The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that ...The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that it can promptly deliver the early-warning information concerning some meteorological disasters(such as torrential rains,typhoons,cold wave,hail)to the areas affected,so as to provide reference and protection for agricultural production and effectively reduce the loss of agricultural producers.Up to now,the meteorological early-warning loudspeakers in Benxi have covered the villages.However,due to irregular occurrence of meteorological disasters,the listeners will turn off the information receivers of meteorological early-warning loudspeakers when they fail to receive meteorological information for a long time,so that the users can not promptly know the early-warning information regarding some sudden meteorological disasters.In view of this,the meteorological departments have introduced a series of management measures,such as the daily use of loudspeakers to publish weather forecast information,aimed at improving the online rate and usage rate of meteorological loudspeakers.And the management platform for online rate of meteorological early-warning loudspeakers is an important part of the management system.展开更多
Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized add...Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized additive model(GAM)and spatial data analysis(SDA)methods were applied in this study to quantitatively evaluate the spatiotemporal distribution of O_(3)concentration,exposure risk,and dominant meteorological factors.Results indicated that over 40%of the cities worldwide were exposed to harmful O_(3)concentration ranges(40-60μg/m^(3)),with most cities distributed in China and India.Moreover,significant seasonal variations in global O_(3)concentrations were observed,presenting as summer(45.6μg/m^(3))>spring(47.3μg/m^(3))>autumn(38.0μg/m^(3))>winter(33.6μg/m^(3)).Exposure analysis revealed that approximately 12.2%of the population in 261 cities were exposed to an environment with high O_(3)concentrations(80-160μg/m^(3)),with about 36.32 million people in major countries.Thus,the persistent increase in high O_(3)levels worldwide is a critical factor contributing to threats to human health.Furthermore,GAM results indicated temperature,relative humidity,and wind speed as primary determinants of O_(3)variability.The synergy of meteorological factors is critical for understanding O_(3)changes.Our findings are important for enforcing robust air quality policies and mitigating public risk.展开更多
Objective:To assess the correlation between atmospheric pollutants,meteorological factors,and emergency department visits for respiratory diseases in Haikou City.Methods:Daily data on atmospheric pollutants,meteorolog...Objective:To assess the correlation between atmospheric pollutants,meteorological factors,and emergency department visits for respiratory diseases in Haikou City.Methods:Daily data on atmospheric pollutants,meteorological factors,and emergency department visits for respiratory diseases in Haikou City from 2018 to 2021 were collected.The Spearman rank correlation test was used to analyze the correlation,and a distributed lag non-linear model was employed to analyze the health effects and lag impacts of environmental factors.Subgroup analyses were conducted based on sex and age.Results:According to the criteria of International Classification of Diseases(ICD-10:J00-J99),a total of 221913 cases were included,accounting for 21.3%of the total emergency department visits in Haikou City.For every 1℃increase in temperature,the risk of emergency department visits increased by 1.029%(95%CI 1.016%-1.042%).Relative humidity greater than 80%reduced the risk of visits,while higher atmospheric pressure(>1010 hpa)also decreased the likelihood of daily emergency department visits.Higher concentrations of PM_(2.5)(30-50μg/m^(3)),PM10(>60μg/m^(3)),and O_(3)(75-125μg/m^(3))were associated with increased visits.Higher temperatures(>25℃)have a greater impact on females and children aged 0-14 years,while males are more sensitive to low atmospheric pressure.Individuals aged 65 and above exhibited increased sensitivity to O_(3)concentration,and the effects of PM2.5,PM10,and O_(3)are more pronounced in individuals over 14 years old.Conclusions:Short-term exposure to high temperatures,particulate matter pollutants(PM_(2.5)and PM_(10)),and ozone(O_(3))is associated with increased emergency department visits for respiratory diseases.展开更多
Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently opera...Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.展开更多
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat...This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.展开更多
The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate...The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance.展开更多
Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analy...Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analysis and mathematical statistics.At 500 hPa,the weather situation was divided into continental high pressure type,subtropical high type and mixed type.At 850 hPa,it was divided into southwest air flow type,east air flow type and south air flow type.The correlation between meteorological element and O 3 concentration were analyzed,and factors with good correlation such as temperature,air pressure and wind speed were selected to establish regression equations.The fitting effect was good,and O 3 concentration could be objectively predicted.展开更多
With the ongoing development of the apple industry in the Longdong region of Gansu,this sector has emerged as a key driver for the government s initiatives aimed at increasing stable income for local residents and pro...With the ongoing development of the apple industry in the Longdong region of Gansu,this sector has emerged as a key driver for the government s initiatives aimed at increasing stable income for local residents and promoting rural revitalization.The Longdong region boasts a favorable geographical location and a suitable climatic environment,making it an ideal area for apple cultivation.This paper analyzes meteorological data from the national meteorological observatory in Longdong over the past forty years,focusing on average temperature,precipitation,sunshine duration,and relative humidity during three critical growth periods of apples.The research reveals significant differences in the distribution of meteorological conditions across these key growth stages.Notably,the average temperature is higher in the central and northern parts of the region,while lower temperatures are observed in the southwestern areas.The average daily maximum temperature tends to be higher in the northwest and lower in the central and southwestern regions.Conversely,the average daily minimum temperature demonstrates a distinct pattern,being higher in the south and lower in the north.Additionally,precipitation is more abundant in the southeast and less so in the northwest.Sunshine hours are greater in the northern and central regions,while the southwestern and northeastern areas receive fewer hours of sunlight.Finally,relative humidity is higher in the south and lower in the north.展开更多
Based on the meteorological data of Langzhong from 2010 to 2020,the human body comfort index was calculated,and tourism climate comfort was evaluated to establish the prediction equation of tourism meteorological inde...Based on the meteorological data of Langzhong from 2010 to 2020,the human body comfort index was calculated,and tourism climate comfort was evaluated to establish the prediction equation of tourism meteorological index.OLS was used to compare the correlation between actual tourist flow and tourism meteorological index and test the model effect.Average correlation coefficient R was 0.7017,so the correlation was strong,and P value was 0.The two were significantly correlated at 0.01 level(bilateral).It can be seen that the forecast equation of tourism meteorological index had a strong correlation with the actual number of tourists,and the predicted value was basically close to the actual situation,and the forecast effect is good.展开更多
Based on the monitoring data of ambient air quality and meteorological observation data,the characteristics and meteorological influencing factors of air pollution in Luojiang District of Deyang City from 2018 to 2022...Based on the monitoring data of ambient air quality and meteorological observation data,the characteristics and meteorological influencing factors of air pollution in Luojiang District of Deyang City from 2018 to 2022 were analyzed.The results show that from 2018 to 2022,the main air pollutants affecting the air quality of Luojiang District of Deyang City were PM_(2.5) and PM_(10),and the primary pollutant on heavy pollution days was basically PM_(2.5).PM_(2.5) and PM_(10) pollution showed obvious seasonal differences,and PM_(2.5) concentration exceeded the limit mainly in spring and winter,among which it was the most serious in early spring,especially in January and February,followed by December.PM_(10) exceeding the standard had a high seasonal correlation with PM_(2.5) exceeding the standard,mainly in spring and winter,among which it was the most serious in winter,especially in December,followed by January.PM_(2.5) and PM_(10) pollution showed an overall weakening trend.PM_(2.5) and PM_(10) concentration were closely related to meteorological factors such as temperature,relative humidity,wind speed,precipitation and air pressure,and were mainly affected by rainfall.展开更多
The COVID-19 pandemic has significantly changed the air pollution of the world. The present study investigated the temporal and spatial variability in air quality in Xi’an, China, and its relationship with meteorolog...The COVID-19 pandemic has significantly changed the air pollution of the world. The present study investigated the temporal and spatial variability in air quality in Xi’an, China, and its relationship with meteorological parameters during and before the COVID-19 pandemic. The outcomes of this study indicated that air pollutants, PM2.5, NO2, PM10, CO, and SO2 are likely to decrease during winter (25%, 50%, 30%, 40%, and 35%) to spring (30%, 55%, 38%, 50%, and 40%) and summer (40%, 58%, 60%, 55%, and 47%), respectively. However, the concentration of O3-8h increased by 40%, 55%, and 65% during winter, spring, and summer, respectively. The values of the air quality index decreased during the COVID-19 period. Furthermore, significant positive trends were reported in PM2.5, NO2, PM10, O3, and SO2, and no notable trends in CO during the COVID-19 pandemic. Both during and before the COVID-19 period, PM10, NO2, PM2.5, CO, and SO2 showed a negative correlation with the temperature and a moderately positive significant correlation between O3-8h and temperature. The findings of this study would help understand the air pollution circumstances in Xi’an before and during the COVID-19 period and offer helpful information regarding the implications of different air pollution control strategies.展开更多
Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and wa...Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.展开更多
The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better...The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better foundation for subsequent services.In response to the rainy weather from December 2018 to early 2019,three rounds of flood discharge were carried out in Tangpu Reservoir.During February-March in 2019,the hit rate of short-term area rainfall forecast for Tangpu Reservoir was 80.0%.Compared with the median of forecast interval,the average absolute error was 7.6 mm,and the relative error was 32.7%.The large deviation in the forecast from March 27 to 28 was deeply analyzed,and it is found that the main reasons were excessive reliance on and trust in a single model,insufficient correction of the actual situation,and insufficient judgment of the nature of precipitation.For the future reservoir meteorological service,three aspects of thinking were put forward,such as further strengthening the sharing of hydrological and meteorological information,improving the forecasting ability,and deepening the research of runoff forecast models.展开更多
Based on the environmental monitoring data and meteorological data in Changchun City during the last three years,seasonal variation characteristics of the main pollutant PM10 were analyzed. The statistical correlation...Based on the environmental monitoring data and meteorological data in Changchun City during the last three years,seasonal variation characteristics of the main pollutant PM10 were analyzed. The statistical correlation between PM10 concentration and six meteorological factors was analyzed,including average temperature,precipitation,relative humidity,visibility,average wind speed and air pressure. The results showed that the PM10 concentration was about 0.097-0.100 mg/m3 from 2006 to 2008 and had no significant increasing or decreasing trend in the three years. The PM10 concentration in Changchun showed significant seasonal variations;it was obviously a bit higher in winter and spring,lower in summer. The PM10 pollution primarily attained Grade Ⅱ in the recent three years,and it accounted for 87.7%. PM10 pollution was heavier on the day when it was accompanied by fog,smog,gale and dust. The results showed that PM10 concentration had a negative correlation with the average temperature,precipitation,visibility and average wind speed,and had a positive correlation with relative humidity and air pressure.展开更多
The solar greenhouse's construction and its demand on meteorological service in the process of production management in China were analyzed,and the current situation of meteorological service on it was summarized....The solar greenhouse's construction and its demand on meteorological service in the process of production management in China were analyzed,and the current situation of meteorological service on it was summarized.Combined with the trend of related technology,the future development of solar greenhouse meteorological service was prospected.展开更多
[Objective] This study was to construct VPDN-based 3G wireless meteorological information transmission system, in order to achieve the backup transmission of real-time meteorological services in all levels of meteorol...[Objective] This study was to construct VPDN-based 3G wireless meteorological information transmission system, in order to achieve the backup transmission of real-time meteorological services in all levels of meteorological stations. [Method] The current situations and business requirements of municipal meteorological networks are analyzed, putting forward the idea of backup routes that using VPDN-based 3G wireless meteorological information transmission system as the ground transmission line. And the network structure, operation mode and the system implementation are described in detail. [Result] VPDN-based 3G wireless meteorological information transmission system realizes the backup of ground line. Compared with the Modem dial-up, it is more stable and with faster transferring speed. With the rapid development of communication technology and computer technology, the information transmission system will be more efficient and stable, and will play a greater role in meteorological information transmission. [Conclusion] With the continuous development of modern meteorology, various types of meteorological data increase, presenting higher demand for the meteorological information transmission system. The established VPND-based 3G wireless meteorological information transmission system of this study provides a solution for backup transmission of real-time meteorological services.展开更多
Many studies point out that weather conditions involving temperature, wind power, monsoon transform, air pressure, sea condition, tide, ocean current, salinity, eutrophic environment and so on are key factors causing ...Many studies point out that weather conditions involving temperature, wind power, monsoon transform, air pressure, sea condition, tide, ocean current, salinity, eutrophic environment and so on are key factors causing Red Tide. In the red tide high frequency areas of the South China Sea, the eutrophic environment of sea water has already existed, so the key elements such as meteorological and hydrological conditions play an importance role in the occurrence of red tide. The atmospheric circulation maintenance and variation decide whether meteorological phenomena, and hydrological key elements stabilize or change. Moreover, the red tide organisms' breeding from the initial stage to the blooming reproduction stage, until reaching the biological density of the red tide, generally takes 4 - 5 days. In the paper, the red tide examples are analyzed in the past 10 years, and the weather circulation situation and hydro-meteorological key elements of it are counted to find the previous circulation mode and bring out important factors inducing the blooming of red tide. The predicted result in 2003 according to this method was satisfactory.展开更多
Relying on CMPP (China Mobile Peer to Peer) protocol,we propose and design SMS (Short Message Service) gateway interface for early warning plan based on real-time meteorological database application,in order to form t...Relying on CMPP (China Mobile Peer to Peer) protocol,we propose and design SMS (Short Message Service) gateway interface for early warning plan based on real-time meteorological database application,in order to form the meteorological mobile internet service system which is 'One point connect,service the whole province' for short.Accessing interface system to each city's SMG (Short Message Gateway) through standard protocol,we establish the information transmitting channel of short message platform and mobile SMG to realize the store-forward and flow control of short message.In addition,the stable and dependable communication connect of interface system and mobile SMG should be ensure,and the connect could be reconstructed while encountering any error,as well as committing short message would be stopped due to interruption of connect.展开更多
In order to take advantage of the climate resources more effectively ac- cording to the local circumstances and to plan and develop the citrus industry in Southern Shaanxi more reasonably. On the basis of the investig...In order to take advantage of the climate resources more effectively ac- cording to the local circumstances and to plan and develop the citrus industry in Southern Shaanxi more reasonably. On the basis of the investigation of freeze dam- age to citrus occurring in Southern Shaanxi in the winter of 2010, the climatic back- ground for the formation of this freeze damage was analyzed. In combination with the freeze damage indicators during the overwintering period and the harmful accu- mulated cold during the cold wave, indexes for grading the freeze damage in southern Shaanxi were analyzed and verified, and the perspective of grading the freeze damage using the harmful accumulated cold during the cold wave was also presented. Through analyzing the extremely lowest temperature and the harmful ac- cumulated cold in the winter of 2010 and in history at 12 citrus growing counties (districts) in Ankang area and Hanzhong area, the reasons why the freeze damage to citrus during the overwintering period was severer in the west than in the east of Southern Shaanxi were discussed, and the results obtained were basically consistent with the actual situation observed from investigation. Finally, defensive countermea- sures against the freeze damage to citrus during the overwintering period were put forward from several aspects.展开更多
By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant ...By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform.展开更多
文摘The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that it can promptly deliver the early-warning information concerning some meteorological disasters(such as torrential rains,typhoons,cold wave,hail)to the areas affected,so as to provide reference and protection for agricultural production and effectively reduce the loss of agricultural producers.Up to now,the meteorological early-warning loudspeakers in Benxi have covered the villages.However,due to irregular occurrence of meteorological disasters,the listeners will turn off the information receivers of meteorological early-warning loudspeakers when they fail to receive meteorological information for a long time,so that the users can not promptly know the early-warning information regarding some sudden meteorological disasters.In view of this,the meteorological departments have introduced a series of management measures,such as the daily use of loudspeakers to publish weather forecast information,aimed at improving the online rate and usage rate of meteorological loudspeakers.And the management platform for online rate of meteorological early-warning loudspeakers is an important part of the management system.
文摘Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized additive model(GAM)and spatial data analysis(SDA)methods were applied in this study to quantitatively evaluate the spatiotemporal distribution of O_(3)concentration,exposure risk,and dominant meteorological factors.Results indicated that over 40%of the cities worldwide were exposed to harmful O_(3)concentration ranges(40-60μg/m^(3)),with most cities distributed in China and India.Moreover,significant seasonal variations in global O_(3)concentrations were observed,presenting as summer(45.6μg/m^(3))>spring(47.3μg/m^(3))>autumn(38.0μg/m^(3))>winter(33.6μg/m^(3)).Exposure analysis revealed that approximately 12.2%of the population in 261 cities were exposed to an environment with high O_(3)concentrations(80-160μg/m^(3)),with about 36.32 million people in major countries.Thus,the persistent increase in high O_(3)levels worldwide is a critical factor contributing to threats to human health.Furthermore,GAM results indicated temperature,relative humidity,and wind speed as primary determinants of O_(3)variability.The synergy of meteorological factors is critical for understanding O_(3)changes.Our findings are important for enforcing robust air quality policies and mitigating public risk.
基金the National Natural Science Foundation of China(No:81960351)Research Foundation for Advanced Talents of Hainan(No:822RC835)Province Natural Science Key Foundation of Hainan(No:ZDYF 2019125).
文摘Objective:To assess the correlation between atmospheric pollutants,meteorological factors,and emergency department visits for respiratory diseases in Haikou City.Methods:Daily data on atmospheric pollutants,meteorological factors,and emergency department visits for respiratory diseases in Haikou City from 2018 to 2021 were collected.The Spearman rank correlation test was used to analyze the correlation,and a distributed lag non-linear model was employed to analyze the health effects and lag impacts of environmental factors.Subgroup analyses were conducted based on sex and age.Results:According to the criteria of International Classification of Diseases(ICD-10:J00-J99),a total of 221913 cases were included,accounting for 21.3%of the total emergency department visits in Haikou City.For every 1℃increase in temperature,the risk of emergency department visits increased by 1.029%(95%CI 1.016%-1.042%).Relative humidity greater than 80%reduced the risk of visits,while higher atmospheric pressure(>1010 hpa)also decreased the likelihood of daily emergency department visits.Higher concentrations of PM_(2.5)(30-50μg/m^(3)),PM10(>60μg/m^(3)),and O_(3)(75-125μg/m^(3))were associated with increased visits.Higher temperatures(>25℃)have a greater impact on females and children aged 0-14 years,while males are more sensitive to low atmospheric pressure.Individuals aged 65 and above exhibited increased sensitivity to O_(3)concentration,and the effects of PM2.5,PM10,and O_(3)are more pronounced in individuals over 14 years old.Conclusions:Short-term exposure to high temperatures,particulate matter pollutants(PM_(2.5)and PM_(10)),and ozone(O_(3))is associated with increased emergency department visits for respiratory diseases.
基金Supported by National Natural Science Foundation of China(42274217)。
文摘Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.
文摘This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.
基金the Study on the Impact of the Construction and Development of Southwest Plateau Airport on the Ecological Environment(CZKY2023032).
文摘The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance.
文摘Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analysis and mathematical statistics.At 500 hPa,the weather situation was divided into continental high pressure type,subtropical high type and mixed type.At 850 hPa,it was divided into southwest air flow type,east air flow type and south air flow type.The correlation between meteorological element and O 3 concentration were analyzed,and factors with good correlation such as temperature,air pressure and wind speed were selected to establish regression equations.The fitting effect was good,and O 3 concentration could be objectively predicted.
文摘With the ongoing development of the apple industry in the Longdong region of Gansu,this sector has emerged as a key driver for the government s initiatives aimed at increasing stable income for local residents and promoting rural revitalization.The Longdong region boasts a favorable geographical location and a suitable climatic environment,making it an ideal area for apple cultivation.This paper analyzes meteorological data from the national meteorological observatory in Longdong over the past forty years,focusing on average temperature,precipitation,sunshine duration,and relative humidity during three critical growth periods of apples.The research reveals significant differences in the distribution of meteorological conditions across these key growth stages.Notably,the average temperature is higher in the central and northern parts of the region,while lower temperatures are observed in the southwestern areas.The average daily maximum temperature tends to be higher in the northwest and lower in the central and southwestern regions.Conversely,the average daily minimum temperature demonstrates a distinct pattern,being higher in the south and lower in the north.Additionally,precipitation is more abundant in the southeast and less so in the northwest.Sunshine hours are greater in the northern and central regions,while the southwestern and northeastern areas receive fewer hours of sunlight.Finally,relative humidity is higher in the south and lower in the north.
文摘Based on the meteorological data of Langzhong from 2010 to 2020,the human body comfort index was calculated,and tourism climate comfort was evaluated to establish the prediction equation of tourism meteorological index.OLS was used to compare the correlation between actual tourist flow and tourism meteorological index and test the model effect.Average correlation coefficient R was 0.7017,so the correlation was strong,and P value was 0.The two were significantly correlated at 0.01 level(bilateral).It can be seen that the forecast equation of tourism meteorological index had a strong correlation with the actual number of tourists,and the predicted value was basically close to the actual situation,and the forecast effect is good.
文摘Based on the monitoring data of ambient air quality and meteorological observation data,the characteristics and meteorological influencing factors of air pollution in Luojiang District of Deyang City from 2018 to 2022 were analyzed.The results show that from 2018 to 2022,the main air pollutants affecting the air quality of Luojiang District of Deyang City were PM_(2.5) and PM_(10),and the primary pollutant on heavy pollution days was basically PM_(2.5).PM_(2.5) and PM_(10) pollution showed obvious seasonal differences,and PM_(2.5) concentration exceeded the limit mainly in spring and winter,among which it was the most serious in early spring,especially in January and February,followed by December.PM_(10) exceeding the standard had a high seasonal correlation with PM_(2.5) exceeding the standard,mainly in spring and winter,among which it was the most serious in winter,especially in December,followed by January.PM_(2.5) and PM_(10) pollution showed an overall weakening trend.PM_(2.5) and PM_(10) concentration were closely related to meteorological factors such as temperature,relative humidity,wind speed,precipitation and air pressure,and were mainly affected by rainfall.
文摘The COVID-19 pandemic has significantly changed the air pollution of the world. The present study investigated the temporal and spatial variability in air quality in Xi’an, China, and its relationship with meteorological parameters during and before the COVID-19 pandemic. The outcomes of this study indicated that air pollutants, PM2.5, NO2, PM10, CO, and SO2 are likely to decrease during winter (25%, 50%, 30%, 40%, and 35%) to spring (30%, 55%, 38%, 50%, and 40%) and summer (40%, 58%, 60%, 55%, and 47%), respectively. However, the concentration of O3-8h increased by 40%, 55%, and 65% during winter, spring, and summer, respectively. The values of the air quality index decreased during the COVID-19 period. Furthermore, significant positive trends were reported in PM2.5, NO2, PM10, O3, and SO2, and no notable trends in CO during the COVID-19 pandemic. Both during and before the COVID-19 period, PM10, NO2, PM2.5, CO, and SO2 showed a negative correlation with the temperature and a moderately positive significant correlation between O3-8h and temperature. The findings of this study would help understand the air pollution circumstances in Xi’an before and during the COVID-19 period and offer helpful information regarding the implications of different air pollution control strategies.
文摘Urban areas face significant challenges in maintaining water quality amidst increasing urbanization and changing climatic patterns. This study investigates the complex interplay between meteorological variables and water quality parameters in Nairobi City, focusing on the impacts of rainfall and temperature on surface water quality. Data from multiple sources, including the Water Resources Authority, Nairobi Water and Sewerage Company, and the World Bank’s Climate Change Knowledge Portal, were analyzed to assess the relationships between meteorological variables (rainfall and temperature) and water quality parameters (such as electroconductivity, biochemical oxygen demand, chloride, and pH). The analysis reveals varying impacts of rainfall and temperature on different water quality parameters. While parameters like iron and pH show strong relationships with both rainfall and temperature, others such as ammonia and nitrate exhibit moderate relationships. Additionally, the study highlights the influence of runoff, urbanization, and industrial activities on water quality, emphasizing the need for holistic management approaches. Recommendations encompass the establishment of annual publications on Nairobi River water quality, online accessibility of water quality data, development of hydrological models, spatial analysis, and fostering cross-disciplinary research collaborations. Implementing these recommendations can enhance water quality management practices, mitigate risks, and safeguard environmental integrity in Nairobi City.
文摘The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better foundation for subsequent services.In response to the rainy weather from December 2018 to early 2019,three rounds of flood discharge were carried out in Tangpu Reservoir.During February-March in 2019,the hit rate of short-term area rainfall forecast for Tangpu Reservoir was 80.0%.Compared with the median of forecast interval,the average absolute error was 7.6 mm,and the relative error was 32.7%.The large deviation in the forecast from March 27 to 28 was deeply analyzed,and it is found that the main reasons were excessive reliance on and trust in a single model,insufficient correction of the actual situation,and insufficient judgment of the nature of precipitation.For the future reservoir meteorological service,three aspects of thinking were put forward,such as further strengthening the sharing of hydrological and meteorological information,improving the forecasting ability,and deepening the research of runoff forecast models.
基金Supported by Social Welfare Research Fund of Ministry of Science & Technology(2005-DIB2J111)Functional Expense Program of Basic Scientific Research of Shenyang Institute of Atmospheric Environment,China Meteorological Bureau(SYKYYW200901)
文摘Based on the environmental monitoring data and meteorological data in Changchun City during the last three years,seasonal variation characteristics of the main pollutant PM10 were analyzed. The statistical correlation between PM10 concentration and six meteorological factors was analyzed,including average temperature,precipitation,relative humidity,visibility,average wind speed and air pressure. The results showed that the PM10 concentration was about 0.097-0.100 mg/m3 from 2006 to 2008 and had no significant increasing or decreasing trend in the three years. The PM10 concentration in Changchun showed significant seasonal variations;it was obviously a bit higher in winter and spring,lower in summer. The PM10 pollution primarily attained Grade Ⅱ in the recent three years,and it accounted for 87.7%. PM10 pollution was heavier on the day when it was accompanied by fog,smog,gale and dust. The results showed that PM10 concentration had a negative correlation with the average temperature,precipitation,visibility and average wind speed,and had a positive correlation with relative humidity and air pressure.
基金Supported by The Project of the Transformation and Popularization of Tianjin Agricultural Technique Achievement (0804170 )Scientific and Technology Achievements Transfer Capital Project (2009GB24160499)
文摘The solar greenhouse's construction and its demand on meteorological service in the process of production management in China were analyzed,and the current situation of meteorological service on it was summarized.Combined with the trend of related technology,the future development of solar greenhouse meteorological service was prospected.
文摘[Objective] This study was to construct VPDN-based 3G wireless meteorological information transmission system, in order to achieve the backup transmission of real-time meteorological services in all levels of meteorological stations. [Method] The current situations and business requirements of municipal meteorological networks are analyzed, putting forward the idea of backup routes that using VPDN-based 3G wireless meteorological information transmission system as the ground transmission line. And the network structure, operation mode and the system implementation are described in detail. [Result] VPDN-based 3G wireless meteorological information transmission system realizes the backup of ground line. Compared with the Modem dial-up, it is more stable and with faster transferring speed. With the rapid development of communication technology and computer technology, the information transmission system will be more efficient and stable, and will play a greater role in meteorological information transmission. [Conclusion] With the continuous development of modern meteorology, various types of meteorological data increase, presenting higher demand for the meteorological information transmission system. The established VPND-based 3G wireless meteorological information transmission system of this study provides a solution for backup transmission of real-time meteorological services.
文摘Many studies point out that weather conditions involving temperature, wind power, monsoon transform, air pressure, sea condition, tide, ocean current, salinity, eutrophic environment and so on are key factors causing Red Tide. In the red tide high frequency areas of the South China Sea, the eutrophic environment of sea water has already existed, so the key elements such as meteorological and hydrological conditions play an importance role in the occurrence of red tide. The atmospheric circulation maintenance and variation decide whether meteorological phenomena, and hydrological key elements stabilize or change. Moreover, the red tide organisms' breeding from the initial stage to the blooming reproduction stage, until reaching the biological density of the red tide, generally takes 4 - 5 days. In the paper, the red tide examples are analyzed in the past 10 years, and the weather circulation situation and hydro-meteorological key elements of it are counted to find the previous circulation mode and bring out important factors inducing the blooming of red tide. The predicted result in 2003 according to this method was satisfactory.
文摘Relying on CMPP (China Mobile Peer to Peer) protocol,we propose and design SMS (Short Message Service) gateway interface for early warning plan based on real-time meteorological database application,in order to form the meteorological mobile internet service system which is 'One point connect,service the whole province' for short.Accessing interface system to each city's SMG (Short Message Gateway) through standard protocol,we establish the information transmitting channel of short message platform and mobile SMG to realize the store-forward and flow control of short message.In addition,the stable and dependable communication connect of interface system and mobile SMG should be ensure,and the connect could be reconstructed while encountering any error,as well as committing short message would be stopped due to interruption of connect.
基金Supported by Shaanxi"13115"Public Service Platform Construction Program for Science&Technology Innovation Projects(2010FWPT-17)~~
文摘In order to take advantage of the climate resources more effectively ac- cording to the local circumstances and to plan and develop the citrus industry in Southern Shaanxi more reasonably. On the basis of the investigation of freeze dam- age to citrus occurring in Southern Shaanxi in the winter of 2010, the climatic back- ground for the formation of this freeze damage was analyzed. In combination with the freeze damage indicators during the overwintering period and the harmful accu- mulated cold during the cold wave, indexes for grading the freeze damage in southern Shaanxi were analyzed and verified, and the perspective of grading the freeze damage using the harmful accumulated cold during the cold wave was also presented. Through analyzing the extremely lowest temperature and the harmful ac- cumulated cold in the winter of 2010 and in history at 12 citrus growing counties (districts) in Ankang area and Hanzhong area, the reasons why the freeze damage to citrus during the overwintering period was severer in the west than in the east of Southern Shaanxi were discussed, and the results obtained were basically consistent with the actual situation observed from investigation. Finally, defensive countermea- sures against the freeze damage to citrus during the overwintering period were put forward from several aspects.
基金Supported by a Grant from the Science and Technology Project ofYunnan Province(2006NG02)~~
文摘By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform.