AIM:To study the correlation between high metastasisassociated protein 1(MTA1)expression and lymphangiogenesis in colorectal cancer(CRC)and its role in production of vascular endothelial growth factor-C(VEGF-C). METHO...AIM:To study the correlation between high metastasisassociated protein 1(MTA1)expression and lymphangiogenesis in colorectal cancer(CRC)and its role in production of vascular endothelial growth factor-C(VEGF-C). METHODS:Impact of high MTA1 and VEGF-C expression levels on disease progression and lymphovasculardensity(LVD,D2-40-immunolabeled)in 81 cases of human CRC was evaluated by immunohistochemistry. VEGF-C mRNA and protein expressions in human LoVo and HCT116 cell lines were detected by real-time polymerase chain reaction and Western blotting,respectively,with a stable expression vector or siRNA. RESULTS:The elevated MTA1 and VEGF-C expression levels were correlated with lymph node metastasis and Dukes stages(P<0.05).Additionally,high MTA1 expression level was correlated with a large tumor size(P< 0.05).A significant correlation was found between MTA1 and VEGF-C protein expressions in tumor cells(r=0.371, P<0.05).Similar to the VEGF-C expression level,high MTA1 expression level was correlated with high LVD in CRC(P<0.05).Furthermore,over-expression of MTA1 significantly enhanced the VEGF-C mRNA and protein expression levels,whereas siRNAs-knocked down MTA1 decreased the VEGF-C expression level. CONCLUSION:MTA1,as a regulator of tumor-associated lymphangiogenesis,promotes lymphangiogenesis in CRC by mediating the VEGF-C expression.展开更多
Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and test...Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test.Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism.Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways.展开更多
The effects of mepiquat chloride(DPC)on the Cry1Ac protein content in Bacillus thuringiensis(Bt)cotton boll shells under high temperature and drought stress were investigated to provide a theoretical reference for Bt ...The effects of mepiquat chloride(DPC)on the Cry1Ac protein content in Bacillus thuringiensis(Bt)cotton boll shells under high temperature and drought stress were investigated to provide a theoretical reference for Bt cotton breeding and high-yield and-efficiency cotton cultivation.This study was conducted using Bt cotton cultivar‘Sikang 3'during the 2020 and 2021 growing seasons at Yangzhou University Farm,Yangzhou,Jiangsu Province,China.Potted cotton plants were exposed to high temperature and drought stress,and sprayed with either 20 mg L^(-1)DPC or water(CK).Seven days after treatment,the Cry1Ac protein content,α-ketoglutarate content,pyruvic acid content,glutamate synthase activity,glutamic oxaloacetic transaminase activity,soluble protein content,and amino acid content were measured,and transcriptome sequencing was performed.DESeq was used for differential gene analysis.Under the DPC treatment,the Cry1Ac protein content increased by 4.7-11.9% compared to CK.Theα-ketoglutarate content,pyruvic acid content,glutamate synthase activity,glutamic oxaloacetic transaminase activity,soluble protein content,and amino acid content all increased.Transcriptome analysis revealed 7,542 upregulated genes and 10,449 downregulated genes for DPC vs.CK.Gene ontology(GO)and Kyoto Encyclopedia of Gene and Genomes(KEGG)analyses showed that the differentially expressed genes were mainly involved in biological processes,such as carbon and amino acid metabolism.For example,genes encoding 6-phosphofructokinase,pyruvate kinase,glutamic pyruvate transaminase,pyruvate dehydrogenase,citrate synthase,isocitrate dehydrogenase,2-oxoglutarate dehydrogenase,glutamate synthase,1-pyrroline-5-carboxylate dehydrogenase,glutamic oxaloacetic transaminase,amino-acid N-acetyltransferase,and acetylornithine deacetylase were all significantly upregulated.The DPC treatment increased pyruvate,α-ketoglutarate,and oxaloacetate by increasing the operational rate of the glycolytic pathway of the citric acid cycle.It also significantly upregulated the genes encoding glutamate synthase,pyrrolidine-5-carboxylic acid dehydrogenase,glutamate oxaloacetate transaminase,and N-acetylglutamate synthetase,while it downregulated the genes encoding glutamine synthetase.Therefore,the synthesis of aspartic acid,glutamic acid,pyruvate,and arginine increased after treatment with DPC,and the Cry1Ac protein content was increased by regulating carbon and amino acid metabolism.展开更多
Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advance...Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advanced GC.In recent years,with the progress in tumor immunology research,attention has shifted toward immunotherapy as a therapeutic approach for GC.Programmed cell death protein 1(PD-1)inhibitors,as novel immunosuppressive medications,have been widely utilized in the treatment of GC.However,many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy.To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy,to maximize the clinical activity of immunosuppressive drugs,and to elicit a lasting immune response,it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients.This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment,aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.展开更多
In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been sho...In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been shown to reprogram astrocytes to functional neurons in situ. In this study, we used AAV-PHP.e B-GFAP-sh PTB to knockdown PTB in a mouse model of ischemic stroke induced by endothelin-1, and investigated the effects of GFAP-sh PTB-mediated direct reprogramming to neurons. Our results showed that in the mouse model of ischemic stroke, PTB knockdown effectively reprogrammed GFAP-positive cells to neurons in ischemic foci, restored neural tissue structure, reduced inflammatory response, and improved behavioral function. These findings validate the effectiveness of in situ transdifferentiation of astrocytes, and suggest that the approach may be a promising strategy for stroke treatment.展开更多
Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates ...Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.展开更多
Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein re...Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.展开更多
BACKGROUND Over the years,programmed cell death-1(PD-1)inhibitors have been routinely used for hepatocellular carcinoma(HCC)treatment and yielded improved survival outcomes.Nonetheless,significant heterogeneity surrou...BACKGROUND Over the years,programmed cell death-1(PD-1)inhibitors have been routinely used for hepatocellular carcinoma(HCC)treatment and yielded improved survival outcomes.Nonetheless,significant heterogeneity surrounds the outcomes of most studies.Therefore,it is critical to search for biomarkers that predict the efficacy of PD-1 inhibitors in patients with HCC.AIM To investigate the role of the C-reactive protein to albumin ratio(CAR)in evaluating the efficacy of PD-1 inhibitors for HCC.METHODS The clinical data of 160 patients with HCC treated with PD-1 inhibitors from January 2018 to November 2022 at the First Affiliated Hospital of Guangxi Medical University were retrospectively analyzed.RESULTS The optimal cut-off value for CAR based on progression-free survival(PFS)was determined to be 1.20 using x-tile software.Cox proportional risk model was used to determine the factors affecting prognosis.Eastern Cooperative Oncology Group performance status[hazard ratio(HR)=1.754,95%confidence interval(95%CI)=1.045-2.944,P=0.033],CAR(HR=2.118,95%CI=1.057-4.243,P=0.034)and tumor number(HR=2.932,95%CI=1.246-6.897,P=0.014)were independent prognostic factors for overall survival.CAR(HR=2.730,95%CI=1.502-4.961,P=0.001),tumor number(HR=1.584,95%CI=1.003-2.500,P=0.048)and neutrophil to lymphocyte ratio(HR=1.120,95%CI=1.022-1.228,P=0.015)were independent prognostic factors for PFS.Two nomograms were constructed based on independent prognostic factors.The C-index index and calibration plots confirmed that the nomogram is a reliable risk prediction tool.The ROC curve and decision curve analysis confirmed that the nomogram has a good predictive effect as well as a net clinical benefit.CONCLUSION Overall,we reveal that the CAR is a potential predictor of short-and long-term prognosis in patients with HCC treated with PD-1 inhibitors.If further verified,CAR-based nomogram may increase the number of markers that predict individualized prognosis.展开更多
BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by...BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by iron overload is con-sidered an important cause of T2DOP.Polycytosine RNA-binding protein 1(PCBP1),an iron ion chaperone,is considered a protector of ferroptosis.AIM To investigate the existence of ferroptosis and specific role of PCBP1 in the development of type 2 diabetes.METHODS A cell counting kit-8 assay was used to detect changes in osteoblast viability under high glucose(HG)and/or ferroptosis inhibitors at different concentrations and times.Transmission electron microscopy was used to examine the morpho-logical changes in the mitochondria of osteoblasts under HG,and western blotting was used to detect the expression levels of PCBP1,ferritin,and the ferroptosis-related protein glutathione peroxidase 4(GPX4).A lentivirus silenced and overex-pressed PCBP1.Western blotting was used to detect the expression levels of the osteoblast functional proteins osteoprotegerin(OPG)and osteocalcin(OCN),whereas flow cytometry was used to detect changes in reactive oxygen species(ROS)levels in each group.RESULTS Under HG,the viability of osteoblasts was considerably decreased,the number of mitochondria undergoing atrophy was considerably increased,PCBP1 and ferritin expression levels were increased,and GPX4 expression was decreased.Western blotting results demonstrated that infection with lentivirus overexpressing PCBP1,increased the expression levels of ferritin,GPX4,OPG,and OCN,compared with the HG group.Flow cytometry results showed a reduction in ROS,and an opposite result was obtained after silencing PCBP1.CONCLUSION PCBP1 may protect osteoblasts and reduce the harm caused by ferroptosis by promoting ferritin expression under a HG environment.Moreover,PCBP1 may be a potential therapeutic target for T2DOP.展开更多
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed...The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.展开更多
This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore t...This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore their potential as therapeutic targets,and discuss the implications for new treatment strategies.We offer valuable insights into relevant gene regulation and cellular mechanisms relevant for the targeted management of T2D.展开更多
Eukaryotic chromatin consisting of nucleosomes connected by linker DNA is organized into higher order structures,which is facilitated by linker histone H1.Formation of chromatin compacts and protects the genome,but al...Eukaryotic chromatin consisting of nucleosomes connected by linker DNA is organized into higher order structures,which is facilitated by linker histone H1.Formation of chromatin compacts and protects the genome,but also hinders DNA transactions.Cells have evolved mechanisms to modify/remodel chromatin resulting in chromatin states suitable for genome functions.The high mobility group box(HMGB)proteins are non-histone chromatin architectural factors characterized by one or more HMGB motifs that bind DNA in a sequence nonspecific fashion.They play a major role in chromatin dynamics.The Saccharomyces cerevisiae(yeast hereafter)HMGB protein Hmo1 contains two HMGB motifs.However,unlike a canonical HMGB protein that has an acidic C-terminus,Hmo1 ends with a lysine rich,basic,C-terminus,resembling linker histone H1.Hmo1 exhibits characteristics of both HMGB proteins and linker histones in its multiple functions.For instance,Hmo1 promotes transcription by RNA polymerases I and II like canonical HMGB proteins but makes chromatin more compact/stable like linker histones.Recent studies have demonstrated that Hmo1 destabilizes/disrupts nucleosome similarly as other HMGB proteins in vitro and acts to maintain a common topological architecture of genes in yeast genome.This minireview reviews the functions of Hmo1 and the underlying mechanisms,highlighting recent discoveries.展开更多
Fibroids, also called leiomyomas or myomas, are communal tumors of the muscle or uterine wall that affect about 20% of females who are of reproductive age. They can look as if singly or in clusters, and they often cea...Fibroids, also called leiomyomas or myomas, are communal tumors of the muscle or uterine wall that affect about 20% of females who are of reproductive age. They can look as if singly or in clusters, and they often cease to grow after menopause. Fibroids can be classified as intramural, sub serosal, pedunculated, or submucosal based on where they are positioned in the uterus. Although fibroids are benign, they can grow quickly and cause a range of symptoms, such as pelvic pressure, heavy menstrual flow, and infertility. As a result, fibroids are a main reason behind hysterectomy surgeries. The majority of cases of breast cancer are ductal and lobular cancers, making it the second utmost common cancer in women international. Gene mutations like those in BRCA1 or BRCA2 knowingly raise the risk of breast and other cancers, typically with an earlier cancer onset. Cancer risk is influenced by a complex interplay of genetic abnormalities, environmental factors, and lifestyle selections. Further research into these relations is domineering. Although they are common in uterine leiomyomas, especially multiple leiomyomas, MED12 mutations do not significantly correlate with tumor size. These mutations have also been noticed in smooth muscle tumors and leiomyosarcomas, two other types of uterine cancer. The identification of MED12 mutations as the sole genetic abnormality originates in leiomyomas raises the opportunity of a role in the genesis of cancer. 10% - 15% of women who are of reproductive age have endometriosis, which grants serious difficulties because of its chronic nature and range of clinical symptoms. Even after effective surgeries, issues reoccur often, adding to the enormous financial burden. The effects of MED12 mutations have been experiential in recent studies examining the molecular causes of endometriosis-associated infertility, which have shown anomalies in cellular connections and signaling cascades. Computational techniques were used in this study to investigate LifeGreenTM’s potential to prevent uterine fibroids and breast cancer. The efficacy of LifeGreenTM as a preventive measure or a treatment for common gynecological matters was examined and modeled. We investigated the mechanisms underlying LifeGreenTM’s benefits in the treatment of uterine fibroids and breast cancer using computational techniques. Our research contributes to our understanding of its potential therapeutic benefits for women’s health.展开更多
BACKGROUND Clinical prognosis often worsens due to high recurrence rates following radical surgery for colon cancer.The examination of high-risk recurrence factors post-surgery provides critical insights for disease e...BACKGROUND Clinical prognosis often worsens due to high recurrence rates following radical surgery for colon cancer.The examination of high-risk recurrence factors post-surgery provides critical insights for disease evaluation and treatment planning.AIM To explore the relationship between metastasis-associated factor-1 in colon cancer(MACC1)and vacuolar ATP synthase(V-ATPase)expression in colon cancer tissues,and recurrence rate in patients undergoing radical colon cancer surgery.METHODS We selected 104 patients treated with radical colon cancer surgery at our hospital from January 2018 to June 2021.Immunohistochemical staining was utilized to assess the expression levels of MACC1 and V-ATPase in these patients.RESULTS The rates of MACC1 and V-ATPase positivity were 64.42%and 67.31%,respe-ctively,in colon cancer tissues,which were significantly higher than in paracan-cerous tissues(P<0.05).Among patients with TNM stage III,medium to low differentiation,and lymph node metastasis,the positive rates of MACC1 and V-ATPase were significantly elevated in comparison to patients with TNM stage I-II,high differentiation,and no lymph node metastasis(P<0.05).The rate of MACC1 positivity was 76.67%in patients with tumor diameters>5 cm,notably higher than in patients with tumor diameters≤5 cm(P<0.05).We observed a positive correlation between MACC1 and V-ATPase expression(rs=0.797,P<0.05).The positive rates of MACC1 and V-ATPase were significantly higher in patients with recurrence compared to those without(P<0.05).Logistic regression analysis revealed TNM stage,lymph node metastasis,MACC1 expression,and V-ATPase expression as risk factors for postoperative colon cancer recurrence(OR=6.322,3.435,2.683,and 2.421;P<0.05).CONCLUSION The upregulated expression of MACC1 and V-ATPase in colon cancer patients appears to correlate with clinicopathological features and post-radical surgery recurrence.展开更多
Aim: To investigate the stage-specific localization of metastasis-associated protein 1 (MTA1) during spermatogenesis in adult human and mouse testis. Methods: The immunolocalization of MTA1 was studied by immunohi...Aim: To investigate the stage-specific localization of metastasis-associated protein 1 (MTA1) during spermatogenesis in adult human and mouse testis. Methods: The immunolocalization of MTA1 was studied by immunohistochemistry and Western blot analysis. The distribution pattern of MTA1 in mouse testis was confirmed by using quantitative analysis of purified spermatogenic cells. Results: The specificity of polyclonal antibody was confirmed by Western blot analysis. MTA1 was found expressed in the nucleus of germ cells, except elongate spermatids, and in the cytoplasm of Sertoli cells; Leydig cells did not show any specific reactivity. MTA1 possessed different distribution patterns in the two species: in humans, the most intensive staining was found in the nucleus of round spermatids and of primary spermatocytes while in mice, the most intense MTA 1 staining was in the nucleus of leptotene, zygotene and pachytene spermatocytes. In both species the staining exhibited a cyclic pattern. Conclusion: The present communication initially provides new evidence for the potential role of MTA1 in mature testis. In addition, its distinctive expression in germ cells suggests a regulatory role of the peptide during spermatogenesis.展开更多
基金Supported by National Natural Science Foundation of China(No.30772131)Fundamental Research Funds for Central Universities(No.21609313)from Ministry of Education of China
文摘AIM:To study the correlation between high metastasisassociated protein 1(MTA1)expression and lymphangiogenesis in colorectal cancer(CRC)and its role in production of vascular endothelial growth factor-C(VEGF-C). METHODS:Impact of high MTA1 and VEGF-C expression levels on disease progression and lymphovasculardensity(LVD,D2-40-immunolabeled)in 81 cases of human CRC was evaluated by immunohistochemistry. VEGF-C mRNA and protein expressions in human LoVo and HCT116 cell lines were detected by real-time polymerase chain reaction and Western blotting,respectively,with a stable expression vector or siRNA. RESULTS:The elevated MTA1 and VEGF-C expression levels were correlated with lymph node metastasis and Dukes stages(P<0.05).Additionally,high MTA1 expression level was correlated with a large tumor size(P< 0.05).A significant correlation was found between MTA1 and VEGF-C protein expressions in tumor cells(r=0.371, P<0.05).Similar to the VEGF-C expression level,high MTA1 expression level was correlated with high LVD in CRC(P<0.05).Furthermore,over-expression of MTA1 significantly enhanced the VEGF-C mRNA and protein expression levels,whereas siRNAs-knocked down MTA1 decreased the VEGF-C expression level. CONCLUSION:MTA1,as a regulator of tumor-associated lymphangiogenesis,promotes lymphangiogenesis in CRC by mediating the VEGF-C expression.
基金supported by the priority academic program development of Jiangsu Higher education institutionsthe National Natural Science Foundation of China [31801538, 32072200]China Postdoctoral Science Foundation[2019M651747].
文摘Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test.Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism.Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways.
基金supported by the National Natural Science Foundation of China(31901462)the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(22KJA210005)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)the Brand Professional Construction Program of Jiangsu Higher Education Institutions,China。
文摘The effects of mepiquat chloride(DPC)on the Cry1Ac protein content in Bacillus thuringiensis(Bt)cotton boll shells under high temperature and drought stress were investigated to provide a theoretical reference for Bt cotton breeding and high-yield and-efficiency cotton cultivation.This study was conducted using Bt cotton cultivar‘Sikang 3'during the 2020 and 2021 growing seasons at Yangzhou University Farm,Yangzhou,Jiangsu Province,China.Potted cotton plants were exposed to high temperature and drought stress,and sprayed with either 20 mg L^(-1)DPC or water(CK).Seven days after treatment,the Cry1Ac protein content,α-ketoglutarate content,pyruvic acid content,glutamate synthase activity,glutamic oxaloacetic transaminase activity,soluble protein content,and amino acid content were measured,and transcriptome sequencing was performed.DESeq was used for differential gene analysis.Under the DPC treatment,the Cry1Ac protein content increased by 4.7-11.9% compared to CK.Theα-ketoglutarate content,pyruvic acid content,glutamate synthase activity,glutamic oxaloacetic transaminase activity,soluble protein content,and amino acid content all increased.Transcriptome analysis revealed 7,542 upregulated genes and 10,449 downregulated genes for DPC vs.CK.Gene ontology(GO)and Kyoto Encyclopedia of Gene and Genomes(KEGG)analyses showed that the differentially expressed genes were mainly involved in biological processes,such as carbon and amino acid metabolism.For example,genes encoding 6-phosphofructokinase,pyruvate kinase,glutamic pyruvate transaminase,pyruvate dehydrogenase,citrate synthase,isocitrate dehydrogenase,2-oxoglutarate dehydrogenase,glutamate synthase,1-pyrroline-5-carboxylate dehydrogenase,glutamic oxaloacetic transaminase,amino-acid N-acetyltransferase,and acetylornithine deacetylase were all significantly upregulated.The DPC treatment increased pyruvate,α-ketoglutarate,and oxaloacetate by increasing the operational rate of the glycolytic pathway of the citric acid cycle.It also significantly upregulated the genes encoding glutamate synthase,pyrrolidine-5-carboxylic acid dehydrogenase,glutamate oxaloacetate transaminase,and N-acetylglutamate synthetase,while it downregulated the genes encoding glutamine synthetase.Therefore,the synthesis of aspartic acid,glutamic acid,pyruvate,and arginine increased after treatment with DPC,and the Cry1Ac protein content was increased by regulating carbon and amino acid metabolism.
基金Natural Science Foundation of Gansu Province,No.21JR1RA186and the Health Industry Research Program of Gansu Province,No.GSWSKY2021-043.
文摘Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advanced GC.In recent years,with the progress in tumor immunology research,attention has shifted toward immunotherapy as a therapeutic approach for GC.Programmed cell death protein 1(PD-1)inhibitors,as novel immunosuppressive medications,have been widely utilized in the treatment of GC.However,many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy.To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy,to maximize the clinical activity of immunosuppressive drugs,and to elicit a lasting immune response,it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients.This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment,aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.
基金supported by the National Natural Science Foundation of China,No.82071418the Natural Science Foundation of Fujian Province,No.2020J01612 (both to EH)。
文摘In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been shown to reprogram astrocytes to functional neurons in situ. In this study, we used AAV-PHP.e B-GFAP-sh PTB to knockdown PTB in a mouse model of ischemic stroke induced by endothelin-1, and investigated the effects of GFAP-sh PTB-mediated direct reprogramming to neurons. Our results showed that in the mouse model of ischemic stroke, PTB knockdown effectively reprogrammed GFAP-positive cells to neurons in ischemic foci, restored neural tissue structure, reduced inflammatory response, and improved behavioral function. These findings validate the effectiveness of in situ transdifferentiation of astrocytes, and suggest that the approach may be a promising strategy for stroke treatment.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.LH2021H009).
文摘Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.
文摘Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.
基金Supported by the Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University),Ministry of Education,No.GKE-ZZ202117 and No.GKE-ZZ202334.
文摘BACKGROUND Over the years,programmed cell death-1(PD-1)inhibitors have been routinely used for hepatocellular carcinoma(HCC)treatment and yielded improved survival outcomes.Nonetheless,significant heterogeneity surrounds the outcomes of most studies.Therefore,it is critical to search for biomarkers that predict the efficacy of PD-1 inhibitors in patients with HCC.AIM To investigate the role of the C-reactive protein to albumin ratio(CAR)in evaluating the efficacy of PD-1 inhibitors for HCC.METHODS The clinical data of 160 patients with HCC treated with PD-1 inhibitors from January 2018 to November 2022 at the First Affiliated Hospital of Guangxi Medical University were retrospectively analyzed.RESULTS The optimal cut-off value for CAR based on progression-free survival(PFS)was determined to be 1.20 using x-tile software.Cox proportional risk model was used to determine the factors affecting prognosis.Eastern Cooperative Oncology Group performance status[hazard ratio(HR)=1.754,95%confidence interval(95%CI)=1.045-2.944,P=0.033],CAR(HR=2.118,95%CI=1.057-4.243,P=0.034)and tumor number(HR=2.932,95%CI=1.246-6.897,P=0.014)were independent prognostic factors for overall survival.CAR(HR=2.730,95%CI=1.502-4.961,P=0.001),tumor number(HR=1.584,95%CI=1.003-2.500,P=0.048)and neutrophil to lymphocyte ratio(HR=1.120,95%CI=1.022-1.228,P=0.015)were independent prognostic factors for PFS.Two nomograms were constructed based on independent prognostic factors.The C-index index and calibration plots confirmed that the nomogram is a reliable risk prediction tool.The ROC curve and decision curve analysis confirmed that the nomogram has a good predictive effect as well as a net clinical benefit.CONCLUSION Overall,we reveal that the CAR is a potential predictor of short-and long-term prognosis in patients with HCC treated with PD-1 inhibitors.If further verified,CAR-based nomogram may increase the number of markers that predict individualized prognosis.
基金Supported by the National Natural Science Foundation of China,No.81471094 and No.82202743.
文摘BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by iron overload is con-sidered an important cause of T2DOP.Polycytosine RNA-binding protein 1(PCBP1),an iron ion chaperone,is considered a protector of ferroptosis.AIM To investigate the existence of ferroptosis and specific role of PCBP1 in the development of type 2 diabetes.METHODS A cell counting kit-8 assay was used to detect changes in osteoblast viability under high glucose(HG)and/or ferroptosis inhibitors at different concentrations and times.Transmission electron microscopy was used to examine the morpho-logical changes in the mitochondria of osteoblasts under HG,and western blotting was used to detect the expression levels of PCBP1,ferritin,and the ferroptosis-related protein glutathione peroxidase 4(GPX4).A lentivirus silenced and overex-pressed PCBP1.Western blotting was used to detect the expression levels of the osteoblast functional proteins osteoprotegerin(OPG)and osteocalcin(OCN),whereas flow cytometry was used to detect changes in reactive oxygen species(ROS)levels in each group.RESULTS Under HG,the viability of osteoblasts was considerably decreased,the number of mitochondria undergoing atrophy was considerably increased,PCBP1 and ferritin expression levels were increased,and GPX4 expression was decreased.Western blotting results demonstrated that infection with lentivirus overexpressing PCBP1,increased the expression levels of ferritin,GPX4,OPG,and OCN,compared with the HG group.Flow cytometry results showed a reduction in ROS,and an opposite result was obtained after silencing PCBP1.CONCLUSION PCBP1 may protect osteoblasts and reduce the harm caused by ferroptosis by promoting ferritin expression under a HG environment.Moreover,PCBP1 may be a potential therapeutic target for T2DOP.
基金supported by the National Natural Science Foundation of China,Nos.91849115 and U1904207(to YX),81974211 and 82171247(to CS)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,No.2020-PT310-01(to YX).
文摘The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.
文摘This editorial summarizes the latest literature on the roles of neuronal PAS domain protein 2 and KN motif/ankyrin repeat domain 1 in type 2 diabetes(T2D).We highlight their involvement inβ-cell dysfunction,explore their potential as therapeutic targets,and discuss the implications for new treatment strategies.We offer valuable insights into relevant gene regulation and cellular mechanisms relevant for the targeted management of T2D.
文摘Eukaryotic chromatin consisting of nucleosomes connected by linker DNA is organized into higher order structures,which is facilitated by linker histone H1.Formation of chromatin compacts and protects the genome,but also hinders DNA transactions.Cells have evolved mechanisms to modify/remodel chromatin resulting in chromatin states suitable for genome functions.The high mobility group box(HMGB)proteins are non-histone chromatin architectural factors characterized by one or more HMGB motifs that bind DNA in a sequence nonspecific fashion.They play a major role in chromatin dynamics.The Saccharomyces cerevisiae(yeast hereafter)HMGB protein Hmo1 contains two HMGB motifs.However,unlike a canonical HMGB protein that has an acidic C-terminus,Hmo1 ends with a lysine rich,basic,C-terminus,resembling linker histone H1.Hmo1 exhibits characteristics of both HMGB proteins and linker histones in its multiple functions.For instance,Hmo1 promotes transcription by RNA polymerases I and II like canonical HMGB proteins but makes chromatin more compact/stable like linker histones.Recent studies have demonstrated that Hmo1 destabilizes/disrupts nucleosome similarly as other HMGB proteins in vitro and acts to maintain a common topological architecture of genes in yeast genome.This minireview reviews the functions of Hmo1 and the underlying mechanisms,highlighting recent discoveries.
文摘Fibroids, also called leiomyomas or myomas, are communal tumors of the muscle or uterine wall that affect about 20% of females who are of reproductive age. They can look as if singly or in clusters, and they often cease to grow after menopause. Fibroids can be classified as intramural, sub serosal, pedunculated, or submucosal based on where they are positioned in the uterus. Although fibroids are benign, they can grow quickly and cause a range of symptoms, such as pelvic pressure, heavy menstrual flow, and infertility. As a result, fibroids are a main reason behind hysterectomy surgeries. The majority of cases of breast cancer are ductal and lobular cancers, making it the second utmost common cancer in women international. Gene mutations like those in BRCA1 or BRCA2 knowingly raise the risk of breast and other cancers, typically with an earlier cancer onset. Cancer risk is influenced by a complex interplay of genetic abnormalities, environmental factors, and lifestyle selections. Further research into these relations is domineering. Although they are common in uterine leiomyomas, especially multiple leiomyomas, MED12 mutations do not significantly correlate with tumor size. These mutations have also been noticed in smooth muscle tumors and leiomyosarcomas, two other types of uterine cancer. The identification of MED12 mutations as the sole genetic abnormality originates in leiomyomas raises the opportunity of a role in the genesis of cancer. 10% - 15% of women who are of reproductive age have endometriosis, which grants serious difficulties because of its chronic nature and range of clinical symptoms. Even after effective surgeries, issues reoccur often, adding to the enormous financial burden. The effects of MED12 mutations have been experiential in recent studies examining the molecular causes of endometriosis-associated infertility, which have shown anomalies in cellular connections and signaling cascades. Computational techniques were used in this study to investigate LifeGreenTM’s potential to prevent uterine fibroids and breast cancer. The efficacy of LifeGreenTM as a preventive measure or a treatment for common gynecological matters was examined and modeled. We investigated the mechanisms underlying LifeGreenTM’s benefits in the treatment of uterine fibroids and breast cancer using computational techniques. Our research contributes to our understanding of its potential therapeutic benefits for women’s health.
基金The study was reviewed and approved by the Institutional Review Board of The First Affiliated Hospital of Gannan Medical College,No.20141219.
文摘BACKGROUND Clinical prognosis often worsens due to high recurrence rates following radical surgery for colon cancer.The examination of high-risk recurrence factors post-surgery provides critical insights for disease evaluation and treatment planning.AIM To explore the relationship between metastasis-associated factor-1 in colon cancer(MACC1)and vacuolar ATP synthase(V-ATPase)expression in colon cancer tissues,and recurrence rate in patients undergoing radical colon cancer surgery.METHODS We selected 104 patients treated with radical colon cancer surgery at our hospital from January 2018 to June 2021.Immunohistochemical staining was utilized to assess the expression levels of MACC1 and V-ATPase in these patients.RESULTS The rates of MACC1 and V-ATPase positivity were 64.42%and 67.31%,respe-ctively,in colon cancer tissues,which were significantly higher than in paracan-cerous tissues(P<0.05).Among patients with TNM stage III,medium to low differentiation,and lymph node metastasis,the positive rates of MACC1 and V-ATPase were significantly elevated in comparison to patients with TNM stage I-II,high differentiation,and no lymph node metastasis(P<0.05).The rate of MACC1 positivity was 76.67%in patients with tumor diameters>5 cm,notably higher than in patients with tumor diameters≤5 cm(P<0.05).We observed a positive correlation between MACC1 and V-ATPase expression(rs=0.797,P<0.05).The positive rates of MACC1 and V-ATPase were significantly higher in patients with recurrence compared to those without(P<0.05).Logistic regression analysis revealed TNM stage,lymph node metastasis,MACC1 expression,and V-ATPase expression as risk factors for postoperative colon cancer recurrence(OR=6.322,3.435,2.683,and 2.421;P<0.05).CONCLUSION The upregulated expression of MACC1 and V-ATPase in colon cancer patients appears to correlate with clinicopathological features and post-radical surgery recurrence.
基金We are grateful to Prof. Rui-An Wang (Department of Molecular and Cellular 0ncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA) for his helpful advice and discussion regarding the pos- sible functions of MTA1. We also thank Miss Hui Wang for her careful assistance in English. This study was supported by the Natural Science Foundation of China (2006: No. 30570982 2003: No. 30370750 2003: No. 30371584).
文摘Aim: To investigate the stage-specific localization of metastasis-associated protein 1 (MTA1) during spermatogenesis in adult human and mouse testis. Methods: The immunolocalization of MTA1 was studied by immunohistochemistry and Western blot analysis. The distribution pattern of MTA1 in mouse testis was confirmed by using quantitative analysis of purified spermatogenic cells. Results: The specificity of polyclonal antibody was confirmed by Western blot analysis. MTA1 was found expressed in the nucleus of germ cells, except elongate spermatids, and in the cytoplasm of Sertoli cells; Leydig cells did not show any specific reactivity. MTA1 possessed different distribution patterns in the two species: in humans, the most intensive staining was found in the nucleus of round spermatids and of primary spermatocytes while in mice, the most intense MTA 1 staining was in the nucleus of leptotene, zygotene and pachytene spermatocytes. In both species the staining exhibited a cyclic pattern. Conclusion: The present communication initially provides new evidence for the potential role of MTA1 in mature testis. In addition, its distinctive expression in germ cells suggests a regulatory role of the peptide during spermatogenesis.