BACKGROUND Clinical prognosis often worsens due to high recurrence rates following radical surgery for colon cancer.The examination of high-risk recurrence factors post-surgery provides critical insights for disease e...BACKGROUND Clinical prognosis often worsens due to high recurrence rates following radical surgery for colon cancer.The examination of high-risk recurrence factors post-surgery provides critical insights for disease evaluation and treatment planning.AIM To explore the relationship between metastasis-associated factor-1 in colon cancer(MACC1)and vacuolar ATP synthase(V-ATPase)expression in colon cancer tissues,and recurrence rate in patients undergoing radical colon cancer surgery.METHODS We selected 104 patients treated with radical colon cancer surgery at our hospital from January 2018 to June 2021.Immunohistochemical staining was utilized to assess the expression levels of MACC1 and V-ATPase in these patients.RESULTS The rates of MACC1 and V-ATPase positivity were 64.42%and 67.31%,respe-ctively,in colon cancer tissues,which were significantly higher than in paracan-cerous tissues(P<0.05).Among patients with TNM stage III,medium to low differentiation,and lymph node metastasis,the positive rates of MACC1 and V-ATPase were significantly elevated in comparison to patients with TNM stage I-II,high differentiation,and no lymph node metastasis(P<0.05).The rate of MACC1 positivity was 76.67%in patients with tumor diameters>5 cm,notably higher than in patients with tumor diameters≤5 cm(P<0.05).We observed a positive correlation between MACC1 and V-ATPase expression(rs=0.797,P<0.05).The positive rates of MACC1 and V-ATPase were significantly higher in patients with recurrence compared to those without(P<0.05).Logistic regression analysis revealed TNM stage,lymph node metastasis,MACC1 expression,and V-ATPase expression as risk factors for postoperative colon cancer recurrence(OR=6.322,3.435,2.683,and 2.421;P<0.05).CONCLUSION The upregulated expression of MACC1 and V-ATPase in colon cancer patients appears to correlate with clinicopathological features and post-radical surgery recurrence.展开更多
BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of canc...BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.展开更多
The role of lncRNA KCNQ1 opposite strand/antisense transcript 1(KCNQ1OT1)in colon cancer involves various tumorigenic processes and has been studed widely.However,the mechanism by which it promotes colon cancer remain...The role of lncRNA KCNQ1 opposite strand/antisense transcript 1(KCNQ1OT1)in colon cancer involves various tumorigenic processes and has been studed widely.However,the mechanism by which it promotes colon cancer remains unclear.Retrovirnl vector pSEB61 was retroftted in established HCT116 siKCN and SW480-siKCN cells to silence KCNQ1 OT1.Cellular proliferation was measured using CCK8 assay,and flow cytometry(FCM)detected cell cydle changes.RNA sequencing(RNA Seq)analysis showed differentially expressed genes(DEGs).Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were carried out to analyze enriched functions and signaling pathways.RT-qPCR,immunofluorescence,and western blotting were carried out to validate downstream gene expressions.The effects of tumorigenesis were evaluated in BALB/c nude mice by tumor xenografts.Our data revealed that the silencing of KONQ1OT1 in HCT116 and SW480 cells slowed cell growth and decreased the number of cells in the G2/M phase.RNA-Seq analysis showed the data of DEGs enriched in various GO and KEGG pathways such as DNA replication and cell cyde.RT qPCR,immunofluorescence,and western blotting confirmed downstream CCNE2 and PCNA gene expressions.HCT116 siKCN cells signifcantly suppressed tumorigenesis in BALB/c nude mice.Our study suggests that lncRNA KCNQ1OT1 may provide a promising therapeutic strategy for colon cancer.展开更多
BACKGROUND Heterogeneous ribonucleoprotein A1(hnRNPA1)has been reported to enhance the Warburg effect and promote colon cancer(CC)cell proliferation,but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in ...BACKGROUND Heterogeneous ribonucleoprotein A1(hnRNPA1)has been reported to enhance the Warburg effect and promote colon cancer(CC)cell proliferation,but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in CC have not yet been elucidated.AIM To investigate the role and mechanism of a novel miR-490-3p/hnRNPA1-b/PKM2 axis in enhancing the Warburg effect and promoting CC cell proliferation through the PI3K/AKT pathway.METHODS Paraffin-embedded pathological sections from 220 CC patients were collected and subjected to immunohistochemical analysis to determine the expression of hnRNPA1-b.The relationship between the expression values and the clinicopathological features of the patients was investigated.Differences in mRNA expression were analyzed using quantitative real-time polymerase chain reaction,while differences in protein expression were analyzed using western blot.Cell proliferation was evaluated using the cell counting kit-8 and 5-ethynyl-2’-deoxyuridine assays,and cell cycle and apoptosis were detected using flow cytometric assays.The targeted binding of miR-490-3p to hnRNPA1-b was validated using a dual luciferase reporter assay.The Warburg effect was evaluated by glucose uptake and lactic acid production assays.RESULTS The expression of hnRNPA1-b was significantly increased in CC tissues and cells compared to normal controls(P<0.05).Immunohistochemical results demonstrated significant variations in the expression of the hnRNPA1-b antigen in different stages of CC,including stage I,II-III,and IV.Furthermore,the clinicopathologic characterization revealed a significant correlation between hnRNPA1-b expression and clinical stage as well as T classification.HnRNPA1-b was found to enhance the Warburg effect through the PI3K/AKT pathway,thereby promoting proliferation of HCT116 and SW620 cells.However,the proliferation of HCT116 and SW620 cells was inhibited when miR-490-3p targeted and bound to hnRNPA1-b,effectively blocking the Warburg effect.CONCLUSION These findings suggest that the novel miR-490-3p/hnRNPA1-b/PKM2 axis could provide a new strategy for the diagnosis and treatment of CC.展开更多
Metastasis-associated in colon cancer-1(MACC1) is an oncogene that was first identified in colon cancer. The upstream and downstream of MACC1 form a delicate regulatory network that supports its tumorigenic role in ca...Metastasis-associated in colon cancer-1(MACC1) is an oncogene that was first identified in colon cancer. The upstream and downstream of MACC1 form a delicate regulatory network that supports its tumorigenic role in cancers. Multiple functions of MACC1 have been discovered in many cancers. In gastric cancer(GC), MACC1 has been shown to be involved in oncogenesis and t umor progression. MACC1 overexpression adversely affects the clinical outcomes of GC patients. Regarding the mechanism of action of MACC1 in GC, studies have shown that it promotes the epithelialto-mesenchymal transition and accelerates cancer metastasis. MACC1 is involved in many hallmarks of GC in addition to metastasis. MACC1 promotes vasculogenic mimicry(VM) via TWIST1/2, and VM increases the tumor blood supply, which is necessary for tumor progression. MACC1 also facilitates GC lymphangiogenesis by upregulating extracellular secretion of VEGF-C/D, indicating that MACC1 may be an important player in GC lymphatic dissemination. Additionally, MACC1 supports GC growth under metabolic stress by enhancing the Warburg effect. In conclusion, MACC1 participates in multiple biological processes inside and outside of GC cells, making it an important mediator of the tumor microenvironment.展开更多
AIM: To investigate the intratumoral expression of metastasis-associated in colon cancer 1 (MACC1) and c-Met and determine their clinical values associated with hepatitis B virus (HBV)-related hepatocellular carcinoma...AIM: To investigate the intratumoral expression of metastasis-associated in colon cancer 1 (MACC1) and c-Met and determine their clinical values associated with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). METHODS: A retrospective study admitted three hundred fifty-four patients with HBV-related HCC. The expression and distribution of MACC1 and c-Met were assessed by quantitative real-time polymerase chain reaction and immunohistochemistry staining. Prognostic factors influencing survival, metastasis and recurrence were assessed. RESULTS: Intratumoral MACC1 level was found to be associated with HCC disease progression. Both median tumor-free survival (TFS) and overall survival (OS) were significantly shorter in the postoperative HCC patients with high intratumoral MACC1 expression, as compared to those with low intratumoral MACC1 levels (TFS: 34 mo vs 48.0 mo, P < 0.001; OS: 40 mo vs 48 mo, P < 0.01). Multivariable analysis indicated that high MACC1 expression or co-expression with c-Met were independent predictors for HCC clinic outcome (P < 0.001). CONCLUSION: High intratumoral MACC1 expression can be associated with enhanced tumor progression and poor outcome of HBV-related HCC. MACC1 may serve as a prognostic biomarker for postoperative HCC.展开更多
Cancer poses a significant threat due to its aggressive nature,potential for widespread metastasis,and inherent heterogeneity,which often leads to resistance to chemotherapy.Lung cancer ranks among the most prevalent ...Cancer poses a significant threat due to its aggressive nature,potential for widespread metastasis,and inherent heterogeneity,which often leads to resistance to chemotherapy.Lung cancer ranks among the most prevalent forms of cancer worldwide,affecting individuals of all genders.Timely and accurate lung cancer detection is critical for improving cancer patients’treatment outcomes and survival rates.Screening examinations for lung cancer detection,however,frequently fall short of detecting small polyps and cancers.To address these limitations,computer-aided techniques for lung cancer detection prove to be invaluable resources for both healthcare practitioners and patients alike.This research implements an enhanced EfficientNetB1 deep learning model for accurate detection and classification using histopathological images.The proposed technique accurately classifies the histopathological images into three distinct classes:(1)no cancer(benign),(2)adenocarcinomas,and(3)squamous cell carcinomas.We evaluated the performance of the proposed technique using the histopathological(LC25000)lung dataset.The preprocessing steps,such as image resizing and augmentation,are followed by loading a pretrained model and applying transfer learning.The dataset is then split into training and validation sets,with fine-tuning and retraining performed on the training dataset.The model’s performance is evaluated on the validation dataset,and the results of lung cancer detection and classification into three classes are obtained.The study’s findings show that an enhanced model achieves exceptional classification accuracy of 99.8%.展开更多
[Objectives] To investigate the role of Eriocalyxin B (EriB) in promoting colon cancer cell apoptosis through ERK1/2 pathway in vitro, and to provide a natural candidate drug for colon cancer treatment. [Methods] Colo...[Objectives] To investigate the role of Eriocalyxin B (EriB) in promoting colon cancer cell apoptosis through ERK1/2 pathway in vitro, and to provide a natural candidate drug for colon cancer treatment. [Methods] Colon cancer cells treated with different concentrations of EriB were detected by CCK-8 assay;cell scratch assay and crystal violet staining were used to detect the invasion and migration of colon cancer cell;cell apoptosis was detected by Annexin V/PI double staining, and cell cycle was detected by PI staining;Western Blotting was used to detect epithelial-mesenchymal transition and apoptosis-related proteins in colon cancer cells treated with EriB. [Results] After EriB treatment, the proliferation, migration and apoptosis of colon cancer cells were significantly inhibited, and the ratio of P-ERK1/2 to ERK was significantly decreased. [Conclusions] EriB can effectively inhibit the proliferation of colon cancer cells and promote the apoptosis of colon cancer cells through ERK1/2 pathway.展开更多
AIM:To study the correlation between high metastasisassociated protein 1(MTA1)expression and lymphangiogenesis in colorectal cancer(CRC)and its role in production of vascular endothelial growth factor-C(VEGF-C). METHO...AIM:To study the correlation between high metastasisassociated protein 1(MTA1)expression and lymphangiogenesis in colorectal cancer(CRC)and its role in production of vascular endothelial growth factor-C(VEGF-C). METHODS:Impact of high MTA1 and VEGF-C expression levels on disease progression and lymphovasculardensity(LVD,D2-40-immunolabeled)in 81 cases of human CRC was evaluated by immunohistochemistry. VEGF-C mRNA and protein expressions in human LoVo and HCT116 cell lines were detected by real-time polymerase chain reaction and Western blotting,respectively,with a stable expression vector or siRNA. RESULTS:The elevated MTA1 and VEGF-C expression levels were correlated with lymph node metastasis and Dukes stages(P<0.05).Additionally,high MTA1 expression level was correlated with a large tumor size(P< 0.05).A significant correlation was found between MTA1 and VEGF-C protein expressions in tumor cells(r=0.371, P<0.05).Similar to the VEGF-C expression level,high MTA1 expression level was correlated with high LVD in CRC(P<0.05).Furthermore,over-expression of MTA1 significantly enhanced the VEGF-C mRNA and protein expression levels,whereas siRNAs-knocked down MTA1 decreased the VEGF-C expression level. CONCLUSION:MTA1,as a regulator of tumor-associated lymphangiogenesis,promotes lymphangiogenesis in CRC by mediating the VEGF-C expression.展开更多
AIM: To investigate the mechanisms of chloride intracellular channel 1 (CLIC1) in the metastasis of colon cancer under hypoxia-reoxygenation (H-R) conditions.
BACKGROUND Circular RNAs (circRNAs) are considered to be highly stable due to the closed structure, which are predominately correlated with the development and progression of a wide variety of cancers. Colon cancer is...BACKGROUND Circular RNAs (circRNAs) are considered to be highly stable due to the closed structure, which are predominately correlated with the development and progression of a wide variety of cancers. Colon cancer is one of the most common malignancies worldwide. A recent study demonstrated the upregulated expression of circPIP5K1A in non-small cell lung cancer. However, few studies have investigated the relationship between circ_0014130 level and colon cancer. Therefore, elucidating the underlying mechanisms of circPIP5K1A’s role may help with the identification of novel diagnostic and therapeutic targets for colon cancer. AIM To investigate the status of circPIP5K1A in colon cancers and its effects on the modulation of cancer development. METHODS The expression level of circPIP5K1A in tissue and serum samples from colon cancer patients, as well as human colonic cancer cell lines was detected by realtime quantitative reverse transcription-polymerase chain reaction. Following the transfection of specifically synthesized small interfering RNA (siRNA) into colon cell lines, we used Hoechst staining assay to measure the ratio of cell death in the absence of circPIP5K1A. Moreover, we also used the Transwell assay to assess the migratory function of colon cells overexpressing circPIP5K1A. Additionally, we employed a series of bioinformatics prediction programs to predict the potential of circPIP5K1A-targeted miRNAs and mRNAs. The miR-1273a vector was constructed, and then transfected with or without circPIP5K1A vector into colon cancer cells. Afterwards, the expression of activator protein 1 (AP-1), interferon regulating factor 4 (IRF-4), caudal type homeobox 2 (CDX-2), and zinc finger of the cerebellum 1 (Zic-1) was detected by western blotting. RESULTS CircPIP5K1A was significantly upregulated in colon cancer tissue relative to their adjacent normal tissues. Knockdown of circPIP5K1A in colon cancer cells impaired cell viability and suppressed cell invasion and migration, while enforced expression of circPIP5K1A exhibited the opposite effects on cell migration. Bioinformatics prediction program predicted that the association of circPIP5K1A with miR-1273a, as well as AP-1, IRF-4, CDX-2, and Zic-1. Subsequent studies showed that overexpression of circPIP5K1A augmented the expression of AP-1 but attenuated the expression of IRF-4, CDX-2, and Zic-1. Reciprocally, overexpression of miR-1273a abrogated the oncogenic function of circPIP5K1A in colon cancers. CONCLUSION Overall, our data demonstrate the oncogenic role of circPIP5K1A-miR-1273a axis in regulation of colon cancer development, which provides a novel insights into colon cancer pathogenesis.展开更多
AIM:To study the mechanism of 5-fluorouracil(5-FU)resistance in colon cancer cells and to develop strategies for overcoming such resistance by combination treatment.METHODS:We established and characterized a 5-FU resi...AIM:To study the mechanism of 5-fluorouracil(5-FU)resistance in colon cancer cells and to develop strategies for overcoming such resistance by combination treatment.METHODS:We established and characterized a 5-FU resistance(5-FU-R)cell line derived from continuous exposure(25μmol/L)to 5-FU for 20 wk in 5-FU sensitive HCT-116 cells.The proliferation and expression of different representative apoptosis and anti-apoptosis markers in 5-FU sensitive and 5-FU resistance cells were measured by the MTT assay and by Western blotting,respectively,after treatment with Resveratrol(Res)and/or 1,3-Bis(2-chloroethyl)-1-nitrosourea(BCNU).Apoptosis and cell cycle arrest was measured by 4',6'-diamidino-2-phenylindole hydrochloride staining and fluorescence-activated cell sorting analysis,respectively.The extent of DNA damage was measured by the Comet assay.We measured the visible changes in the DNA damage/repair cascade by Western blotting.RESULTS:The widely used chemotherapeutic agents BCNU and Res decreased the growth of 5-FU sensitive HCT-116 cells in a dose dependent manner.Combined application of BCNU and Res caused more apoptosis in5-FU sensitive cells in comparison to individual treatment.In addition,the combined application of BCNU and Res caused a significant decrease of major DNA base excision repair components in 5-FU sensitive cells.We established a 5-FU resistance cell line(5-FU-R)from 5-FU-sensitive HCT-116(mismatch repair deficient)cells that was not resistant to other chemotherapeutic agents(e.g.,BCNU,Res)except 5-FU.The 5-FU resistance of 5-FU-R cells was assessed by exposure to increasing concentrations of 5-FU followed by the MTT assay.There was no significant cell death noted in5-FU-R cells in comparison to 5-FU sensitive cells after5-FU treatment.This resistant cell line overexpressed anti-apoptotic[e.g.,AKT,nuclear factorκB,FLICE-like inhibitory protein),DNA repair(e.g.,DNA polymerase beta(POL-β),DNA polymerase eta(POLH),protein Flap endonuclease 1(FEN1),DNA damage-binding protein 2(DDB2)]and 5-FU-resistance proteins(thymidylate synthase)but under expressed pro-apoptotic proteins(e.g.,DAB2,CK1)in comparison to the parental cells.Increased genotoxicity and apoptosis were observed in resistant cells after combined application of BCNU and Res in comparison to untreated or parental cells.BCNU increased the sensitivity to Res of 5-FU resistant cells compared with parental cells.Fifty percent cell death were noted in parental cells when 18μmol/L of Res was associated with fixed concentration(20μmol/L)of BCNU,but a much lower concentration of Res(8μmol/L)was needed to achieve the same effect in 5-FU resistant cells.Interestingly,increased levels of adenomatous polyposis coli and decreased levels POL-β,POLH,FEN1 and DDB2 were noted after the same combined treatment in resistant cells.CONCLUSION:BCNU combined with Res exerts a synergistic effect that may prove useful for the treatment of colon cancer and to overcome drug resistance.展开更多
Objective: To investigate the relationship between NAD(P)H:quinone oxidoreductase 1 (NQOI) C609T polymorphism and colon cancer risk in farmers from western region of Inner Mongolia. Methods: Polymerase chain re...Objective: To investigate the relationship between NAD(P)H:quinone oxidoreductase 1 (NQOI) C609T polymorphism and colon cancer risk in farmers from western region of Inner Mongolia. Methods: Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to analyze NQO1 C609T polymorphism from 160 healthy controls and 76 colon cancer patients. Results: Among the colon cancer patients, the incidence of NQOI T allele (53.29%) was significantly higher than it in control group (33.75%, P〈0.001). The individuals with NQO1 T allele had higher risk [2.239 (95% CI: 1.510-3.321) times] to develop colon cancer than individuals with NQO1 C allele. The incidence of NQO1 (TFI-) (34.21%) in colon cancer patients was higher than that in control group (15.62%, P〈0.001). Odds ratios (OR) analysis suggested that NQO1 (T/F) and NQOI (T/C) genotype carriers had 3.813 (95% CI: 1.836-7.920) times and 2.080 (1.026-4.219) times risk compared with wild-type NQO1 (C/C) gene carriers in developing colon cancer. Individuals with NQO1 (T/I') genotype had 2.541 (95% CI: 0.990-6.552) times, 3.713 (95% CI: 1.542-8.935) times, and 3.471 (95% CI: 1.356-8.886) times risk than individuals with NQOI (T/C) or NQOI (C/C) genotype in well- differentiated, moderately-differentiated, and poorly-differentiated colon cancer patients, respectively. Conclusions: NQO1 gene C609T could be one of risk factors of colon cancer in farmers from western region of Inner Mongolia,展开更多
AIM:To determine how the oncogene mi R-21 regulates the RAS signaling pathways and affects colon cancer cell behaviors.METHODS:RAS p21 GTPase activating protein 1(RASA1) protein expression in six colon cancer cell lin...AIM:To determine how the oncogene mi R-21 regulates the RAS signaling pathways and affects colon cancer cell behaviors.METHODS:RAS p21 GTPase activating protein 1(RASA1) protein expression in six colon cancer cell lines was assessed by Western blot.Colon cancer RKO cells were chosen for transfection because they are KRAS wild type colon cancer cells whose RASA1 expression is significantly decreased.RKO cells were transfected with vectors overexpressing or downregulating either mi R-21 or RASA1.Furthermore,a luciferase reporter assay was used to determine whether RASA1 is a gene target of mi R-21.Then,changes in m RNA and protein levels of RASA1,RASGTP,and other components of the RAS signaling pathways were assessed in transfected RKO cells by real-time quantitative reverse transcription-polymerase chain reaction,Western blot and immunoprecipitation.Finally,cell proliferation,apoptosis,invasion,and tumorformation ability w ere assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye assay,flow cytometry,transwell assay,and animal experiment,respectively.RESULTS:RASA1 protein levels were significantly decreased in RKO cells compared with the other 5 colon cancer cell lines,and RASA1 was confirmed as a target gene of mi R-21.Interestingly,RASA1 m RNA and protein levels in pre-mi R-21-LV(up-regulation of mi R-21) cells were lower than those in anti-mi R-21-LV(down-regulation of mi R-21) cells(P < 0.05).In addition,pre-mi R-21-LV or si RASA1(down-regulation of RASA1) cells showed higher cell proliferation,reduced apoptosis,increased expression of RAS-GTP,p-AKT,Raf-1,KRAS,and p-ERK1/2,and higher invasion and tumor formation ability,compared with control,antimi R-21-LV or pc DNA3.1-RASA1(up-regulation of RASA1) cells(P < 0.05).CONCLUSION:RASA1 is a target gene of mi R-21,which promotes malignant behaviors of RKO cells through regulation of RASA1 expression.展开更多
AIM:To investigate the association of variations in the cyclooxygenase-2 (COX2) and uridine diphosphate glucuronosyltransferase 1A6 (UGTIA6) genes and non-steroidal anti-inflammatory drugs (NSAIDs) use with ris...AIM:To investigate the association of variations in the cyclooxygenase-2 (COX2) and uridine diphosphate glucuronosyltransferase 1A6 (UGTIA6) genes and non-steroidal anti-inflammatory drugs (NSAIDs) use with risk of colon cancer.METHODS: NSAIDs, which are known to reduce the risk of colon cancer, act directly on COX2 and reduce its activity. Epidemiological studies have associated variations in the COX2 gene with colon cancer risk, but others were unable to replicate this finding. Similarly,enzymes in the UGT1A6 gene have been demonstrated to modify the therapeutic effect of NSAIDs on colon adenomas. Polymorphisms in the UGTIA6 gene have been statistically shown to interact with NSAID intake to influence risk of developing colon adenomas, but not colon cancer. Here we examined the association of tagging single nucleotide polymorphisms (SNPs) in the COX2 and UGTIA6 genes, and their interaction with NSAID consumption, on risk of colon cancer in a population of 422 colon cancer cases and 481 population controls.RESULTS: No SNP in either gene was individually statistically significantly associated with colon cancer, nor did they statistically significantly change the protective effect of NSAID consumption in our sample. Like others, we were unable to replicate the association of variants in the COX2 gene with colon cancer risk (P 〉 0.05),and we did not observe that these variants modify the protective effect of NSAIDs (P 〉 0.05). We were able to confirm the lack of association of variants in UGT1A6 with colon cancer risk, although further studies will have to be conducted to confirm the association of these variants with colon adenomas.CONCLUSION: Our study does not support a role of COX2 and UGTIA6 genetic variations in the development of colon cancer.展开更多
基金The study was reviewed and approved by the Institutional Review Board of The First Affiliated Hospital of Gannan Medical College,No.20141219.
文摘BACKGROUND Clinical prognosis often worsens due to high recurrence rates following radical surgery for colon cancer.The examination of high-risk recurrence factors post-surgery provides critical insights for disease evaluation and treatment planning.AIM To explore the relationship between metastasis-associated factor-1 in colon cancer(MACC1)and vacuolar ATP synthase(V-ATPase)expression in colon cancer tissues,and recurrence rate in patients undergoing radical colon cancer surgery.METHODS We selected 104 patients treated with radical colon cancer surgery at our hospital from January 2018 to June 2021.Immunohistochemical staining was utilized to assess the expression levels of MACC1 and V-ATPase in these patients.RESULTS The rates of MACC1 and V-ATPase positivity were 64.42%and 67.31%,respe-ctively,in colon cancer tissues,which were significantly higher than in paracan-cerous tissues(P<0.05).Among patients with TNM stage III,medium to low differentiation,and lymph node metastasis,the positive rates of MACC1 and V-ATPase were significantly elevated in comparison to patients with TNM stage I-II,high differentiation,and no lymph node metastasis(P<0.05).The rate of MACC1 positivity was 76.67%in patients with tumor diameters>5 cm,notably higher than in patients with tumor diameters≤5 cm(P<0.05).We observed a positive correlation between MACC1 and V-ATPase expression(rs=0.797,P<0.05).The positive rates of MACC1 and V-ATPase were significantly higher in patients with recurrence compared to those without(P<0.05).Logistic regression analysis revealed TNM stage,lymph node metastasis,MACC1 expression,and V-ATPase expression as risk factors for postoperative colon cancer recurrence(OR=6.322,3.435,2.683,and 2.421;P<0.05).CONCLUSION The upregulated expression of MACC1 and V-ATPase in colon cancer patients appears to correlate with clinicopathological features and post-radical surgery recurrence.
基金Supported by National Natural Science Foundation of China,No.82360329Inner Mongolia Medical University General Project,No.YKD2023MS047Inner Mongolia Health Commission Science and Technology Plan Project,No.202201275.
文摘BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.
基金the Scientific Research Project of Anhui Provincial Health Commission in 2021(#AHWJ2021b109 to LS)Scientific and Technological Research Program of Chongqing Municipal Education Commission(#KJZD-K201900402 to TZ)+1 种基金Special Fund for Wannan Medical College Scholar Project(#WK2021F07)Educational Commission of Anhui Province of China(2022AH051241).
文摘The role of lncRNA KCNQ1 opposite strand/antisense transcript 1(KCNQ1OT1)in colon cancer involves various tumorigenic processes and has been studed widely.However,the mechanism by which it promotes colon cancer remains unclear.Retrovirnl vector pSEB61 was retroftted in established HCT116 siKCN and SW480-siKCN cells to silence KCNQ1 OT1.Cellular proliferation was measured using CCK8 assay,and flow cytometry(FCM)detected cell cydle changes.RNA sequencing(RNA Seq)analysis showed differentially expressed genes(DEGs).Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were carried out to analyze enriched functions and signaling pathways.RT-qPCR,immunofluorescence,and western blotting were carried out to validate downstream gene expressions.The effects of tumorigenesis were evaluated in BALB/c nude mice by tumor xenografts.Our data revealed that the silencing of KONQ1OT1 in HCT116 and SW480 cells slowed cell growth and decreased the number of cells in the G2/M phase.RNA-Seq analysis showed the data of DEGs enriched in various GO and KEGG pathways such as DNA replication and cell cyde.RT qPCR,immunofluorescence,and western blotting confirmed downstream CCNE2 and PCNA gene expressions.HCT116 siKCN cells signifcantly suppressed tumorigenesis in BALB/c nude mice.Our study suggests that lncRNA KCNQ1OT1 may provide a promising therapeutic strategy for colon cancer.
基金Supported by the National Natural Science Foundation of China,No.82160405Jiangxi Provincial Natural Science Foundation,No.20232BAB206131,No.20212ACB206016,and No.20224BAB206114+1 种基金Jiangxi Provincial Health Commission Project,No.202310887the Development Fund of Jiangxi Cancer Hospital,No.2021J10.
文摘BACKGROUND Heterogeneous ribonucleoprotein A1(hnRNPA1)has been reported to enhance the Warburg effect and promote colon cancer(CC)cell proliferation,but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in CC have not yet been elucidated.AIM To investigate the role and mechanism of a novel miR-490-3p/hnRNPA1-b/PKM2 axis in enhancing the Warburg effect and promoting CC cell proliferation through the PI3K/AKT pathway.METHODS Paraffin-embedded pathological sections from 220 CC patients were collected and subjected to immunohistochemical analysis to determine the expression of hnRNPA1-b.The relationship between the expression values and the clinicopathological features of the patients was investigated.Differences in mRNA expression were analyzed using quantitative real-time polymerase chain reaction,while differences in protein expression were analyzed using western blot.Cell proliferation was evaluated using the cell counting kit-8 and 5-ethynyl-2’-deoxyuridine assays,and cell cycle and apoptosis were detected using flow cytometric assays.The targeted binding of miR-490-3p to hnRNPA1-b was validated using a dual luciferase reporter assay.The Warburg effect was evaluated by glucose uptake and lactic acid production assays.RESULTS The expression of hnRNPA1-b was significantly increased in CC tissues and cells compared to normal controls(P<0.05).Immunohistochemical results demonstrated significant variations in the expression of the hnRNPA1-b antigen in different stages of CC,including stage I,II-III,and IV.Furthermore,the clinicopathologic characterization revealed a significant correlation between hnRNPA1-b expression and clinical stage as well as T classification.HnRNPA1-b was found to enhance the Warburg effect through the PI3K/AKT pathway,thereby promoting proliferation of HCT116 and SW620 cells.However,the proliferation of HCT116 and SW620 cells was inhibited when miR-490-3p targeted and bound to hnRNPA1-b,effectively blocking the Warburg effect.CONCLUSION These findings suggest that the novel miR-490-3p/hnRNPA1-b/PKM2 axis could provide a new strategy for the diagnosis and treatment of CC.
文摘Metastasis-associated in colon cancer-1(MACC1) is an oncogene that was first identified in colon cancer. The upstream and downstream of MACC1 form a delicate regulatory network that supports its tumorigenic role in cancers. Multiple functions of MACC1 have been discovered in many cancers. In gastric cancer(GC), MACC1 has been shown to be involved in oncogenesis and t umor progression. MACC1 overexpression adversely affects the clinical outcomes of GC patients. Regarding the mechanism of action of MACC1 in GC, studies have shown that it promotes the epithelialto-mesenchymal transition and accelerates cancer metastasis. MACC1 is involved in many hallmarks of GC in addition to metastasis. MACC1 promotes vasculogenic mimicry(VM) via TWIST1/2, and VM increases the tumor blood supply, which is necessary for tumor progression. MACC1 also facilitates GC lymphangiogenesis by upregulating extracellular secretion of VEGF-C/D, indicating that MACC1 may be an important player in GC lymphatic dissemination. Additionally, MACC1 supports GC growth under metabolic stress by enhancing the Warburg effect. In conclusion, MACC1 participates in multiple biological processes inside and outside of GC cells, making it an important mediator of the tumor microenvironment.
基金Supported by Grants from the Key Scientific and Technological Research Foundation of the National Special-purpose Program,No. 2008ZX10002-018from the Capital Medical Development and Research in Beijing, China, No. 2007-1021 and2009-2041
文摘AIM: To investigate the intratumoral expression of metastasis-associated in colon cancer 1 (MACC1) and c-Met and determine their clinical values associated with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). METHODS: A retrospective study admitted three hundred fifty-four patients with HBV-related HCC. The expression and distribution of MACC1 and c-Met were assessed by quantitative real-time polymerase chain reaction and immunohistochemistry staining. Prognostic factors influencing survival, metastasis and recurrence were assessed. RESULTS: Intratumoral MACC1 level was found to be associated with HCC disease progression. Both median tumor-free survival (TFS) and overall survival (OS) were significantly shorter in the postoperative HCC patients with high intratumoral MACC1 expression, as compared to those with low intratumoral MACC1 levels (TFS: 34 mo vs 48.0 mo, P < 0.001; OS: 40 mo vs 48 mo, P < 0.01). Multivariable analysis indicated that high MACC1 expression or co-expression with c-Met were independent predictors for HCC clinic outcome (P < 0.001). CONCLUSION: High intratumoral MACC1 expression can be associated with enhanced tumor progression and poor outcome of HBV-related HCC. MACC1 may serve as a prognostic biomarker for postoperative HCC.
文摘Cancer poses a significant threat due to its aggressive nature,potential for widespread metastasis,and inherent heterogeneity,which often leads to resistance to chemotherapy.Lung cancer ranks among the most prevalent forms of cancer worldwide,affecting individuals of all genders.Timely and accurate lung cancer detection is critical for improving cancer patients’treatment outcomes and survival rates.Screening examinations for lung cancer detection,however,frequently fall short of detecting small polyps and cancers.To address these limitations,computer-aided techniques for lung cancer detection prove to be invaluable resources for both healthcare practitioners and patients alike.This research implements an enhanced EfficientNetB1 deep learning model for accurate detection and classification using histopathological images.The proposed technique accurately classifies the histopathological images into three distinct classes:(1)no cancer(benign),(2)adenocarcinomas,and(3)squamous cell carcinomas.We evaluated the performance of the proposed technique using the histopathological(LC25000)lung dataset.The preprocessing steps,such as image resizing and augmentation,are followed by loading a pretrained model and applying transfer learning.The dataset is then split into training and validation sets,with fine-tuning and retraining performed on the training dataset.The model’s performance is evaluated on the validation dataset,and the results of lung cancer detection and classification into three classes are obtained.The study’s findings show that an enhanced model achieves exceptional classification accuracy of 99.8%.
基金Supported by Natural Science Research Project of Colleges and Universities in Anhui Province(KJ2019A1110,KJ2020A0863)Innovation Team Research Fund Project of Anhui Medical College(WJH202007t,WJH202008t)2021 Anhui Provincial Production-Education Integration Training Base Project for Quality Engineering(2021cjrh020).
文摘[Objectives] To investigate the role of Eriocalyxin B (EriB) in promoting colon cancer cell apoptosis through ERK1/2 pathway in vitro, and to provide a natural candidate drug for colon cancer treatment. [Methods] Colon cancer cells treated with different concentrations of EriB were detected by CCK-8 assay;cell scratch assay and crystal violet staining were used to detect the invasion and migration of colon cancer cell;cell apoptosis was detected by Annexin V/PI double staining, and cell cycle was detected by PI staining;Western Blotting was used to detect epithelial-mesenchymal transition and apoptosis-related proteins in colon cancer cells treated with EriB. [Results] After EriB treatment, the proliferation, migration and apoptosis of colon cancer cells were significantly inhibited, and the ratio of P-ERK1/2 to ERK was significantly decreased. [Conclusions] EriB can effectively inhibit the proliferation of colon cancer cells and promote the apoptosis of colon cancer cells through ERK1/2 pathway.
基金Supported by National Natural Science Foundation of China(No.30772131)Fundamental Research Funds for Central Universities(No.21609313)from Ministry of Education of China
文摘AIM:To study the correlation between high metastasisassociated protein 1(MTA1)expression and lymphangiogenesis in colorectal cancer(CRC)and its role in production of vascular endothelial growth factor-C(VEGF-C). METHODS:Impact of high MTA1 and VEGF-C expression levels on disease progression and lymphovasculardensity(LVD,D2-40-immunolabeled)in 81 cases of human CRC was evaluated by immunohistochemistry. VEGF-C mRNA and protein expressions in human LoVo and HCT116 cell lines were detected by real-time polymerase chain reaction and Western blotting,respectively,with a stable expression vector or siRNA. RESULTS:The elevated MTA1 and VEGF-C expression levels were correlated with lymph node metastasis and Dukes stages(P<0.05).Additionally,high MTA1 expression level was correlated with a large tumor size(P< 0.05).A significant correlation was found between MTA1 and VEGF-C protein expressions in tumor cells(r=0.371, P<0.05).Similar to the VEGF-C expression level,high MTA1 expression level was correlated with high LVD in CRC(P<0.05).Furthermore,over-expression of MTA1 significantly enhanced the VEGF-C mRNA and protein expression levels,whereas siRNAs-knocked down MTA1 decreased the VEGF-C expression level. CONCLUSION:MTA1,as a regulator of tumor-associated lymphangiogenesis,promotes lymphangiogenesis in CRC by mediating the VEGF-C expression.
基金Supported by The "Eleventh Five-year Plan" for Medical Sci-ence Development of PLA,No.06MB243the National Natural Science Foundation of China,No.81101101 and No.51273165+1 种基金the Key Project of Chinese Ministry of Education,No.212149the Projects of Sichuan Province,No.2010SZ0294,No.2011JQ0032 and No.12ZB038
文摘AIM: To investigate the mechanisms of chloride intracellular channel 1 (CLIC1) in the metastasis of colon cancer under hypoxia-reoxygenation (H-R) conditions.
基金Supported by the National Natural Science Foundation of China,No.81703028and Hubei Cancer Hospital,No.20162017B01
文摘BACKGROUND Circular RNAs (circRNAs) are considered to be highly stable due to the closed structure, which are predominately correlated with the development and progression of a wide variety of cancers. Colon cancer is one of the most common malignancies worldwide. A recent study demonstrated the upregulated expression of circPIP5K1A in non-small cell lung cancer. However, few studies have investigated the relationship between circ_0014130 level and colon cancer. Therefore, elucidating the underlying mechanisms of circPIP5K1A’s role may help with the identification of novel diagnostic and therapeutic targets for colon cancer. AIM To investigate the status of circPIP5K1A in colon cancers and its effects on the modulation of cancer development. METHODS The expression level of circPIP5K1A in tissue and serum samples from colon cancer patients, as well as human colonic cancer cell lines was detected by realtime quantitative reverse transcription-polymerase chain reaction. Following the transfection of specifically synthesized small interfering RNA (siRNA) into colon cell lines, we used Hoechst staining assay to measure the ratio of cell death in the absence of circPIP5K1A. Moreover, we also used the Transwell assay to assess the migratory function of colon cells overexpressing circPIP5K1A. Additionally, we employed a series of bioinformatics prediction programs to predict the potential of circPIP5K1A-targeted miRNAs and mRNAs. The miR-1273a vector was constructed, and then transfected with or without circPIP5K1A vector into colon cancer cells. Afterwards, the expression of activator protein 1 (AP-1), interferon regulating factor 4 (IRF-4), caudal type homeobox 2 (CDX-2), and zinc finger of the cerebellum 1 (Zic-1) was detected by western blotting. RESULTS CircPIP5K1A was significantly upregulated in colon cancer tissue relative to their adjacent normal tissues. Knockdown of circPIP5K1A in colon cancer cells impaired cell viability and suppressed cell invasion and migration, while enforced expression of circPIP5K1A exhibited the opposite effects on cell migration. Bioinformatics prediction program predicted that the association of circPIP5K1A with miR-1273a, as well as AP-1, IRF-4, CDX-2, and Zic-1. Subsequent studies showed that overexpression of circPIP5K1A augmented the expression of AP-1 but attenuated the expression of IRF-4, CDX-2, and Zic-1. Reciprocally, overexpression of miR-1273a abrogated the oncogenic function of circPIP5K1A in colon cancers. CONCLUSION Overall, our data demonstrate the oncogenic role of circPIP5K1A-miR-1273a axis in regulation of colon cancer development, which provides a novel insights into colon cancer pathogenesis.
基金Supported by Indian Council of Medical Research and Department of Biotechnology,Government of India
文摘AIM:To study the mechanism of 5-fluorouracil(5-FU)resistance in colon cancer cells and to develop strategies for overcoming such resistance by combination treatment.METHODS:We established and characterized a 5-FU resistance(5-FU-R)cell line derived from continuous exposure(25μmol/L)to 5-FU for 20 wk in 5-FU sensitive HCT-116 cells.The proliferation and expression of different representative apoptosis and anti-apoptosis markers in 5-FU sensitive and 5-FU resistance cells were measured by the MTT assay and by Western blotting,respectively,after treatment with Resveratrol(Res)and/or 1,3-Bis(2-chloroethyl)-1-nitrosourea(BCNU).Apoptosis and cell cycle arrest was measured by 4',6'-diamidino-2-phenylindole hydrochloride staining and fluorescence-activated cell sorting analysis,respectively.The extent of DNA damage was measured by the Comet assay.We measured the visible changes in the DNA damage/repair cascade by Western blotting.RESULTS:The widely used chemotherapeutic agents BCNU and Res decreased the growth of 5-FU sensitive HCT-116 cells in a dose dependent manner.Combined application of BCNU and Res caused more apoptosis in5-FU sensitive cells in comparison to individual treatment.In addition,the combined application of BCNU and Res caused a significant decrease of major DNA base excision repair components in 5-FU sensitive cells.We established a 5-FU resistance cell line(5-FU-R)from 5-FU-sensitive HCT-116(mismatch repair deficient)cells that was not resistant to other chemotherapeutic agents(e.g.,BCNU,Res)except 5-FU.The 5-FU resistance of 5-FU-R cells was assessed by exposure to increasing concentrations of 5-FU followed by the MTT assay.There was no significant cell death noted in5-FU-R cells in comparison to 5-FU sensitive cells after5-FU treatment.This resistant cell line overexpressed anti-apoptotic[e.g.,AKT,nuclear factorκB,FLICE-like inhibitory protein),DNA repair(e.g.,DNA polymerase beta(POL-β),DNA polymerase eta(POLH),protein Flap endonuclease 1(FEN1),DNA damage-binding protein 2(DDB2)]and 5-FU-resistance proteins(thymidylate synthase)but under expressed pro-apoptotic proteins(e.g.,DAB2,CK1)in comparison to the parental cells.Increased genotoxicity and apoptosis were observed in resistant cells after combined application of BCNU and Res in comparison to untreated or parental cells.BCNU increased the sensitivity to Res of 5-FU resistant cells compared with parental cells.Fifty percent cell death were noted in parental cells when 18μmol/L of Res was associated with fixed concentration(20μmol/L)of BCNU,but a much lower concentration of Res(8μmol/L)was needed to achieve the same effect in 5-FU resistant cells.Interestingly,increased levels of adenomatous polyposis coli and decreased levels POL-β,POLH,FEN1 and DDB2 were noted after the same combined treatment in resistant cells.CONCLUSION:BCNU combined with Res exerts a synergistic effect that may prove useful for the treatment of colon cancer and to overcome drug resistance.
基金supported by the Autonomous region Natural Science Foundation of China,No. 200711020906
文摘Objective: To investigate the relationship between NAD(P)H:quinone oxidoreductase 1 (NQOI) C609T polymorphism and colon cancer risk in farmers from western region of Inner Mongolia. Methods: Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to analyze NQO1 C609T polymorphism from 160 healthy controls and 76 colon cancer patients. Results: Among the colon cancer patients, the incidence of NQOI T allele (53.29%) was significantly higher than it in control group (33.75%, P〈0.001). The individuals with NQO1 T allele had higher risk [2.239 (95% CI: 1.510-3.321) times] to develop colon cancer than individuals with NQO1 C allele. The incidence of NQO1 (TFI-) (34.21%) in colon cancer patients was higher than that in control group (15.62%, P〈0.001). Odds ratios (OR) analysis suggested that NQO1 (T/F) and NQOI (T/C) genotype carriers had 3.813 (95% CI: 1.836-7.920) times and 2.080 (1.026-4.219) times risk compared with wild-type NQO1 (C/C) gene carriers in developing colon cancer. Individuals with NQO1 (T/I') genotype had 2.541 (95% CI: 0.990-6.552) times, 3.713 (95% CI: 1.542-8.935) times, and 3.471 (95% CI: 1.356-8.886) times risk than individuals with NQOI (T/C) or NQOI (C/C) genotype in well- differentiated, moderately-differentiated, and poorly-differentiated colon cancer patients, respectively. Conclusions: NQO1 gene C609T could be one of risk factors of colon cancer in farmers from western region of Inner Mongolia,
基金Supported by National Natural Science Foundation of China,No.81272770Grants from Guangdong Natural Science Foundation,No.S2013020012746Foundation of Guangdong Provincial Department of Science and Technology,No.2012A030400018
文摘AIM:To determine how the oncogene mi R-21 regulates the RAS signaling pathways and affects colon cancer cell behaviors.METHODS:RAS p21 GTPase activating protein 1(RASA1) protein expression in six colon cancer cell lines was assessed by Western blot.Colon cancer RKO cells were chosen for transfection because they are KRAS wild type colon cancer cells whose RASA1 expression is significantly decreased.RKO cells were transfected with vectors overexpressing or downregulating either mi R-21 or RASA1.Furthermore,a luciferase reporter assay was used to determine whether RASA1 is a gene target of mi R-21.Then,changes in m RNA and protein levels of RASA1,RASGTP,and other components of the RAS signaling pathways were assessed in transfected RKO cells by real-time quantitative reverse transcription-polymerase chain reaction,Western blot and immunoprecipitation.Finally,cell proliferation,apoptosis,invasion,and tumorformation ability w ere assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye assay,flow cytometry,transwell assay,and animal experiment,respectively.RESULTS:RASA1 protein levels were significantly decreased in RKO cells compared with the other 5 colon cancer cell lines,and RASA1 was confirmed as a target gene of mi R-21.Interestingly,RASA1 m RNA and protein levels in pre-mi R-21-LV(up-regulation of mi R-21) cells were lower than those in anti-mi R-21-LV(down-regulation of mi R-21) cells(P < 0.05).In addition,pre-mi R-21-LV or si RASA1(down-regulation of RASA1) cells showed higher cell proliferation,reduced apoptosis,increased expression of RAS-GTP,p-AKT,Raf-1,KRAS,and p-ERK1/2,and higher invasion and tumor formation ability,compared with control,antimi R-21-LV or pc DNA3.1-RASA1(up-regulation of RASA1) cells(P < 0.05).CONCLUSION:RASA1 is a target gene of mi R-21,which promotes malignant behaviors of RKO cells through regulation of RASA1 expression.
基金Supported by A Damon Runyon Cancer Research Foundation Clinical Investigator Award,CI-8An R25 training grant from the National Cancer Institute,R25T CA094186+1 种基金The Case Center for Transdisciplinary Research on Energetics and Cancer,1U54 CA-116867-01A National Cancer Institute K22 Award,1K22 CA120545-01
文摘AIM:To investigate the association of variations in the cyclooxygenase-2 (COX2) and uridine diphosphate glucuronosyltransferase 1A6 (UGTIA6) genes and non-steroidal anti-inflammatory drugs (NSAIDs) use with risk of colon cancer.METHODS: NSAIDs, which are known to reduce the risk of colon cancer, act directly on COX2 and reduce its activity. Epidemiological studies have associated variations in the COX2 gene with colon cancer risk, but others were unable to replicate this finding. Similarly,enzymes in the UGT1A6 gene have been demonstrated to modify the therapeutic effect of NSAIDs on colon adenomas. Polymorphisms in the UGTIA6 gene have been statistically shown to interact with NSAID intake to influence risk of developing colon adenomas, but not colon cancer. Here we examined the association of tagging single nucleotide polymorphisms (SNPs) in the COX2 and UGTIA6 genes, and their interaction with NSAID consumption, on risk of colon cancer in a population of 422 colon cancer cases and 481 population controls.RESULTS: No SNP in either gene was individually statistically significantly associated with colon cancer, nor did they statistically significantly change the protective effect of NSAID consumption in our sample. Like others, we were unable to replicate the association of variants in the COX2 gene with colon cancer risk (P 〉 0.05),and we did not observe that these variants modify the protective effect of NSAIDs (P 〉 0.05). We were able to confirm the lack of association of variants in UGT1A6 with colon cancer risk, although further studies will have to be conducted to confirm the association of these variants with colon adenomas.CONCLUSION: Our study does not support a role of COX2 and UGTIA6 genetic variations in the development of colon cancer.