期刊文献+
共找到99,971篇文章
< 1 2 250 >
每页显示 20 50 100
Determination of uncertainties of geomechanical parameters of metamorphic rocks using petrographic analyses
1
作者 Behzad Dastjerdy Ali Saeidi Shahriyar Heidarzadeh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期345-364,共20页
Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this pa... Geomechanical parameters of intact metamorphic rocks determined from laboratory testing remain highly uncertain because of the great intrinsic variability associated with the degrees of metamorphism.The aim of this paper is to develop a proper methodology to analyze the uncertainties of geomechanical characteristics by focusing on three domains,i.e.data treatment process,schistosity angle,and mineralogy.First,the variabilities of the geomechanical laboratory data of Westwood Mine(Quebec,Canada)were examined statistically by applying different data treatment techniques,through which the most suitable outlier methods were selected for each parameter using multiple decision-making criteria and engineering judgment.Results indicated that some methods exhibited better performance in identifying the possible outliers,although several others were unsuccessful because of their limitation in large sample size.The well-known boxplot method might not be the best outlier method for most geomechanical parameters because its calculated confidence range was not acceptable according to engineering judgment.However,several approaches,including adjusted boxplot,2MADe,and 2SD,worked very well in the detection of true outliers.Also,the statistical tests indicate that the best-fitting probability distribution function for geomechanical intact parameters might not be the normal distribution,unlike what is assumed in most geomechanical studies.Moreover,the negative effects of schistosity angle on the uniaxial compressive strength(UCS)variabilities were reduced by excluding the samples within a specific angle range where the UCS data present the highest variation.Finally,a petrographic analysis was conducted to assess the associated uncertainties such that a logical link was found between the dispersion and the variabilities of hard and soft minerals. 展开更多
关键词 Intact rock parameters Natural variabilities Outlier detection methods UNCERTAINTIES Westwood mine MINERALOGY
下载PDF
^(40)Ar/^(39)Ar Dating of Deformation Events and Reconstruction of Exhumation of Ultrahigh-Pressure Metamorphic Rocks in Donghai, East China 被引量:17
2
作者 LI Jinyi, YANG Tiannan, CHEN Wen and ZHANG Sihong Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037E-mail: jyli@cags.net.cn 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第2期155-168,共14页
Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The e... Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K-feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K-feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh-pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3-4 km/Ma from the mantle (about 80-100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20-30km at 220 Ma), and at the rate of 1-2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma. 展开更多
关键词 ultrahigh-pressure metamorphic rocks structural deformation 40Ar/39Ar dating EXHUMATION Donghai East China
下载PDF
Partial Melting Processes During Exhumation of Ultrahigh-Pressure Metamorphic Rocks in Dabieshan, China 被引量:8
3
作者 Zhong Zengqiu Zhang Hongfei +1 位作者 Suo Shutian You Zhendong(Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074) 《Journal of Earth Science》 SCIE CAS CSCD 1999年第3期194-199,共6页
Study practice has proved that the ultrahigh pressure metamorphic rocks iu Dabieshan must have exPerienced botk the retrograde metumorphism and partial melting under decompression and amphibolite-facies conditions dur... Study practice has proved that the ultrahigh pressure metamorphic rocks iu Dabieshan must have exPerienced botk the retrograde metumorphism and partial melting under decompression and amphibolite-facies conditions during their exhumation from mantel depth to lower-middle crust.The retrometamorphism and partial melting of the ultrahigh pressure rocks in association with thermal state changing in the middle-lower crust, under amphibolite-facies conditions, are important physical and chemical processes. It would result in a great detrease in the integrated yield strength, and the enhancement of the de formabilitY or the rocks, promoting the transition from contractional (collision) to extensional defoemational regime. The statement of tbe retrometamorphism and partial melting of the ultrahigh pressure rocks has proved the in-site model for the ultrahigh pressure rocks in Dabieshan. It not only clarifies the evolutiou from the UHP eclogite to the surrounding gneissic rock (so called UHP gueiss) and to the garnet-beariug roliated granites (non-UHP country rocks), but also provides scientific arguments for the establiskment of the dynamic model of the exhumation of UHP metamorphic rocks in Dabiesban. In general, Purely conductive heat transfer from the crust itself is probably insurficient to produce temperature conditions for partial melting, and additional heat sources must have been present during partial melting. We infer that the partial melting and extensional flow are probably driveu by delamination and magmatic underplating of thickeued lithospkeric mantle following the continental oblique collision. 展开更多
关键词 ultrahigh-pressure metamorphic rocks partial melting DABIESHAN
下载PDF
Drillability prediction in some metamorphic rocks using composite penetration rate index(CPRI)–An approach 被引量:3
4
作者 Gaurav Kumar Srivastava M.S.R.Murthy Vemavarapu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期631-641,共11页
Assessment of drillability of rocks is vital in the selection,operation,and performance evaluation of cutting tools used in various excavation machinery deployed in mining and tunneling.The commonly used rock drillabi... Assessment of drillability of rocks is vital in the selection,operation,and performance evaluation of cutting tools used in various excavation machinery deployed in mining and tunneling.The commonly used rock drillability prediction methods,namely,drilling rate index(DRI)and Cerchar hardness index(CHI)have limitations in predicting the penetration rate due to differential wear of the cutting tool in rocks with varied hardness and abrasivity.Since cutting tools get blunt differently in different rocks,the stress beneath the tip of the bit decreases until it reaches a threshold value beyond which the penetration rate becomes constant.In this research,a new composite penetration rate index(CPRI)is suggested based on the investigations on four metamorphic rocks viz.quartzite,gneiss,schist and phyllite with varied hardness-abrasivity values.The penetration-time behavior was classified into active,moderate,passive,and dormant phases based on the reduction in penetration rate at different stages of drilling.A comparison of predicted penetration rate values using DRI and CPRI with actual penetration rate values clearly establishes the supremacy of CPRI.Micro-structure and hardness-based index was also developed and correlated with CPRI.The new indices can help predict cutting tool penetration and its consumption more accurately. 展开更多
关键词 Abrasivity HARDNESS DRILLABILITY metamorphic rocks Composite penetration rate index(CPRI)
下载PDF
Petrology of the Non-mafic UHP Metamorphic Rocks from a Drillhole in the Southern Sulu Orogenic Belt,Eastern-Central China 被引量:11
5
作者 ZHANG Zeming, XU Zhiqin and XU HuifenInstitute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Rd., Beijing 100037 E-mail: zzm@ccsd.org.cn. 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第2期173-186,共14页
The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks,... The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud 展开更多
关键词 UHP metamorphism non-mafic rock drillhole Dabie-Sulu orogenic belt eastern-central China
下载PDF
Geochemical Characteristics of Pb Isotope of High-Pressure Metamorphic Rocks and Foliated Granites from HP Unit of Tongbai-Dabie Orogenic Belt 被引量:3
6
作者 Zhang Li Zhang Hongfei Zhong Zengqiu Zhang Benren Wang Linsen Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2003年第4期321-329,共9页
Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic b... Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the HP metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The two- mica albite gneisses have 206 Pb/ 204 Pb=17.657-18.168, 207 Pb/ 204 Pb=15.318-15.573, 208 Pb/ 204 Pb=38.315-38.990, and the eclogites have 206 Pb/ 204 Pb=17.599-18.310, 207 Pb/ 204 Pb=15.465- 15.615 , 208 Pb/ 204 Pb=37.968-39.143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have 206 Pb/ 204 Pb=17.128-17.434, 207 Pb/ 204 Pb=15.313-15.422 and 208 Pb/ 204 Pb=37.631-38.122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit. 展开更多
关键词 Tongbai-Dabie orogenic belt high-pressure metamorphic rocks foliated granites Pb isotope geochemical characteristics.
下载PDF
On the radiogenic heat production of metamorphic,igneous,and sedimentary rocks 被引量:4
7
作者 D.Hasterok M.Gard J.Webb 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1777-1794,共18页
Sedimentary rocks cover-73% of the Earth's surface and metamorphic rocks account for approximately91% of the crust by volume. Understanding the average behavior and variability of heat production for these rock ty... Sedimentary rocks cover-73% of the Earth's surface and metamorphic rocks account for approximately91% of the crust by volume. Understanding the average behavior and variability of heat production for these rock types are vitally important for developing accurate models of lithospheric temperature. We analyze the heat production of ~204,000 whole rock geochemical data to quantify how heat production of these rocks varies with respect to chemistry and their evolution during metamorphism. The heat production of metaigneous and metasedimentary rocks are similar to their respective protoliths. Igneous and metaigneous samples increase in heat production with increasing SiO_2 and K_2 O, but decrease with increasing FeO, MgO and CaO. Sedimentary and metasedimentary rocks increase in heat production with increasing Al_2 O_3, FeO, TiO_2, and K_2 O but decrease with increasing CaO. For both igneous and sedimentary rocks, the heat production variations are largely correlated with processes that affect K_2 O concentration and covary with other major oxides as a consequence. Among sedimentary rocks,aluminous shales are the highest heat producing(2.9 μW^(-3)) whereas more common iron shales are lower heat producing(1.7 μW m^(-3)). Pure quartzites and carbonates are the lowest heat producing sedimentary rocks. Globally, there is little definitive evidence for a decrease in heat production with increasing metamorphic grade. However, there remains the need for high resolution studies of heat production variations within individual protoliths that vary in metamorphic grade. These results improve estimates of heat production and natural variability of rocks that will allow for more accurate temperature models of the lithosphere. 展开更多
关键词 Heat generation Density metamorphic rocks SEDIMENTARY rocks IGNEOUS rocks CONTINENTAL LITHOSPHERE
下载PDF
Geochemistry and Petrogenesis of Neoarchean Metamorphic Mafic Rocks in the Wutai Complex 被引量:2
8
作者 Lü Yongjun LIU Shuwen +5 位作者 Guochun ZHAO LI Qiugen Jian ZHANG LIU Chaohui K. H. PARK Y. S. SONG 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第6期899-911,共13页
Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite norm... Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite normalized REE patterns. Rocks in Group #1 are characterized by nearly flat REE patterns (Lan/Ybn=0.86-1.3), the lowest total REEs (29-52 ppm), and weak negative to positive Eu anomalies (Eun/Eun=0.84-1.02), nearly flat primitive mantle normalized patterns and strong negative Zr(Hf) anomalies. Their geochemical characteristics in REEs and trace elements are similar to those of ocean plateau tholeiite, which imply that this group of rocks can represent remnants of Archean oceanic crust derived from a mantle plume. Rocks in Group #2 are characterized by moderate total REEs (34-116 ppm), LREE-enriched (Lan/Ybn=1.76-4.34) chondrite normalized REE patterns with weak Eu anomalies (Eun/Eun=0.76-1.16), and negative Nb, Ta, Zr(Hf), Ti anomalies in the primitive mantle normalized spider diagram. The REE and trace element characteristics indicate that they represent arc magmas originating from a sub-arc mantle wedge metasomatized by slab-derived fluids. Rocks in Group #3 are characterized by the highest total REEs (61-192 ppm), the strongest LREEs enrichment (Lan/Ybn=7.12-16) with slightly negative Eu anomalies (Eun/Eun=0.81-0.95) in the chondrite normalized diagram. In the primitive mantle normalized diagram, these rocks are characterized by large negative anomalies in Nb, Ta, Ti, negative to no Zr anomalies. They represent arc magmas originating from a sub-arc mantle wedge enriched in slab-derived melts. The three groups of rocks imply that the formation of the Neoarchean Wutai Complex is related to mantle plumes and island-arc interaction. 展开更多
关键词 metamorphic mafic rocks GEOCHEMISTRY PETROGENESIS Wutai Complex central tectonic zone North China Craton
下载PDF
Deep-seated large-scale toppling failure in metamorphic rocks:a case study of the Erguxi slope in southwest China 被引量:8
9
作者 LIU Ming LIU Fang-zhou +1 位作者 HUANG Run-qiu PEI Xiang-jun 《Journal of Mountain Science》 SCIE CSCD 2016年第12期2094-2110,共17页
Deep-seated large-scale toppling failure presents unique challenges in the study of natural slope deformation process in mountainous regions.An active deep-seated toppling process was identified in the Erguxi slope lo... Deep-seated large-scale toppling failure presents unique challenges in the study of natural slope deformation process in mountainous regions.An active deep-seated toppling process was identified in the Erguxi slope located in southwest China,which affected a large area and damaged critical transportation infrastructure with the volume of the deforming rock mass exceeding 24×10~6 m^3.It poses significant risks to the downstream Shiziping Hydropower Station by damming the Zagunao River.Field investigation and monitoring results indicate that the deformation of the Erguxi slope is in the advanced stage of deep-seated toppling process,with the formation of a disturbed belt but no identifiable master failure surface.It was postulated that the alternating tensile and shear strength associated with the hard/soft laminated rock strata of metasandstone and phyllite layers preclude the development of either a tensile or shear failure surface,which resulted in the continuous deformation and displacement without a catastrophic mass movement.The slope movement is in close association with the unfavorable geological conditions of the study area in addition to the construction of transportation infrastructure and the increase of the reservoir level.On the basis of the mechanism and intensity of the ongoing toppling deformation,a qualitative grading system was proposed to describe the toppling process and toevaluate the slope stability.This paper summarized the field observation and monitoring data on the toppling deformation for better characterizing its effect on the stability of the Erguxi slope.The qualitative grading system intends to provide a basis for quantitative study of large-scale deep-seated toppling process in metamorphic rocks. 展开更多
关键词 Deep-seated slope deformation Largescale toppling Slope stability metamorphic rock
下载PDF
Paleoproterozoic Multistage Metamorphic Ages Registered in the Precambrian Basement Rocks at the Southeastern Margin of the North China Craton and Their Geological Implications 被引量:7
10
作者 LIU Yican ZHANG Pingang +1 位作者 WANG Chengcheng NIE Jiazhen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2265-2266,共2页
The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
关键词 Pb Paleoproterozoic Multistage metamorphic Ages Registered in the Precambrian Basement rocks at the Southeastern Margin of the North China Craton and Their Geological Implications
下载PDF
Petrochemical eigenvalues and diagrams for the identification of metamorphic rocks'protolith,taking the host rocks of Dashuigou tellurium deposit in China as an example 被引量:1
11
作者 Jianzhao Yin Shoupu Xiang +2 位作者 Yuhong Chao Yuhan Yin Hongyun Shi 《Acta Geochimica》 EI CAS CSCD 2023年第1期103-124,共22页
The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region ... The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s degassing,as well as the mantle and crust’s uplift. 展开更多
关键词 Petrochemical diagrams and eigenvalue PROTOLITH metamorphic rock Independent tellurium deposit Host rock The mantle plume
下载PDF
Elastic and Seismic Properties of Dabie-Sulu Ultrahigh Pressure Metamorphic Rocks 被引量:1
12
作者 WANG Qian JI Shaocheng +2 位作者 SUN Shengsi Matthew H.SALISBURY Hartmut KERN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期20-37,共18页
Lame modulus (λ) and shear modulus (μ) are among the most important, intrinsic, elastic constants of rocks. Using 7. and μ could be much more advantageous than using P- and S-wave velocities (Vp and Vs). Here... Lame modulus (λ) and shear modulus (μ) are among the most important, intrinsic, elastic constants of rocks. Using 7. and μ could be much more advantageous than using P- and S-wave velocities (Vp and Vs). Here we quantified these equivalent isotropic elastic moduli for 115 representative rocks from the ultrahigh pressure (UHP) metamorphic terrane of the Dabie-Sulu orogenic belt (China) and their variations with pressure (P), temperature (T), density (p), Vp, Vs and mineralogical composition. Both moduli increase nonlinearly and linearly with increasing pressure at low (〈200-300 MPa) and high (〉200-300 MPa) pressures, respectively. In the regime of high pressures, 7. and IX decrease quasi-linearly with increasing temperature with temperature derivatives dλ/dT and dμ/dT generally in the range of -10×10-3 to -1×10-3 GPa/℃. Dehydration of water-bearing minerals such as serpentine in peridotites and chlorite in retrograde eciogites results in an abrupt drop in 7. while μ remains almost unchanged. In Z-p, μ-p and 7.-IX plots, the main categories of UHP rocks can be characterized. Serpentinization leads to significant decreases in μ and 7. as serpentine has extremely low values of Z, μ and p. Eclogites, common mafic rocks (mafic gneiss, metagabbro and amphibolite), and felsic rocks (orthogneiss and paragneiss) have high, moderate and low μ and λ values, respectively. For pyroxenes and olivines, λ increases but μ decreases with increasing Fe/Mg ratios. For plagioclase feldspars, both Z and μ exhibit a significant positive correlation with anorthite content. SiO2-rich felsic rocks and quartzites are deviated remarkably from the general trend lines of the acid-intermediate-mafic rocks in Vs-p, μ-p, λ-Vp,λ-Vs and μ-λ diagrams because quartz has extremely low λ (-8.1 GPa) and p (2.65 g/cm3) but moderate μ (44.4 GPa) values. Increasing the contents of garnet, rutile, ilmenite and magnetite results in a significant increase in the λ and μ values of the UHP metamorphic rocks. However, either λ or μ is insensitive to the compositional variations for pyralspite (pyrope-almandine-spessartine) solution series. The results provide potentially improved constraints on characterization of crustal composition based on the elastic properties of rocks and in situ seismic data from deep continental roots. 展开更多
关键词 seismic properties elastic constants ultrahigh pressure metamorphic rocks Dabie-Sulu deep continental roots
下载PDF
Partial melting of ultrahigh-pressure metamorphic rocks at convergent continental margins: Evidences, melt compositions and physical effects 被引量:6
13
作者 Liang-Peng Deng Yi-Can Liu +2 位作者 Xiao-Feng Gu Chiara Groppo Franco Rolfo 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第4期1229-1242,共14页
Ultrahigh-pressure(UHP) metamorphic rocks are distinctive products of crustal deep subduction,and are mainly exposed in continental subduction-collision terranes. UHP slices of continental crust are usually involved... Ultrahigh-pressure(UHP) metamorphic rocks are distinctive products of crustal deep subduction,and are mainly exposed in continental subduction-collision terranes. UHP slices of continental crust are usually involved in multistage exhumation and partial melting, which has obvious influence on the rheological features of the rocks, and thus significantly affect the dynamic behavior of subducted slices. Moreover,partial melting of UHP rocks have significant influence on element mobility and related isotope behavior within continental subduction zones, which is in turn crucial to chemical differentiation of the continental crust and to crust-mantle interaction.Partial melting can occur before, during or after the peak metamorphism of UHP rocks. Post-peak decompression melting has been better constrained by remelting experiments; however, because of multiple stages of decompression, retrogression and deformation, evidence of former melts in UHP rocks is often erased. Field evidence is among the most reliable criteria to infer partial melting. Glass and nanogranitoid inclusions are generally considered conclusive petrographic evidence. The residual assemblages after melt extraction are also significant to indicate partial melting in some cases. Besides field and petrographic evidence, bulk-rock and zircon trace-element geochemical features are also effective tools for recognizing partial melting of UHP rocks. Phase equilibrium modeling is an important petrological tool that is becoming more and more popular in P-T estimation of the evolution of metamorphic rocks; by taking into account the activity model of silicate melt, it can predict when partial melting occurred if the P-T path of a given rock is provided.UHP silicate melt is commonly leucogranitic and peraluminous in composition with high SiO_2,low MgO, FeO, MnO, TiO_2 and CaO, and variable K_2 O and Na_2 O contents. Mineralogy of nanogranites found in UHP rocks mainly consists of plagioclase + K-feldspar + quartz, plagioclase being commonly albite-rich.Trace element pattern of the melt is characterized by significant enrichment of large ion lithophile elements(LILE), depletion of heavy rare earth elements(HREE) and high field strength elements(HFSE),indicating garnet and rutile stability in the residual assemblage. In eclogites, significant Mg-isotope fractionation occurs between garnet and phengite; therefore, Mg isotopes may become an effective indicator for partial melting of eclogites. 展开更多
关键词 Partial melting Continental subduction-collision Ultrahigh-pressure metamorphism Leucosome Phase equilibrium modeling
下载PDF
Anatexis,Deformation and Exhumation Mechanism for UHP Metamorphic Rocks:A Case Study in the North Qaidam and South Altyn UHP Terrane,Western China 被引量:1
14
作者 YU Shengyao ZHANG Jianxin +2 位作者 LI Sanzhong PENG Yinbiao SUN Deyou 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第1期361-362,共2页
Objective In recent years,hydrous silicate melts by dehydrationdriven in situ partial melting constrained from experiments and natural rocks have been increasingly recognized in UHP rocks,indicating partial melting of... Objective In recent years,hydrous silicate melts by dehydrationdriven in situ partial melting constrained from experiments and natural rocks have been increasingly recognized in UHP rocks,indicating partial melting of UHP slab.Partial melting of UHP metamorphic rocks can dramatically affect the rheology of deeply subducted crust and thus play a crucial role in accelerating the exhumation of UHP slabs. 展开更多
关键词 UHP Anatexis Deformation and Exhumation Mechanism for UHP metamorphic rocks
下载PDF
Petrologic and geochemical characterization and mineralization of the metavolcanic rocks of the Heib Formation,Kid Metamorphic Complex,Sinai,Egypt 被引量:2
15
作者 Ibrahim H.Khalifa Mohammed Z.El-Bialy Doa'a M.Hassan 《Geoscience Frontiers》 SCIE CAS 2011年第3期385-402,共18页
Metavolcanic rocks hosting base metal sulphide mineralization, and belonging to the Kid Metamorphic Complex, are exposed in the Samra-Tarr area, Southern Sinai. The rocks consist of slightly metamorphosed varicolored ... Metavolcanic rocks hosting base metal sulphide mineralization, and belonging to the Kid Metamorphic Complex, are exposed in the Samra-Tarr area, Southern Sinai. The rocks consist of slightly metamorphosed varicolored porphyritic lavas of rhyolite-to-andesite composition, and their equivalent pyroclastics. Geochemically, these metavolcanics are classified as high-K calc-alkaline, metaluminous andesites, trachyandesites, dacites, and rhyolites. The geochemical characteristics of these metavolcanics strongly point to their derivation from continental crust in an active continental margin. The sulphide mineralization in these metavolcanics occurs in two major ore zones, and is represented by four distinct styles of mineralization. The mineralization occurs either as low-grade disseminations or as small massive pockets. The associated hydrothermal alterations include carbonatization, silicification, sericitization and argillic alterations. The base metal sulphide mineralization is epigenetic and was formed by hvdrothermal solutions associated with subduction-related volcanic activity. 展开更多
关键词 CALC-ALKALINE SULPHIDES MINERALIZATION Metavolcanic rocks SINAI
下载PDF
Metamorphic gradient modification in the Early Cretaceous Northern Andes subduction zone:A record from thermally overprinted high-pressure rocks 被引量:1
16
作者 D.S.Avellaneda-Jiménez A.Cardona +2 位作者 V.Valencia S.León I.F.Blanco-Quintero 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期354-371,共18页
New field observations and petrological data from Early Cretaceous metamorphic rocks in the Central Cordillera of the Colombian Andes allowed the recognition of thermally overprinted high-pressure rocks derived from o... New field observations and petrological data from Early Cretaceous metamorphic rocks in the Central Cordillera of the Colombian Andes allowed the recognition of thermally overprinted high-pressure rocks derived from oceanic crust protoliths.The obtained metamorphic path suggests that the rocks evolved from blueschist to eclogite facies towards upper amphibolite to high-pressure granulite facies transitional conditions.Eclogite facies conditions,better recorded in mafic protoliths,are revealed by relic lawsonite and phengite,bleb-to worm-like diopside-albite symplectites,as well as garnet core composition.Upper amphibolite to high pressure granulite facies overprinting is supported by coarse-grained brown-colored Ti-rich amphibole,augite,and oligoclase recrystallization,as well as the record of partial melting leucosomes.Phase equilibria and pressure-temperature(P-T)path modeling suggest initial high-pressure metamorphic conditions M1 yielding 18.2-24.5 kbar and 465-580℃,followed by upper amphibolite to high pressure granulite facies overprinting stage M2 yielding 6.5-14.2 kbar and 580-720℃.Retrograde conditions M3 obtained through chlorite thermometry yield temperatures ranging around 286-400℃at pressures below 6.5-11 kbar.The obtained clockwise P-T path,the garnet zonation pattern revealing a decrease in X_(grs)/X_(prp)related to Mg#increment from core to rim,the presence of partial melting veins,as well as regional constraints,document the modification of the thermal structure of the active subduction zone in Northern Andes during the Early Cretaceous.Such increment of the metamorphic gradient within the subduction interface is associated with slab roll-back geodynamics where hot mantle inflow was triggered.This scenario is also argued by the reported trench-ward magmatic arc migration and multiple extensional basin formation during this period.The presented example constitutes the first report of Cretaceous roll-back-related metamorphism in the Caribbean and Andean realms,representing an additional piece of evidence for a margin-scale extensional event that modified the northwestern border of South America during the Early Cretaceous. 展开更多
关键词 Slab roll-back Mineral chemistry Phase equilibria P-T path modeling Roll-back metamorphism Thermally overprinted high-pressure rocks
下载PDF
Elemental geochemistry and Nd isotopic characteristics of the metasedimentary rocks from the metamorphic belt in central Jiangxi: Provenance and tectonically environmental constraints 被引量:3
17
作者 胡恭任 刘丛强 +2 位作者 章邦桐 唐红峰 于瑞莲 《Chinese Journal Of Geochemistry》 EI CAS 2005年第1期37-50,共14页
The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor... The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor amphibolite. These rocks underwent amphibolite-facies metamorphism. The meta-argillo-arenaceous rocks show large variations in major element composition, but have similar REE patterns and trace element composition, incompatible element and LIE enrichments [high Th/Sc ({0.57}-{3.59}), La/Sc ({1.46}-{12.4}), La/Yb ({5.84}-{19.0})] and variable Th/U ratios, with ΣREE=129-296μg/g, δEu={0.51}-{0.86}, and (La/Yb)-N={3.95}-{12.9}. The Nd isotopic model ages t-{DM} of these rocks vary from 1597 to 2124 Ma. Their {}+{143}Nd/+{144}Nd values are low [ε-{Nd}(0)={-11.4} to {-15.8}]. Some conclusions have been drawn as follows: (1) The metamorphic rocks in central Jiangxi Province are likely formed in a tectonic environment at the passive continental margin of the Cathaysia massif. (2) The metamorphosed argillo-arenaceous rocks are composed dominantly of upper crustal-source rocks (Al- and K|rich granitic or/and sedimentary rocks of Early Proterozoic), which experienced good sorting, slow deposition and more intense chemical weathering. (3) According to the whole-rock Sm-Nd isochron ages (1113±49 to 1199±26 Ma) of plagioclase-amphibole (schist) and Nd isotopic model age t-{DM} (1597-2124 Ma) of meta-argillo-arenaceous rocks, the metamorphic belt in central Jiangxi Province was formed during the Middle Proterozoic (1100-1600 Ma). 展开更多
关键词 元素地球化学 江西中部地区 变质作用带 碳化-精氨酸酶-沙质岩 板块构造
下载PDF
Pressure State in Deep Crust and Formation Depth of UHP Metamorphic Rocks 被引量:1
18
作者 LuGuxian LiuRuixun WangFangzheng 《Journal of China University of Geosciences》 SCIE CSCD 2004年第2期135-144,共10页
This paper presents some questions to the formula of pressure=depth×specific gravity from the viewpoint that the hydrostatic pressure is equal to the gravity of overlying rocks and the rocks in a static fluid sta... This paper presents some questions to the formula of pressure=depth×specific gravity from the viewpoint that the hydrostatic pressure is equal to the gravity of overlying rocks and the rocks in a static fluid state, which is drawn from the research and analysis of the research field and the corresponding problems of the pressure state in the deep crust and the formation depth of the UHP metamorphic rocks. In this research, the underground rocks are considered as the solid possessing some rheological behaviors to discuss the polysource stress state and to obtain a more reasonable method for the calculation of depths using the model of the unbalanced force solid. It is suggested from this paper that the P/SW method for the calculation of the ultrahigh pressure stemming only from the gravity has obviously overstated the formation depth of the UHP metamorphism. The formation model emphasizing the effect of the gravity, the tectonic force and the metamorphic force of the facies change concludes that such UHP minerals as coesite may have been produced in the inner crust. 展开更多
关键词 deep crust pressure UHPM rocks solid mechanics additional hydrostatic pressure tectonic force COESITE depth calculation
下载PDF
Anisotropy effect on strengths of metamorphic rocks 被引量:2
19
作者 Ahmet ?zbek Murat Gül +1 位作者 Ergun Karacan Ovünc Alca 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期164-175,共12页
This paper aims to study the effect of anisotropy on strengths of several metamorphic rocks of southern(Cine) submassif of Menderes metamorphic massif in southwest Turkey. Four different metamorphic rocks including fo... This paper aims to study the effect of anisotropy on strengths of several metamorphic rocks of southern(Cine) submassif of Menderes metamorphic massif in southwest Turkey. Four different metamorphic rocks including foliated phyllite, schist, gneiss and marble(calcschist) were selected and examined.Discontinuity surveys were made along lines for each rock and evaluated with DIPS program. L-type Schmidt hammer was applied in the directions parallel and perpendicular to foliation during the field study. Several hand samples and rock blocks were collected during the field study for measurements of dry and saturated densities, dry and saturated unit weights and porosity, and for petrographic analysis and strength determination in laboratory. L-and N-type Schmidt hammers were applied in the directions perpendicular(anisotropy angle of 0°) and parallel(anisotropy angle of 90) to the foliation on selected blocks of phyllite, schist, gneiss and marble(calcschist). The phyllite and schist have higher porosity and lower density values than the other rocks. However, coarse crystalline gneiss and marble(calcschist) have higher rebound values and strengths, and they are classified as strong-very strong rocks. Generally, the rebound values in the direction perpendicular to the foliation are slightly higher than that in the direction parallel to foliation. Rebound values of N-type Schmidt hammer are higher than the L-type values except for phyllite. Sometimes, the rebound values of laboratory and field applications gave different results. This may result from variable local conditions such as minerals differentiation,discontinuities, water content, weathering degree and thickness of foliated structure. 展开更多
关键词 Rock anisotropy Field survey Schmidt hammer rebound values Southwest Turkey
下载PDF
Deep-derived enclaves (belonging to middle-lower crust metamorphic rocks) in the Liuhe-Xiangduo area, eastern Tibet: Evidence from petrogeochemistry 被引量:2
20
作者 魏启荣 李德威 +1 位作者 郑建平 王江海 《Chinese Journal Of Geochemistry》 EI CAS 2006年第3期245-254,共10页
Petrological and geochemical studies of deep-derived enclaves from the Liuhe-Xiangduo area, eastern Tibet, showed that the enclaves involve five types of rocks, i.e., garnet diopsidite, garnet amphibolite, garnet horn... Petrological and geochemical studies of deep-derived enclaves from the Liuhe-Xiangduo area, eastern Tibet, showed that the enclaves involve five types of rocks, i.e., garnet diopsidite, garnet amphibolite, garnet hornblendite, amphibolite and hornblendite, whose main mineral assemblages are Grt+Di+Hbl, Grt+Pl+Hbl+Di, Grt+Hbl+Pl, Pl+Hbl, and Hbl+Bt, respectively. The enclaves exhibit typical crystalloblastic texture, and growth zones are well developed in garnet (Grt) in the enclaves. In view of major element geochemistry, the deep|derived enclaves are characterized by high MgO and FeO+*, ranging from {12.00%} to {12.30%} and {8.15%} to {10.94%}, respectively. The protolith restoration of metamorphic rocks revealed that the enclaves belong to ortho-metamorphic rocks. The REE abundances vary over a wide range, and ∑REE ranges from {53.39} to {129.04} μg/g. The REE patterns slightly incline toward the HREE side with weak LREE enrichment. The contents of Rb, Sr, and Ba range from {8.34} to 101μg/g, 165 to 1485 μg/g, and 105 to 721 μg/g, respectively. The primitive mantle-normalized spider diagrams of trace elements show obvious negative Nb, Ta, Zr and Hf anomalies. Sr-Nd isotopic compositions of the enclaves indicated that the potential source of deep-derived enclaves is similar to the depleted|mantle, and their {({}+{87}Sr/+{86}Sr)-i} ratios vary from {0.706314} to {0.707198}, {({}+{147}Nd/+{144}Nd)-i} ratios from {0.512947} to {0.513046}, and {ε-{Nd}(T)} values from {+7.0} to {+9.0}, respectively. The potential source of the enclaves is obviously different from the EM2-type mantle from which high-K igneous rocks stemmed (the host rocks), i.e., there is no direct genetic relationship between the enclaves and the host rocks. Deep-derived enclaves in the host rocks belong to mafic xenoliths, and those in the Liuhe-Xiangduo area, eastern Tibet, are some middle-lower crust ortho-metamorphic rocks which were accidentally captured at 20-50 km level by rapidly entrained high-temperature high-K magma, whose source is considered to be located at 50-km depth or so. 展开更多
关键词 地球化学 西藏 岩石 变质岩
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部