rare preservation of pre-peak-stage mineral associations,three distinct mineral assemblages that formed in different metamorphic stages can be identified,based on petrography and mineralogy characteristics.The peak stage(M2)is characterized by Grt2+Cpx2+Amp2+Pl2+Rt+melt pseudomorphs,and a post-peak decompression stage(M3)contains a mineral assemblage of Grt3+Opx3+Cpx3+Amp3+Pl3,while a later-retrogression stage(M4)is featured by coronas of Amp4+Pl4 surrounding garnet.By calculating metamorphic P-T conditions using THERMOCALC,stage M2 was constrained to be 13.2–14.8 kbar and 1050–1080℃,and M3 recorded P-T conditions of 5.7–7.3 kbar and 825–875℃,while M4 yielded P of^5 kbar and T of^660℃,consistent with amphibolite facies metamorphism.Taking into account of all these petrological data,we propose that the mafic granulite experienced a high-pressure(HP)and ultra-high temperature(UHT)granulite-facies metamorphism during the peak metamorphism,which was accompanied with a clockwise P-T path.U-Pb dating of metamorphic zircons in the granulites yields two groups of ages at 1853±14 and 1744±44 Ma,respectively.We suggest that the older age corresponded to the HP-UHT metamorphism,while the younger age represented an retrograde metamorphic event during cooling.展开更多
The Liaodong Peninsula,in the northeastern part of the Eastern Block in the North China Craton,China, consists of lithologic units from Archean to Cenozoic in age.The basement rocks consist of widespread amphibolite-t...The Liaodong Peninsula,in the northeastern part of the Eastern Block in the North China Craton,China, consists of lithologic units from Archean to Cenozoic in age.The basement rocks consist of widespread amphibolite-to granulite-facies Archean supracrustal assemblages and granitoid gneisses,as well as Paleoproterozoic volcano-sedimentary successions that were intruded by granitic-marie complexes,and then metamorphosed under greenschist-to amphibolite-facies conditions.The basement rocks are overlainby thick Mesoproterozoic- Cenozoic sedimentary sequences.A synthesis of the available petrological and geochronological data allowed us to establish a geological framework for the Precambrian basement on the Liaodong Peninsula and its vicinity.The basement can be subdivided into three tectonic units:the Neoarchean Liaonan Block,the Eo-Neoarchean Longgang Block,and the intervening Paleoproterozoic Jiao-Liao-Ji Belt.In this paper we delineate the characteristics of an Archean tectonothermal event,and in a companion paper we examine the Paleoproterozoic lithotectonic assemblages.Rock samples of the Hadean eon are rare worldwide,but Hadean zircons have been identified in rocks of the Liaodong Peninsula,and they provide one of the oldest known mineralogical records on Earth.The Archean gneisses in the Liaonan Block are dominated by quartz dioritic-granodioritic gneisses that were emplaced between 2.55 and 2.44 Ga,and these rocks later underwent a lower-amphibolite-facies metamorphism.On the other hand,the Archean basement in the Longgang Block is dominated by TTG (tonalitic-trondhjemitic-granodioritic) and granitic gneisses,chamocldtes,and small amounts of supracrustal sequences with much older protolith ages of up to 3.85 Ga,and these rocks have undergone amphibolite-to granulite-facies metamorphism.Posttectonic magrnatism (ca.2.5 Ga)marked the end of the Archean tectonothermal event in the Eastern Block of the North China Craton.展开更多
Metamorphic core complex(MCC) is characterized by the exhumation of lower crust over a large-scale detachment fault, providing natural records for tectonic extension. MCCs are widely identified in the North China Crat...Metamorphic core complex(MCC) is characterized by the exhumation of lower crust over a large-scale detachment fault, providing natural records for tectonic extension. MCCs are widely identified in the North China Craton(NCC), which have been intensively studied on their structural and geological characteristics. Yet, the condition for the formation of MCCs and their link with NCC destruction are still in debate. In this study, we perform numerical simulations to investigate MCC formation under extension, with a focus on the effect of crustal rheologies. Results indicate that three end-member modes of deformation may occur: the metamorphic core complex mode, the detachment fault-uplifting mode and the pure shear mode. Weaker lower crust and stronger upper crust may promote the formation of MCC. In contrast, stronger lower crust(>1.3×1021 Pa s) may prohibit the exhumation of lower crust(detachment fault-uplifting mode), while weaker upper crust(<7.8×1021 Pa s) may fail to develop detachment faults(pure shear mode). Given that cratons typically have a strong crust, we suggest that the lower crust of NCC was weakened prior to extension, which promoted the formation of MCC in a later stage under the back-arc extension.展开更多
Zircon U-Pb ages are reported for three samples of intrusive rocks in Khondalite series in the Sanggan area, North China craton. The age of meta-granite is dated as 2005±9 Ma, implying that the sedimentary sequen...Zircon U-Pb ages are reported for three samples of intrusive rocks in Khondalite series in the Sanggan area, North China craton. The age of meta-granite is dated as 2005±9 Ma, implying that the sedimentary sequences in Khondalites series formed before 2.0Ga. The age of 1921 ±1Ma for the meta-diorite constrain the age of granulite facies metamorphism younger than this date. The age of 1892±10 Ma for garnet granite is obtained, but the granite crystallization age seems a little younger than the date considering the morphology of zircons. On the basis of these dates and of a concise review of previous age data, it is inferred that the Khondalite series was subjected to granulite facies metamorphism at about 1.87Ga together with tonalitic granulites and HP basic granulites in the Sanggan area.展开更多
Migmatite-like rocks transformed from strongly metamorphosed and deformed enclave- bearing felsic plutons usually make people confuse with the true migmatites and mistake in interpreta- tion of their petrogenesis and ...Migmatite-like rocks transformed from strongly metamorphosed and deformed enclave- bearing felsic plutons usually make people confuse with the true migmatites and mistake in interpreta- tion of their petrogenesis and tectonic implications. Here we report a suite of rocks that have long been called as migmatites from the Guandi complex in Zhoukoudian region, southwest of Beijing. The rocks are dominated by felsic gneisses with garnet-free amphibolites. Field occurrence, petrography and geochemistry indicate that the felsic gneisses and amphibolites were metamorphosed from protoliths of intermediate-acid and basic igneous rocks, respectively. New LA-ICP-MS zircon U-Pb dating and geothermobarometry study further reveal that precursor magmas of the two types of rocks were emplaced at 2.54-2.56 Ga and the rocks subsequently underwent medium P/T-type metamorphism with upper amphibolite facies conditions of 0.55-0.90 GPa and 670-730℃ at -2.48-2.50 Ga. Geochemically, precursor magmas of the amphibolites were suggested to be derived from an enriched lithospheric mantle source in continental arc setting, and those of the felsic gneisses are characterized by tonalitic to trondhjemitic magmas that are usually considered to be generated by partial melting of hydrated, thickened metamorphosed mafic crust with garnet as residues, suggesting that the rock associations are not of true migmatites but migmatite-like rocks. Our study reveal that protoliths of the migmatite-like rocks from the Guandi complex, were likely formed via magmatism in a continental arc setting, followed by accretion and collision of the continental arc as well as the intro-oceanic arc terranes to the Eastern Block of the North China Craton in the transition from the Late Neoarchean to Early Paleoprnterozuic.展开更多
基金financially supported by the Ph.D Foundation of the Ministry of Education of China(grant No.20133402130008)the National Basic Research Program of China(grant No.2015CB856104)the National Natural Science Foundation of China(grant No.41273036)
文摘The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
基金supported by the National Natural Science Foundation of China(Grant No.41774112)。
文摘Widespread magmatism, metamorphic core complexes(MCCs), and significant lithospheric thinning occurred during the Mesozoic in the North China Craton(NCC). It has been suggested that the coeval exhumation of MCCs with uniform northwest-southeast shear senses and magmatism probably resulted from a decratonization event during the retreat of the paleo-Pacific Plate. Here we used two-dimensional finite element thermomechanical numerical models to investigate critical parameters controlling the formation of MCCs under far-field extensional stress. We observed three end-member deformation modes: the MCC mode, the symmetric-dome mode, and the pure-shear mode. The MCC mode requires a Moho temperature of ≥700 ℃ and an extensional strain rate of ≥5 × 10^(-16)s^(-1), implying that the lithosphere had already thinned when the MCC was formed in the Mesozoic. Considering that the widespread MCCs have the same northwest-southeast extension direction in the NCC, we suggest that the MCCs are surface expressions of both large-scale extension and craton destruction and that rollback of the paleo-Pacific slab might be the common driving force.
基金financially funded by Chinese NSFC Grants(41190075,40730315, 40872123 and 41072152)Hong Kong RGC GRF grants(7066/ 07P and 7053/08P)
文摘As one of the areas where typical late Archean crust is exposed in the Eastern Block of the North China Craton, the northern Laioning Complex consists principally of tonalitic-trondhjemitic-granodioritic (TTG) gneisses, massive granitoids and supracrustal rocks. The supracrustal rocks, named the Qingyuan Group, consist of interbedded amphibolite, hornblende granulite, biotite granulite and BIF. Petrological evidence indicates that the amphibolites experienced the early prograde (M1), peak (M2) and post-peak (M3) metamorphism. The early prograde assemblage (M1) is preserved as mineral inclusions, represented by actinotite + hornblende - plagioclase + epidote + quartz 4- sphene, within garnet porphyroblasts. The peak assemblage (M2) is indicated by garnet + clinopyroxene + hornblende + plagioclase + quartz + ilmenite, which occur as major mineral phases in the rock. The post-peak assemblage (M3) is characterized by the garnet 4- quartz symplectite. The P-T pseudosections in the NCFMASHTO system constructed by using THERMOCALC define the P-T conditions of M1, M2 and M3 at 490-550 C+(4.5 kbar, 780 810 C/7.65- 8.40 kbar and 630-670 +C]8.15-9.40 kbar, respectively. As a result, an anticlockwise P-T path involving isobaric cooling is inferred for the metamorphic evolution of the amphibolites. Such a P-T path suggests that the late Archean metamorphism of the northern Liaoning Complex was related to the intrusion and underplating of mantle-derived magmas. The underplating of voluminous mantle-derived magmas leading to metamorphism with an anticlockwise P-T path involving isobaric cooling may have occurred in continental magmatic arc regions, above hot spots driven by mantle plumes, or in continental rift envi- ronments. A mantle plume model is favored because this model can reasonably interpret many other geological features of late Archean basement rocks from the northern Liaoning Complex in the Eastern Block of the North China Craton as well as their anticlockwise P-T paths involving isobaric cooling.
基金Supported by projects of the National Natural Science Foundation of China(Nos.42172213,42372255).
文摘The Longgang Block is one of the most important parts of the eastern North China Craton,characterized by extensive Late Neoarchean(~2.5 Ga)granulite facies metamorphism.However,it remains uncertain whether it was influenced by Paleoproterozoic magmatism-metamorphism.The authors provide a comprehensive analysis of amphibolite in Laojinchang area,southern Jilin Province,through petrographic,geochemical,mineralogical,and zircon dating.The main findings are as follows:The mineral assemblage of amphibolite is Hb+Pl+Cpx+Bi+Kf+Q,characteristic of amphibolite facies;zircon U-Pb dating indicates that the metamorphic age of amphibolite is 1834±33 Ma;the amphibolite has geochemical characteristics of calcium alkaline,with depletion of Nb,Ta,Ti and P.The plagioclase in the amphibolite is oligoclase,belonging to acidic plagioclase.It is speculated that the protolith of the amphibolite is diorite;using geothermobarometer,the peak metamorphic P-T conditions of amphibolite are determined to be 536–593℃/3.4–5.0 kbar,and the post-peak conditions are 429–566℃/1.3–3.1 kbar.The above results indicate that the Paleoproterozoic metamorphism has been superimposed on Longgang Block,linked to a new orogenic event on the northern edge of North China Craton.
文摘A large-scale high-pressure granulite belt (HPGB), more than 700 km long, is recognized within the metamorphic basement of the North China craton. In the regional tectonic framework, the Hengshan-Chengde HPGB is located in the central collision belt between the western block and eastern block, and represents the deep crustal structural level. The typical high-pressure granulite (HPG) outcrops are distributed in the Hengshan and Chengde areas. HPGs commonly occur as mafic xenoliths within ductile shear zones, and underwent multipile deformations. To the south, the Hengshan-Chengde HPGB is juxtaposed with the Wutai greenstone belt by several strike-slip shear zones. Preliminary isotopic age dating indicates that HPGs from North China were mainly generated at the end of the Neoarchaean, assocaited with tectonic assembly of the western and eastern blocks.
基金financially supported by the National Basic Research Program of China(NBRPC,973 program)(2011CB403001)
文摘Aeromagnetic anomaly zonation of the Ordos Basin and adjacent areas was obtained by processing high-precision and large-scale aeromagnetic anomalies with an approach of reduction to the pole upward continuation. Comparative study on aeromagnetic and seismic tomography suggests that aeromagnetic anomalies in this area are influenced by both the magnetic property of the rock and the burial depth of the Precambrian crystalline basement. Basement depth might be the fundamental control factor for aeromagnetic anomalies because the positive and negative anomalies on the reduction to the pole- upward-continuation anomaly maps roughly coincide with the uplifts and depressions of the crystalline basement in the basin. The results, together with the latest understanding of basement faults, SHRIMP U-Pb zircon dating of metamorphic rock and granite, drilling data, detrital zircon ages, and gravity data interpretation, suggest that the Ordos block is not an entirety of Archean.
基金The National Natural Science Foundation of. China (Grant No.40420120135 and 40472096) are thankefl for the fthancial support.
文摘Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite normalized REE patterns. Rocks in Group #1 are characterized by nearly flat REE patterns (Lan/Ybn=0.86-1.3), the lowest total REEs (29-52 ppm), and weak negative to positive Eu anomalies (Eun/Eun=0.84-1.02), nearly flat primitive mantle normalized patterns and strong negative Zr(Hf) anomalies. Their geochemical characteristics in REEs and trace elements are similar to those of ocean plateau tholeiite, which imply that this group of rocks can represent remnants of Archean oceanic crust derived from a mantle plume. Rocks in Group #2 are characterized by moderate total REEs (34-116 ppm), LREE-enriched (Lan/Ybn=1.76-4.34) chondrite normalized REE patterns with weak Eu anomalies (Eun/Eun=0.76-1.16), and negative Nb, Ta, Zr(Hf), Ti anomalies in the primitive mantle normalized spider diagram. The REE and trace element characteristics indicate that they represent arc magmas originating from a sub-arc mantle wedge metasomatized by slab-derived fluids. Rocks in Group #3 are characterized by the highest total REEs (61-192 ppm), the strongest LREEs enrichment (Lan/Ybn=7.12-16) with slightly negative Eu anomalies (Eun/Eun=0.81-0.95) in the chondrite normalized diagram. In the primitive mantle normalized diagram, these rocks are characterized by large negative anomalies in Nb, Ta, Ti, negative to no Zr anomalies. They represent arc magmas originating from a sub-arc mantle wedge enriched in slab-derived melts. The three groups of rocks imply that the formation of the Neoarchean Wutai Complex is related to mantle plumes and island-arc interaction.
基金funded by the Basic Scientific Research Fund of the Institute of Geology, Chinese Academy of Geological Sciences (Grant No. J2103)National Key Research and Development Project of the Ministry of Science and Technology of China (Grant No. 2017YFC0601301)+1 种基金the National Natural Science Foundation of China (Grant No. 41972224)the China Geological Survey (Grant No. DD2019004)。
文摘The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.However, the Precambrian basement of the Alxa Block is still poorly studied. In this study, we present new in situ LA-ICPMS zircon U-Pb and Lu-Hf isotope data from the Diebusige Metamorphic Complex(DMC) which located in the eastern Alxa Block. Field and petrological studies show that the DMC consists mainly of metamorphic supracrustal rocks and minor metamorphic plutonic rocks and has experienced amphibolite-granulite facies metamorphism. Zircon U-Pb dating results suggested that the amphibolite sample yields a crystallization age of 2636 ± 14 Ma and metamorphic ages of 2517–2454 Ma and 1988–1952 Ma, proving the existence of exposed Archean rocks in the Langshan area and indicating that late Neoarchean to Paleoproterozoic metamorphic events existed in the Alxa Block. Two paragneiss samples show that the magmatic detrital zircons from the DMC yield 207Pb/206Pb ages ranging from 2.48 Ga to 2.10 Ga with two youngest peaks at 2.13 Ga and 2.16 Ga, respectively, and they were also overprinted by metamorphic events at 1.97–1.90 Ga and 1.89–1.79Ga. Compilation of U-Pb ages of magmatic detrital and metamorphic zircons suggested that the main part of the DMC may have been formed at 2.1–2.0 Ga. Zircon Lu-Hf isotope data show that the source materials of the main part of the DMC were originated from the reworking of ancient Archean crust(3.45–2.78 Ga). The Hf isotope characteristics and the tectonothermal event records exhibit different evolution history with the Khondalite Belt and the Yinshan Block and the other basements of the Alxa Block, indicating that the Langshan was likely an independent terrain before the middle Paleoproterozoic and was subjected to the middle to late Paleoproterozoic tectonothermal events with the Khondalite Belt as a whole.
基金supported by the National Natural Science Foundation of China (No. 41272072)the NSFC/NRF Research Cooperation Programm (No. 41761144061)the SDUST Research Fund (No. 2015TDJH101)
文摘Petrological analysis and LA-ICP-MS zircon U-Pb dating were conducted on high- pressure marie granulites, which occured as xenolith within TTG gneisses, from the Nanshankou Village of the Jiaobei terrane, Shandong Peninsula in the north-eastern part of the North China Craton (NCC). The mafic HP grannlite is composed of garnet, clinopyroxene, orthopyroxene, amphibole and symplectitic clinopyroxene, orthopyroxene, plagioclase, ilmente and magnetite which were formed after the decomposition of porphyroblastic garnet and clinopyroxene. Four stages of metamorphic mineral assemblages for the mafic HP granulites were constrained by detail petrological and mineralogical in- vestigations. The early prograde assemblage is represented by the mineral inclusions within garnet and clinopyroxene porphyroblasts (Opx1+Pl1+Qtz1), recording the metamorphic conditions at -754-757 ℃, 0.63-0.71 GPa; peak metamorphic conditions were determined at -874-891 ℃, 1.32-1.35 GPa with the mineral assemblage of Grt2+Cpx2+Amp2+Pl2+Qtz2. Retrograde minerals derived from symplectitic assemblage Opx3+Cpx3+Amp3+Pl3+Qtz3+Ilm3±Mag3 were formed at 693-796℃, 0.60-0.84 GPa. A final greensehist to sub-greenschist facies event was recorded by the exsolution of actinolite and albite within a retrograded clinopyroxene, as well as the occurrence of prehnite, chlorite and calcite minerals. Accordingly, a clockwise P-T path was concluded on the basis of the different stages of mineral asseblage. Cathodoluminescence imaging, trace element and U-Pb dating of zircons from the mafic HP granulites recorded similar charactistics for three episodes of Paleo-Meso Proterozoic metamorphic events. These are the metamorphic events preserved in mafic and pelitic granulites in the Jiao-Liao-Ji belt (JLJB) with 207 pb/206pb ages of 2.0-1.9 Ga for peak metamorphism and of 1.86-1.84 Ga for decomposing process, followed by a retrograde amphibolite facies metamorphic event related to the post-orogenic extension at the age of 1.76-1.74 Ga, resulting the exhumation of the granulite to the upper crust level.
基金supported by funds from the NSFC/NRF Research Cooperation Programme (No. 41761144061)the NSFSD (No. ZR2016DM04)the SDUST Research Fund (No. 2015TDJH101)
文摘Pelitic granulite from the Huangtuyao area,occurrs in the Huai'an Complex,is located in the Trans-North China Orogen of the North China Craton.On the basis of petrolography,mineral component,and phase equilibrium modeling studies,the P-T conditions and mineral assemblages of pelitic granulites can be divided into four metamorphic stages:the prograde metamorphic stage M1 defined by the stable mineral assemblage of Grt1(garnet core)+Pl+Bt+Kfs+Qz+Rt,the peak pressure Pmax stage M2 indicated by Grt2(garnet mantle)+Kfs±(Ky)+Rt+Qz+Liq(melt),peak temperature Tmax stage M3 characterized by Grt3(garnet rim)+Sill+Pl+Kfs+Qz+Ilm+Liq,and retrograde stage M4 represented by Grt(in matrix)+Kfs+Sill+Bt+Pl+Qz+Ilm.By using the THERMOCALC V340,the P-T conditions are estimated at^13.8–14.1 kbar and^840–850℃at stage M2,and 7–7.2 kbar and 909–915℃for the Tmax stage M3,indicating an ultra-high temperature(UHT)metamorphic overprinting during decompression and heating process after high pressure granulite facies metamorphism.The mineral assemblages and their P-T conditions presented a clockwise P-T trajectory for the Huangtuyao pelitic granulites.The major metamorphic events at^1.95 and^1.88 Ga obtained by the zircon U-Pb dating suggest that pelitic granulites from the Huangtuyao area has undergone HP granulite metamorphism which probably occurred in the prograde metamorphism and related to the collision between the Ordos and the Yinshan blocks,and afterwards UHT metamorphism is related to crustal extension after continental-continental collision.
基金supported by the National Natural Science Foundation of China (No. 41761144061)the Shandong Provincial Natural Science Foundation (No. ZR2016DM04)the University Students Innovation Program of SDUST (No. 2015TDJH101)
文摘The studied mafic granulites are located at Xiwangshan,Xuanhua region in the north of the Trans-North China Orogen(TNCO),occurring as lens within tonalite-trondhjemite-granodiorite(TTG)gneisses in the eastern part of the Xiwangshan area.The rocks contain the representative granulite-facies minerals such as garnet,clinopyroxene,orthopyroxene,plagioclase,amphibolite,rutile and quartz,and also well-developed melt pseudomorph and antiperthite.Although the prograde metamorphic stage(M1)cannot be retrieved due to rare preservation of pre-peak-stage mineral associations,three distinct mineral assemblages that formed in different metamorphic stages can be identified,based on petrography and mineralogy characteristics.The peak stage(M2)is characterized by Grt2+Cpx2+Amp2+Pl2+Rt+melt pseudomorphs,and a post-peak decompression stage(M3)contains a mineral assemblage of Grt3+Opx3+Cpx3+Amp3+Pl3,while a later-retrogression stage(M4)is featured by coronas of Amp4+Pl4 surrounding garnet.By calculating metamorphic P-T conditions using THERMOCALC,stage M2 was constrained to be 13.2–14.8 kbar and 1050–1080℃,and M3 recorded P-T conditions of 5.7–7.3 kbar and 825–875℃,while M4 yielded P of^5 kbar and T of^660℃,consistent with amphibolite facies metamorphism.Taking into account of all these petrological data,we propose that the mafic granulite experienced a high-pressure(HP)and ultra-high temperature(UHT)granulite-facies metamorphism during the peak metamorphism,which was accompanied with a clockwise P-T path.U-Pb dating of metamorphic zircons in the granulites yields two groups of ages at 1853±14 and 1744±44 Ma,respectively.We suggest that the older age corresponded to the HP-UHT metamorphism,while the younger age represented an retrograde metamorphic event during cooling.
基金the Science Foundation of China University of Petroleum,Beijing (2462017YJRC032)the Science Foundation of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing (PRP/indep-4-1702)+1 种基金the National Key Basic Research Program of China (No.2012CB416603)the National Natural Science Foundation of China (Grant Nos.41430207 and 90914001).
文摘The Liaodong Peninsula,in the northeastern part of the Eastern Block in the North China Craton,China, consists of lithologic units from Archean to Cenozoic in age.The basement rocks consist of widespread amphibolite-to granulite-facies Archean supracrustal assemblages and granitoid gneisses,as well as Paleoproterozoic volcano-sedimentary successions that were intruded by granitic-marie complexes,and then metamorphosed under greenschist-to amphibolite-facies conditions.The basement rocks are overlainby thick Mesoproterozoic- Cenozoic sedimentary sequences.A synthesis of the available petrological and geochronological data allowed us to establish a geological framework for the Precambrian basement on the Liaodong Peninsula and its vicinity.The basement can be subdivided into three tectonic units:the Neoarchean Liaonan Block,the Eo-Neoarchean Longgang Block,and the intervening Paleoproterozoic Jiao-Liao-Ji Belt.In this paper we delineate the characteristics of an Archean tectonothermal event,and in a companion paper we examine the Paleoproterozoic lithotectonic assemblages.Rock samples of the Hadean eon are rare worldwide,but Hadean zircons have been identified in rocks of the Liaodong Peninsula,and they provide one of the oldest known mineralogical records on Earth.The Archean gneisses in the Liaonan Block are dominated by quartz dioritic-granodioritic gneisses that were emplaced between 2.55 and 2.44 Ga,and these rocks later underwent a lower-amphibolite-facies metamorphism.On the other hand,the Archean basement in the Longgang Block is dominated by TTG (tonalitic-trondhjemitic-granodioritic) and granitic gneisses,chamocldtes,and small amounts of supracrustal sequences with much older protolith ages of up to 3.85 Ga,and these rocks have undergone amphibolite-to granulite-facies metamorphism.Posttectonic magrnatism (ca.2.5 Ga)marked the end of the Archean tectonothermal event in the Eastern Block of the North China Craton.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41304074, 91014006 & 91414301)
文摘Metamorphic core complex(MCC) is characterized by the exhumation of lower crust over a large-scale detachment fault, providing natural records for tectonic extension. MCCs are widely identified in the North China Craton(NCC), which have been intensively studied on their structural and geological characteristics. Yet, the condition for the formation of MCCs and their link with NCC destruction are still in debate. In this study, we perform numerical simulations to investigate MCC formation under extension, with a focus on the effect of crustal rheologies. Results indicate that three end-member modes of deformation may occur: the metamorphic core complex mode, the detachment fault-uplifting mode and the pure shear mode. Weaker lower crust and stronger upper crust may promote the formation of MCC. In contrast, stronger lower crust(>1.3×1021 Pa s) may prohibit the exhumation of lower crust(detachment fault-uplifting mode), while weaker upper crust(<7.8×1021 Pa s) may fail to develop detachment faults(pure shear mode). Given that cratons typically have a strong crust, we suggest that the lower crust of NCC was weakened prior to extension, which promoted the formation of MCC in a later stage under the back-arc extension.
基金the National Natural Science Foundation of China (Grant Nos. 49972064, 49832030, 49929301).
文摘Zircon U-Pb ages are reported for three samples of intrusive rocks in Khondalite series in the Sanggan area, North China craton. The age of meta-granite is dated as 2005±9 Ma, implying that the sedimentary sequences in Khondalites series formed before 2.0Ga. The age of 1921 ±1Ma for the meta-diorite constrain the age of granulite facies metamorphism younger than this date. The age of 1892±10 Ma for garnet granite is obtained, but the granite crystallization age seems a little younger than the date considering the morphology of zircons. On the basis of these dates and of a concise review of previous age data, it is inferred that the Khondalite series was subjected to granulite facies metamorphism at about 1.87Ga together with tonalitic granulites and HP basic granulites in the Sanggan area.
基金supported by the National Natural Science Foundation of China (No. 41672060)the Undergraduate Teaching Projects of China University of Geosciences (Nos. ZL201610 and 2018G36)
文摘Migmatite-like rocks transformed from strongly metamorphosed and deformed enclave- bearing felsic plutons usually make people confuse with the true migmatites and mistake in interpreta- tion of their petrogenesis and tectonic implications. Here we report a suite of rocks that have long been called as migmatites from the Guandi complex in Zhoukoudian region, southwest of Beijing. The rocks are dominated by felsic gneisses with garnet-free amphibolites. Field occurrence, petrography and geochemistry indicate that the felsic gneisses and amphibolites were metamorphosed from protoliths of intermediate-acid and basic igneous rocks, respectively. New LA-ICP-MS zircon U-Pb dating and geothermobarometry study further reveal that precursor magmas of the two types of rocks were emplaced at 2.54-2.56 Ga and the rocks subsequently underwent medium P/T-type metamorphism with upper amphibolite facies conditions of 0.55-0.90 GPa and 670-730℃ at -2.48-2.50 Ga. Geochemically, precursor magmas of the amphibolites were suggested to be derived from an enriched lithospheric mantle source in continental arc setting, and those of the felsic gneisses are characterized by tonalitic to trondhjemitic magmas that are usually considered to be generated by partial melting of hydrated, thickened metamorphosed mafic crust with garnet as residues, suggesting that the rock associations are not of true migmatites but migmatite-like rocks. Our study reveal that protoliths of the migmatite-like rocks from the Guandi complex, were likely formed via magmatism in a continental arc setting, followed by accretion and collision of the continental arc as well as the intro-oceanic arc terranes to the Eastern Block of the North China Craton in the transition from the Late Neoarchean to Early Paleoprnterozuic.