期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Role of Meteorological Parameters in COVID-19 Pandemic Waves in Delhi, India
1
作者 Deepak Gupta Xiaoli Duan 《Open Journal of Air Pollution》 2023年第2期31-49,共19页
In this study, the levels of meteorological parameters like maximum temperature (°F), relative temperature (°F), minimum temperature (°F), humidity (%), dew point (°F), wind speed (mph), rainfall (... In this study, the levels of meteorological parameters like maximum temperature (°F), relative temperature (°F), minimum temperature (°F), humidity (%), dew point (°F), wind speed (mph), rainfall (in), and air pressure (in) were analyzed for all three COVID-19 pandemic waves in the NCT of Delhi, India. After doing statistical analysis, the results showed that only a few parameters, like temperature (maximum, minimum, and relative), dew point, humidity, and air pressure, were linked to the start of COVID-19 pandemic waves, and rainfall had nothing to do with COVID-19 during any of the three waves. So, according to the results of this study, the Indian government should take strict steps to stop the spread of the fourth wave of COVID-19 and any other diseases that can spread in urban areas based on the meteorological conditions. 展开更多
关键词 COVID-19 meteorological parameters SARS-CoV-2 CORRELATION
下载PDF
Modelling of Solar Power Production in Dry and Rainy Seasons Using Some Selected Meteorological Parameters 被引量:1
2
作者 Nicholas N. Tasie Friday B. Sigalo +1 位作者 Valentine B. Omubo-Pepple Chigozie Israel-Cookey 《Energy and Power Engineering》 CAS 2022年第7期274-290,共17页
In this paper, we deployed the multiple linear regression method in developing a solar power output model for solar energy production, where the meteorological parameters are the independent variables. We fitted the m... In this paper, we deployed the multiple linear regression method in developing a solar power output model for solar energy production, where the meteorological parameters are the independent variables. We fitted the model and found that the meteorological variables considered accounted for 94.88% and 99.61% of the power output in both dry and rainy seasons. We observed from the work that the solar panel performs well in all seasons but slightly better in the rainy seasons. This could be attributed to the washing away of dust particles from solar panels by the rain and higher operating temperature different from the specified manufactured temperature of 25°C. We observed that other factors such as the cloud slightly affect the optimal performance of the system. Panels inclined at an angle of 5° (Tilt) and facing south azimuth performs optimally, periodic washing of the surface of solar panels enhances optimal performance. 展开更多
关键词 Solar Energy Solar Panel meteorological parameters Photovoltaic Cell Multiple Linear Regression
下载PDF
Impact of anthropogenic heat emissions on meteorological parameters and air quality in Beijing using a high-resolution model simulation
3
作者 Hengrui Tao Jia Xing +7 位作者 Gaofeng Pan Jonathan Pleim Limei Ran Shuxiao Wang Xing Chang Guojing Li Fei Chen Junhua Li 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第4期47-57,共11页
Anthropogenic heat emissions(AHE)play an important role in modulating the atmospheric thermodynamic and kinetic properties within the urban planetary boundary layer,particularly in densely populated megacities like Be... Anthropogenic heat emissions(AHE)play an important role in modulating the atmospheric thermodynamic and kinetic properties within the urban planetary boundary layer,particularly in densely populated megacities like Beijing.In this study,we estimate the AHE by using a Large-scale Urban Consumption of energY(LUCY)model and further couple LUCY with a high-resolution regional chemical transport model to evaluate the impact of AHE on atmospheric environment in Beijing.In areas with high AHE,the 2-m temperature(T_(2))increased to varying degrees and showed distinct diurnal and seasonal variations with maxima in night and winter.The increase in 10-m wind speed(WS_(10))and planetary boundary layer height(PBLH)exhibited slight diurnal variations but showed significant seasonal variations.Further,the systematic continuous precipitation increased by 2.1 mm due to the increase in PBLH and water vapor in upper air.In contrast,the precipitation in local thermal convective showers increased little because of the limited water vapor.Meanwhile,the PM_(2.5) reduced in areas with high AHE because of the increase in WS_(10) and PBLH and continued to reduce as the pollution levels increased.In contrast,in areas where prevailing wind direction was opposite to that of thermal circulation caused by AHE,the WS_(10) reduced,leading to increased PM_(2.5).The changes of PM_(2.5) illustrated that a reasonable AHE scheme might be an effective means to improve the performance of PM_(2.5) simulation.Besides,high AHE aggravated the O_(3) pollution in urban areas due to the reduction in NO_(x). 展开更多
关键词 Anthropogenic heat emissions LUCY HIGH-RESOLUTION meteorological parameters Air quality
原文传递
Impact of Lockdown Measures and Meteorological Parameters on the COVID-19 Incidence and Mortality Rate in Bangladesh
4
作者 Md.Ashik Imran Imad Uddin Noor Ajit Ghosh 《Infectious Microbes & Diseases》 2021年第1期41-48,共8页
The coronavirus disease 2019(COVID-19)pandemic has become a public health crisis and a global catastrophe for human societies.In the absence of a vaccine,non-pharmaceutical interventions have been implemented across t... The coronavirus disease 2019(COVID-19)pandemic has become a public health crisis and a global catastrophe for human societies.In the absence of a vaccine,non-pharmaceutical interventions have been implemented across the world to reduce COVID-19 transmission.Recently,several studies have articulated the influence of meteorological parameters on COVID-19 infections in several countries.The purpose of this study was to investigate the effect of lockdown measures and meteorological parameters on COVID-19 daily confirmed cases and deaths in Bangladesh.Different parameters,such as case fatality rate,recovery rate,number of polymerase chain reaction tests,and percentages of confirmed cases were calculated for data covering March to September 2020.The meteorological data include daily average temperature,humidity,and wind speed,and their effects on COVID-19 data were analyzed after 0,3,7,and 14 days.A linear regression analysis revealed that all the studied meteorological parameters were positively correlated with the daily new cases and deaths in Bangladesh,while the highest correlations were observed for the 14 days incubation period.These results provide useful implications for the healthcare authorities to contain the pandemic in Bangladesh and beyond. 展开更多
关键词 BANGLADESH case fatality rate COVID-19 lockdown meteorological parameters non-pharmaceutical intervention
原文传递
Evaluation of meteorological predictions by the WRF model at Barrow, Alaska and Summit, Greenland in the Arctic in April 2019
5
作者 ZHANG Tong CAO Le +1 位作者 LI Simeng WANG Jiandong 《Advances in Polar Science》 CSCD 2023年第4期352-367,共16页
Accurate meteorological predictions in the Arctic are important in response to the rapid climate change and insufficient meteorological observations in the Arctic.In this study,we adopted a high-resolution Weather Res... Accurate meteorological predictions in the Arctic are important in response to the rapid climate change and insufficient meteorological observations in the Arctic.In this study,we adopted a high-resolution Weather Research and Forecasting(WRF)model to simulate the meteorology at two Arctic stations(Barrow and Summit)in April 2019.Simulation results were also evaluated by using surface measurements and statistical parameters.In addition,weather charts during the studied time period were also used to assess the model performance.The results demonstrate that the WRF model is able to accurately capture the meteorological parameters for the two Arctic stations and the weather systems such as cyclones and anticyclones in the Arctic.Moreover,we found the model performance in predicting the surface pressure the best while the performance in predicting the wind the worst among these meteorological predictions.However,the wind predictions at these Arctic stations were found to be more accurate than those at urban stations in mid-latitude regions,due to the differences in land features and anthropogentic heat sources between these regions.In addition,a comparison of the simulation results showed that the prediction of meteorological conditions at Summit is superior to that at Barrow.Possible reasons for the deviations in temperature predictions between these two Arctic stations are uncertainties in the treatments of the sea ice and the cloud in the model.With respect to the wind,the deviations may source from the overestimation of the wind over the sea and at coastal stations. 展开更多
关键词 ARCTIC WRF meteorological parameters synoptic patterns model assessment
下载PDF
A novel diurnal and seasonal variation analysis of BTEX in Bengaluru urban area
6
作者 H.N.Sowmya M.Dinamani +4 位作者 G.P.Shivashankara H.K.Ramaraju B.S.Surendra Vijaya V.Shanbhag R.Prajwal 《Research in Cold and Arid Regions》 CSCD 2024年第1期14-19,共6页
In the urban atmosphere of Bengaluru, various volatile organic compounds(VOCs), particularly Benzene,Toluene, Ethylbenzene, and Xylene(BTEX), have shown an increasing trend in concentration. The present research was c... In the urban atmosphere of Bengaluru, various volatile organic compounds(VOCs), particularly Benzene,Toluene, Ethylbenzene, and Xylene(BTEX), have shown an increasing trend in concentration. The present research was conducted during summer and monsoon seasons, focusing on Kadubeesanahalli, a high-traffic area within the Bengaluru Metropolitan City. Hourly sample data was collected using a BTEX analyzer(Model GC955-600) and subsequently transformed into daily, monthly, and seasonal values. The study revealed distinct patterns in benzene concentrations. Benzene levels were lowest during the early morning hours, specifically from 1:00 a.m.to 7:00 a.m.. Concentrations then increased from 7:00 a.m. to 9:00 a.m. and again from 4:00 p.m. to 11:00 p.m.,corresponding to the morning and evening peak traffic hours. However, between 10:00 a.m. and 4:00 p.m., the concentration decreased due to reduced traffic levels. These diurnal variations in benzene concentration are influenced by meteorological parameters. Comparing the two seasons, higher concentrations of Benzene, EthylBenzene, and MP-xylene were observed during the summer season. This increase is attributed to the elevated temperatures during summer, which promote the vaporization of BTEX compounds. Conversely, lower BTEX concentrations were recorded during the monsoon season due to the wet deposition process. The observed positive correlation(r > 0.5) among BTEX parameters strongly suggests a common source, most likely originating from vehicular emissions. 展开更多
关键词 BTEX Summer variation meteorological parameters Correlation
下载PDF
Meteorological impacts on evapotranspiration in different climatic zones of Pakistan 被引量:2
7
作者 Shahzada ADNAN Kalim ULLAH +1 位作者 Azmat H KHAN GAO Shouting 《Journal of Arid Land》 SCIE CSCD 2017年第6期938-952,共15页
Arid regions are highly vulnerable and sensitive to drought. The crops cultivated in arid zones are at high risk due to the high evapotranspiration and water demands. This study analyzed the changes in seasonal and an... Arid regions are highly vulnerable and sensitive to drought. The crops cultivated in arid zones are at high risk due to the high evapotranspiration and water demands. This study analyzed the changes in seasonal and annual evapotranspiration(ET) during 1951–2016 at 50 meteorological stations located in the extremely arid, arid, and semi-arid zones of Pakistan using the Penman Monteith(PM) method. The results show that ET is highly sensitive and positively correlated to temperature, solar radiation, and wind speed whereas vapor pressure is negatively correlated to ET. The study also identifies the relationship of ET with the meteorological parameters in different climatic zones of Pakistan. The significant trend analysis of precipitation and temperature(maximum and minimum) are conducted at 95% confidence level to determine the behaviors of these parameters in the extremely arid, arid, and semi-arid zones. The mean annual precipitation and annual mean maximum temperature significantly increased by 0.828 mm/a and 0.014℃/a in the arid and extremely arid zones, respectively. The annual mean minimum temperature increased by 0.017℃/a in the extremely arid zone and 0.019℃/a in the arid zone, whereas a significant decrease of 0.007℃/a was observed in the semi-arid zone. This study provides probabilistic future scenarios that would be helpful for policy-makers, agriculturists to plan effective irrigation measures towards the sustainable development in Pakistan. 展开更多
关键词 EVAPOTRANSPIRATION meteorological parameters climatic zone Penman Monteith method Pakistan
下载PDF
Design and Implementation of a Photovoltaic Data Acquisition System for Some Meteorological Variables
8
作者 Nicholas N. Tasie Friday B. Sigalo +1 位作者 Valentine B. Omubo-Pepple Chigozie Israel-Cookey 《Energy and Power Engineering》 CAS 2022年第11期652-668,共17页
In this paper we have developed a data logging and monitoring system, we validated the system by comparing the result from it with the existing one and found that the system performs slightly better than the existing ... In this paper we have developed a data logging and monitoring system, we validated the system by comparing the result from it with the existing one and found that the system performs slightly better than the existing work in the same area. This implies that the data logger and monitoring system is good and can be used to monitor solar energy variables even at the comfort of our homes. We fitted a model to the generated data and found that the meteorological variables considered accounted for 99.88% of the power output in the rainy seasons while 0.12% of the variation was not explained due to other factors. Solar panels inclined at an angle of 5&deg; (Tilt) and facing South Pole perform optimally. 展开更多
关键词 Data Logging and Monitoring System Circuit Design Development Chip Programming and Software Development Photovoltaic Cell meteorological parameters
下载PDF
Estimation of Solar Radiation on Horizontal and Tilted Surface over Bangladesh 被引量:2
9
作者 Mohammad Ashraful Islam Md. Saiful Alam +1 位作者 Komol Kanta Sharker Sanjoy Kumar Nandi 《Computational Water, Energy, and Environmental Engineering》 2016年第2期54-69,共16页
To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of... To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of various meteorological parameters namely the monthly averaged value of maximum temperature, minimum temperature, humidity and sunshine hours were used in this study. Assessment of the solar resources for the solar based renewable energy technologies of Bangladesh may be based upon this kind of measured data analyzed study. This study tried to estimate the monthly averaged solar radiation by presenting data in table and graph and finally analyze through equations and descriptions. Correlation between the measurements of monthly averaged solar radiation and the meteorological parameters was given for the selected 10 stations in Bangladesh. In conclusion, we tried to make a comparison among solar radiation on horizontal surface, fixed 20.83<sup> ° </sup> (degree) optimal tilt angle and variable optimal tilt surface at Dhaka station. 展开更多
关键词 Solar Radiation meteorological parameters Inclination Angle Conversion Factor Optimal Tilt Angle
下载PDF
Impact of Crude Oil Storage Tank Emissions and Gas Flaring on Air/Rainwater Quality and Weather Conditions in Bonny Industrial Island, Nigeria 被引量:1
10
作者 Vincent Ezikornwor Weli Nsikak I. Itam 《Open Journal of Air Pollution》 2016年第2期44-54,共11页
This study investigated the effects of gaseous emissions from crude storage tank and gas flaring on air and rainwater quality in Bonny Industrial Island. Ambient air quality parameters, rainwater and weather parameter... This study investigated the effects of gaseous emissions from crude storage tank and gas flaring on air and rainwater quality in Bonny Industrial Island. Ambient air quality parameters, rainwater and weather parameters were collected at 60 m, 80 m, 100 m, 200 m and control plot for 4 weeks at the Bonny. Rainwater parameters were investigated using standard laboratory tests. Data analyses were done using Analysis of variance, pairwise t-test and Pearson’s correlation statistical tools. Results show that emission rates, volatile organic compound (VOC) noise and flare temperature decreased with increasing distance from flare points and crude oil storage tanks. Findings further revealed the emission rates varied significantly with distance away from the gas flaring point (F = 6.196;p = 0.004). The mean concentration of pollutants between gas flare site and crude oil storage tank showed that CO (0.02 ± 0.001 - 0.002 ±0.001), SPM (0.011 ± 0.001 - 0.01 ± 0.001), VOC (0.005 ± 0.001 - 0.01 ± 0.001) and NO<sub>2</sub> (0.04 ± 0.001 - 0.005 ± 0.000) had significant variations (p > 0.05) with CO, O<sub>3</sub> and NO<sub>2</sub> having higher concentrations at the gas flare site while SPM, and VOC were higher around the crude oil storage tank site. Wind turbulence was higher around the gas flaring point (4.93 TKE) than the crude oil storage tank (4.55 TKE). Similarly, there was significant variation in the sun radiation, precipitation, and wind speed caused by gas flaring (1582.25 w/m<sup>2</sup>, 436.25 mm, 0.53 m/s) and crude oil storage tank (1536.25 w/m<sup>2</sup>, 3.91.41 mm, 0.51 m/s). There were also significant variations in flared temperature (F = 22.144;p = 0.001);NO<sub>2</sub> (F = 8.250;p = 0.001), CO (F = 6.000;p = 0.004) and VOC (F = 5.574;p = 0.006) with distance from the gas flaring point. The variation in the rainwater parameters with distance from the gas flaring indicated significant variations in pH (F = 5.594;p = 0.006). The study showed that the concentration of VOC and particulates were high in the supposedly control area which is perceived to be safe for human habitation. Significant variations exist in emission rate (p = 0.015), flare temperature (p = 0.001), NO<sub>2</sub> (p = 0.003), VOC (p = 0.001), noise (p = 0.041), hydrogen carbonate (p = 0.037) and chromium (p = 0.032) between the gas flaring and crude oil storage tank. Regular monitoring is advocated to mitigate the harmful effects of the pollutants. 展开更多
关键词 Gas Flaring Crude Oil Tank Air Quality RAINWATER meteorological parameters
下载PDF
Impact of Concentration Levels of Atmospheric Pollutants on Local Climate of Delta State, Nigeria
11
作者 Ifeanyi Innocent Onwosi Emmanuel Fartiyahcha Nymphas 《Atmospheric and Climate Sciences》 2022年第2期421-440,共20页
Studies in various regions of the world have revealed that air pollution can have a significant influence on local climate. This study therefore considers the impact of concentration levels of atmospheric pollutants o... Studies in various regions of the world have revealed that air pollution can have a significant influence on local climate. This study therefore considers the impact of concentration levels of atmospheric pollutants on local climate of Delta state, Nigeria. Monthly and annual averaging of the daily pollutant concentrations and meteorological parameters within the period of investigation was carried out. Descriptive Statistics, correlation analysis, coefficient of determination (R<sup>2</sup>) analysis and least squares regression analysis of the selected meteorological parameters with CH<sub>4</sub> and O<sub>3</sub> concentrations for the period of 2003 to 2012 and NO<sub>2</sub> and CO<sub>2</sub> concentrations for the period of 2011 to 2014 were carried out. The regression relationship was then used to obtain predicted values for the meteorological parameters within the period of investigation. The results of the descriptive statistics of annual averages of CH<sub>4</sub>, O<sub>3</sub>, NO<sub>2</sub> and CO<sub>2</sub> concentrations within the period of investigation revealed that the emission levels breached FEPA and EGASPIN limits. The results of the correlation analysis indicated that CO<sub>2</sub> had a strong significant positive correlation with temperature with a correlation coefficient of 0.962, while a moderate negative correlation coefficient of 0.549 was obtained for CH<sub>4</sub>, and very weak correlation coefficients of -0.167 and 0.077 were obtained for O<sub>3</sub> and NO<sub>2</sub> respectively. CH<sub>4</sub>, O<sub>3</sub> and CO<sub>2</sub> had a moderately significant positive correlation with solar radiation with correlation coefficients of 0.661, 0.571 and 0.656 respectively, while a weak negative correlation coefficient of 0.106 was obtained for NO<sub>2</sub>. CH<sub>4</sub> had a strong significant positive correlation with relative humidity with a correlation coefficient of 0.859, while moderate correlation coefficients of -0.516 and 0.646 were obtained for NO<sub>2</sub> and CO<sub>2</sub> respectively, and a weak correlation coefficient of 0.345 was obtained for O<sub>3</sub>. CO<sub>2</sub> and CH<sub>4</sub> had a strong significant correlation with wind speed with correlation coefficients of 0.951 and -0.906 respectively, while a moderate negative correlation coefficient of 0.518 was obtained for O<sub>3</sub>, and a weak negative correlation coefficient of 0.317 was obtained for NO<sub>2</sub>. The predicted values of the meteorological parameters showed a significant level of agreement with their measured values. Therefore, among the atmospheric pollutants postulated as influencing meteorological parameters, CO<sub>2</sub> appears to be the most strongly significant in explaining temperature variations in this region of Niger Delta, with correlation coefficient of 96.2% and coefficient of determination (R<sup>2</sup>) of 0.926, implying that CO<sub>2</sub> influenced 92.6% variation in temperature in this part of Niger Delta within the period of investigation. 展开更多
关键词 Air Pollution Atmospheric Pollutants Local Climate meteorological parameters
下载PDF
The influence of calculation error of hourly marine meteorological parameter on building energy consumption calculation
12
作者 Dalong Liu Tian Sun +1 位作者 Yufei Han Xiuying Yan 《Frontiers of Architectural Research》 CSCD 2022年第5期981-991,共11页
The ocean is a crucial area for future economic development.The marine environment has high energy-efficient and ecological requirements for building construction.Meteorological parameters are the key basis for the an... The ocean is a crucial area for future economic development.The marine environment has high energy-efficient and ecological requirements for building construction.Meteorological parameters are the key basis for the analysis and design of building energy efficiency.The lack of meteorological parameters for energy efficiency,particularly hourly data,under oceanic climatic conditions is a universal problem.The appropriate calculation methods of hourly meteorological parameters under oceanic climatic conditions are explored in this study.The impact of the calculation errors of the hourly meteorological parameters on building energy consumption is also analyzed.Three key meteorological parameters are selected:temperature,humidity,and wind speed.Five hourly calculations methods,including linear interpolation,cubic spline interpolation,pieceated three-Hermite interpolation,Akima interpolation,and radial basis function interpolation,are selected to calculate the error of the difference method,with Xiamen,Haikou,and Sanya as the locations of meteorological research.Appropriate interpolation methods are selected for the three parameters,and the seasonal and regional characteristics of the errors of each parameter are compared.Different interpolation methods should be selected for different meteorological parameters in different seasons.The error data of the three parameters of different magnitudes are constructed.A quantitative relationship between the sum of squares due to error of the three meteorological parameters and the rate of change of cooling energy consumption is established.The hourly calculation errors of meteorological parameters have an important impact on the calculation of dynamic energy consumption.The energy consumption differences caused by the errors of different parameters are significant.Obvious regional and seasonal differences also exist.This research strengthens the research foundation of building energy consumption calculation under oceanic climate conditions. 展开更多
关键词 Building energy efficiency Oceanic climate meteorological parameters Interpolation method Calculation error Dynamic energy simulation
原文传递
Climatology of the Meteorological Factors Associated with Haze Events over Northern China and Their Potential Response to the Quasi-Biannual Oscillation
13
作者 Ju LIANG Yaoguo TANG 《Journal of Meteorological Research》 SCIE CSCD 2017年第5期852-864,共13页
An upswing in haze weather during autumn and winter has been observed over North and Northeast China in recent years, imposing adverse impacts upon local socioeconomic development and human health. However, such an in... An upswing in haze weather during autumn and winter has been observed over North and Northeast China in recent years, imposing adverse impacts upon local socioeconomic development and human health. However, such an increase in the occurrence of haze events and its association with natural climate variability and climate change are not well understood. To investigate the climatology of the meteorological factors associated with haze events and their natural variability, this study uses a meteorological pollution index called PLAM(Parameter Linking Air-quality to Meteorological conditions) and ERA-Interim reanalysis data. The results suggest that high PLAM values tend to occur over southern parts of northern China, implying the weather conditions over this area are favorable for the occurrence of haze weather. For the period 1979–2014, the regional mean PLAM shows an overall increase across Beijing, Tianjin, and Hebei Province, and parts of Shanxi Province. Also, a periodicity of 28–34 months is found in the temporal variation of PLAM, which implies a potential association of PLAM with the stratospheric Quasi-Biannual Oscillation(QBO). By using the QBO index during the autumn and winter seasons in the preceding year, an increase in PLAM is found for the westerly phases of the QBO, relative to the easterly phases. An upper-tropospheric warming is also found in the westerly phases, which can induce a stable stratification that favors the increase in PLAM across the midlatitudes. The modulations of large-scale environmental factors, including moist static stability,vertical velocity, and temperature advection, also act to enhance PLAM in the westerly phases. However, the baroclinic term of moist potential vorticity at 700 hPa tends to decrease over the south, and an increase in low-level ascent is found over the north. These factors can reduce PLAM and possibly limit the statistical significance of the increased PLAM in the westerly phases of the QBO. 展开更多
关键词 haze events Parameter Linking Air-quality to meteorological conditions(PLAM) Quasi-Biannual Oscillation(QBO)
原文传递
Spatiotemporal characterization and regional contributions of O3 and NO2:An investigation of two years of monitoring data in Henan,China 被引量:7
14
作者 Shijie Yu Shasha Yin +4 位作者 Ruiqin Zhang Lingling Wang Fangcheng Su Yixiang Zhang Jian Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第4期29-40,共12页
To investigate the characteristics of ground level ozone(O3)for Henan Province,the ambient air quality monitoring data of 2015 and 2016 were analyzed.The result showed that the 8 h-max-O3 concentrations displayed a di... To investigate the characteristics of ground level ozone(O3)for Henan Province,the ambient air quality monitoring data of 2015 and 2016 were analyzed.The result showed that the 8 h-max-O3 concentrations displayed a distinct seasonality,where the maximum and minimum values,averaging 140.41,54.19μg/m3,occurred in summer and winter,respectively.There is a significant correlation between meteorological factors and O3 concentration.The Voronoi neighborhood averaging analysis indic ated that O3,temperature,and ultraviolet radiation in Henan province were decreased from northwest to southeast,while relative humidity and precipitation displayed the opposite trend.Besides meteorological factors,the chemical processes play an essential role in ozone formation.Reactions of NO,NO2 and O3 form a closed system,and the partitioning point of the OX-component(O3+NO2)was at 40 and 80μg/m3 for nitrogen oxide(NOx)in winter and summer,respectively,with NO2 dominating at higher NOx pollution and O3 being the m ajor component at lower levels.The relationship between oxidant(OX=O3+NO2)and NOx concentrations were evaluated to understand the regional and local contribution of OX.It showed that high regional contribution occurred in the spring,whereas the highest local contribution lead to the summer peak of O3 observed in Zhengzhou.This present study reveals important environment impacts from the photochemical process and the meteorological conditions in the region with better understanding on the O3 characterization. 展开更多
关键词 Ground-level ozone meteorological parameter Photochemical oxidant Voronoi neighborhood averaging(VNA) Seasonal variation
原文传递
Comparative measurement of CO_(2),CH_(4)and CO at two traffic interjunctions having inflated vehicular flow in Delhi
15
作者 Komal Daya Soni +1 位作者 Khem Singh Shankar G.Aggarwal 《Journal of Environmental Sciences》 SCIE EI CAS 2024年第7期314-329,共16页
Vehicular emissions are considered one of the major anthropogenic sources of greenhouse gases and poor air quality in metropolitan cities.This study aims to see the correlation of CO_(2),CH_(4),and CO through monitori... Vehicular emissions are considered one of the major anthropogenic sources of greenhouse gases and poor air quality in metropolitan cities.This study aims to see the correlation of CO_(2),CH_(4),and CO through monitoring over a period from December 2020 to October 2021 covering three seasons’winter,summer,and monsoon at two different traffic locations of Delhi having different traffic volumes,road patterns,and traffic management.The annual average morning concentration of CO_(2),CH_(4)and CO was found(533±105),(7.3±3.1),(10.7±3.0)ppm at Najafgarh and(480±70),(5.2±1.8),(7.8±2.8)ppm at Rajendra Place,respectively.A relationship between concentration of all three gases and meteorological parameters such as temperature,humidity,wind speed and wind direction has also been investigated using Pearson correlation coefficient and pollution rose diagram.A comparable pattern in concentration was observed for all three gases in spatial(location)and temporal(diurnal)distribution.The concentration trend of CO_(2)in different seasons is winter>summer>monsoon,while in the case of CH_(4)winter=summer>monsoon but not any seasonal trend was noted in CO case.It is observed that CO_(2)has a good relation with CO(a tracer for vehicular emission)in terms of diurnal variation,whereas,CH_(4)does not represent a relation with CO and CO_(2)diurnally,suggesting that vehicles are the source of CO_(2)but not much contributing to other greenhouse gases like CH_(4). 展开更多
关键词 Vehicular emission Greenhouse gases Harmful pollutants meteorological parameters
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部