期刊文献+
共找到76,153篇文章
< 1 2 250 >
每页显示 20 50 100
Investigations of methane adsorption characteristics on marine-continental transitional shales and gas storage capacity models considering pore evolution
1
作者 Chen-Gang Lu Xian-Ming Xiao +4 位作者 Zhen-Qian Xue Zhang-Xin Chen Yin-Tao Dong Yue Feng Gang Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2273-2286,共14页
Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marin... Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas. 展开更多
关键词 High-pressure methane adsorption Marine-continental transitional shale gas Ono-Kondo model adsorption thermodynamics Gas storage capacity model
下载PDF
Microwave irradiation-induced alterations in physicochemical properties and methane adsorption capability of coals:An experimental study using carbon molecular sieve
2
作者 Xuexiang Fu Xing Tang +2 位作者 Yi Xu Xintao Zhou Dengfeng Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期165-180,共16页
In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.I... In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.In this work,the carbon molecular sieve combined with KMnO_(4)oxidation was selected to fabricate carbon molecular sieve with diverse oxidation degrees,which can serve as model substances toward coals.Afterwards,the microwave irradiation dependences of pores,functional groups,and highpressure methane adsorption characteristics of model substances were studied.The results indicated that microwave irradiation causes rearrangement of oxygen-containing functional groups,which could block the micropores with a size of 0.40-0.60 nm in carbon molecular sieve;meanwhile,naphthalene and phenanthrene generated by macro-molecular structure pyrolysis due to microwave irradiation could block the micropores with a size of 0.70-0.90 nm.These alterations in micropore structure weaken the saturated methane adsorption capacity of oxidized carbon molecular sieve by 2.91%-23.28%,suggesting that microwave irradiation could promote methane desorption.Moreover,the increased mesopores found for oxidized carbon molecular sieve after microwave irradiation could benefit CH4 diffusion.In summary,the oxidized carbon molecular sieve can act as model substances toward coals with different ranks.Additionally,microwave irradiation is a promising technology to enhance coalbed methane recovery. 展开更多
关键词 Microwave irradiation Physicochemical property Coal matrix adsorption Carbon molecular sieve
下载PDF
Aspen Adsorption在气体吸附过程模拟方面的应用 被引量:2
3
作者 张妍 李洪峻 +3 位作者 董志明 杨丽 程景才 杨超 《化学工业与工程》 CAS CSCD 北大核心 2024年第2期86-93,共8页
Aspen Adsorption是一款吸附模拟软件,常用于气体吸附分离过程的模拟计算,对操作条件优化、设计优化、吸附材料性能评价等方面具有一定的指导作用。简要介绍了Aspen Adsorption软件的应用、模型参数和各种衡算方程,总结了其在穿透曲线... Aspen Adsorption是一款吸附模拟软件,常用于气体吸附分离过程的模拟计算,对操作条件优化、设计优化、吸附材料性能评价等方面具有一定的指导作用。简要介绍了Aspen Adsorption软件的应用、模型参数和各种衡算方程,总结了其在穿透曲线计算方面的模拟计算和应用,归纳了利用循环控制器Cycle Organizer针对各种类型的变压吸附PSA(Pressure Swing Adsorption)和变温吸附TSA(Temperature Swing Adsorption)过程进行模拟的情况。此外,针对Aspen Adsorption与其他软件结合使用的案例也进行了简要介绍。最后对Aspen Adsorption的未来发展进行了展望。 展开更多
关键词 吸附 Aspen adsorption 模拟 应用
下载PDF
Behavior and controlling factors of methane adsorption in Jurassic continental shale,northeastern Sichuan Basin 被引量:2
4
作者 Qian-wen Li Zhong-bao Liu +2 位作者 Fei-Ran Chen Kun Zhang Ling Tang 《Energy Geoscience》 2023年第1期83-92,共10页
The behavior and controlling factors of natural gas adsorption in the Jurassic continental shale in the northeastern Sichuan Basin are studied based on the organic geochemical features,mineral compositions and pore st... The behavior and controlling factors of natural gas adsorption in the Jurassic continental shale in the northeastern Sichuan Basin are studied based on the organic geochemical features,mineral compositions and pore structure parameters through a series of experiments on samples from the shale.Results show that the total gas content of the shale measured on-site is 0.1-5.3 cm^(3)/g,with an average of 0.7 cm^(3)/g.The methane isothermal adsorption curves show a trend of increasing first and then decreasing,indicating an obvious excessive adsorption.The shale has a maximum adsorption capacity(V^(L))of 0.44-3.59 cm^(3)/g,with an average of 1.64 cm^(3)/g,lower than that of marine shale in the same basin.The organic matter content and pore structure characteristics are identified as the two main factors controlling the adsorption capacity of the shale.Micropores in the shale are the main storage space for gas to be adsorbed.Due to well developed shell laminae and interlayers in the shale,calcite plays a more important role than clay minerals in affecting the adsorption of gas to the rock.The formation temperature and water content also significantly inhibit the gas adsorption to the shale.Compared with marine shale in the basin,the Jurassic continental shale is more heterogeneous and lower in TOC values.Furthermore,with a more widely developed clayey shale lithofacies and shell limy shale lithofacies as well as relatively less developed organic pores and micropores,the continental shale is inferior to marine shale in terms of gas adsorption capacity. 展开更多
关键词 methane adsorption Controlling factors Continental shale JURASSIC Sichuan basin
下载PDF
Adsorption of methane onto mudstones under supercritical conditions: Mechanisms, physical properties and thermodynamic parameters
5
作者 Yang Wang Hong-Fei Cheng +4 位作者 Qin-Hong Hu Lang-Bo Jia Xi-Meng Wang Sha-Sha Gao Luo-Fu Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期34-47,共14页
Since the mechanisms of methane-mudstone interactions are important for estimating shale gas reserves,methane adsorption under supercritical conditions of 30 MPa pressure and 303.15,333.15,363.15 K temperatures was st... Since the mechanisms of methane-mudstone interactions are important for estimating shale gas reserves,methane adsorption under supercritical conditions of 30 MPa pressure and 303.15,333.15,363.15 K temperatures was studied to measure the excess methane adsorption in two mudstone samples from Yanchang Formation,Ordos Basin.Excess adsorption features inflection points where the amount of adsorbed gas changes from increasing to decreasing concentrations.Three methods(fixed,slope,and freely fitted density)were applied to calculate the adsorbed-phase density(rad),which was then used to fit the measured excess adsorption.Two criteria,the goodness-of-fit and whether the fitting can obtain reasonable absolute adsorption,were applied to determine the most accurate model.Results indicated that the supercritical Dubinin-Radushkevich(SDR)model with freely fitted rad was the most reasonable model.The volume of adsorbed methane at 363.15 K is close to the micropore(d<2 nm)volume of the corresponding mudstone.Considering the actual geological conditions,the adsorbed gas should be predominantly stored in micropores.Thermodynamic parameters reveal that the methane adsorption on mudstone is a physisorption process that is jointly controlled by the heterogeneity of,and interaction forces between the methane molecule and,the rock surface. 展开更多
关键词 Supercritical methane adsorption Excess adsorption Adsorbed-phase density adsorption model Thermodynamic feature
下载PDF
Molecular Simulation of Methane Adsorption in Different Micro Porous Activated Carbons at Different Temperatures
6
作者 Rugarabamu John Rwiza 赵东风 +1 位作者 SONG Kunli LI Shi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期1-11,共11页
We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of plat... We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of platelets of carbon sheets,functionalized with oxygen containing groups,to study the adsorption behavior of methane molecules.In studying methane adsorption behavior,we used Grand Canonical Monte Carlo and Molecular Dynamics methods at different temperatures of 273.15,298.15 and303.15 K.Adsorption isotherms,isosteric heats of adsorption,adsorption energy distributions and porosity changes of the models during adsorption process were analyzed and discussed.Furthermore,radial distribution Functions,relative distribution and diffusion coefficients of methane molecules in activated carbon models at different temperatures were studied.After the analysis,the main results indicated that large micro pores activated carbons were favorable for storing methane at lower temperatures and small micro pores were the most favorable for adsorbing methane molecules at higher temperatures.Interestingly,the developed model structures showed high capacities to store methane molecule at ambient temperatures and low pressure. 展开更多
关键词 Molecular simulation activated carbon methane adsorption MD GCMC
下载PDF
Analysis of CH_(4) and H_(2) Adsorption on Heterogeneous Shale Surfaces Using aMolecular Dynamics Approach 被引量:1
7
作者 Surajudeen Sikiru Hassan Soleimani +2 位作者 Amir Rostami Mohammed Falalu Hamza Lukmon Owolabi Afolabi 《Fluid Dynamics & Materials Processing》 EI 2024年第1期31-44,共14页
Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of miner... Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies.Difficulties essentially stem from the need to create a realistic shale structure model in terms of mineral heterogeneityand multiplicity.Moreover,precise characterization of the competitive adsorption of hydrogen andmethane in shale generally requires the experimental determination of the related adsorptive capacity.In thisstudy,the adsorption of adsorbates,methane(CH_(4)),and hydrogen(H_(2))on heterogeneous shale surface modelsof Kaolinite,Orthoclase,Muscovite,Mica,C_(60),and Butane has been simulated in the frame of a moleculardynamic’s numerical technique.The results show that these behaviors are influenced by pressure and potentialenergy.On increasing the pressure from 500 to 2000 psi,the sorption effect for CH_(4)significantly increasesbut shows a decline at a certain stage(if compared to H_(2)).The research findings also indicate that raw shalehas a higher capacity to adsorb CH_(4)compared to hydrogen.However,in shale,this difference is negligible. 展开更多
关键词 Shale gas adsorption methane hydrogen molecular dynamic SORPTION
下载PDF
Study on the evolution of solid–liquid–gas in multi-scale pore methane in tectonic coal
8
作者 Junjie Cai Xijian Li +1 位作者 Hao Sui Honggao Xie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期122-131,共10页
The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex... The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex regions were selected,and the main results obtained by using a variety of research tools,such as physical tests,theoretical analyses,and numerical simulations,are as follows:22.4–62.5 nm is the joint segment of pore volume,and 26.7–100.7 nm is the joint segment of pore specific surface area.In the dynamic gas production process of tectonic coal pore structure,the adsorption method of methane molecules is“solid–liquid adsorption is the mainstay,and solid–gas adsorption coexists”.Methane stored in micropores with a pore size smaller than the jointed range is defined as solid-state pores.Pores within the jointed range,which transition from micropore filling to surface adsorption,are defined as gaseous pores.Pores outside the jointed range,where solid–liquid adsorption occurs,are defined as liquid pores.The evolution of pore structure affects the methane adsorption mode,which provides basic theoretical guidance for the development of coal seam resources. 展开更多
关键词 Tectonic coal Multiscale pore structure methane adsorption Micropore filling MONOLAYER Molecular simulation
下载PDF
Micro segment analysis of supercritical methane thermal-hydraulic performance and pseudo-boiling in a PCHE straight channel 被引量:1
9
作者 Qian Li Zi-Jie Lin +3 位作者 Liu Yang Yue Wang Yue Li Wei-Hua Cai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1275-1289,共15页
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the... The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE. 展开更多
关键词 Printed circuit heat exchanger Vaporization Supercritical methane Pseudo-boiling Micro segment analysis
下载PDF
Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing Block,eastern Ordos Basin,NW China 被引量:1
10
作者 YANG Fan LI Bin +3 位作者 WANG Kunjian WEN Heng YANG Ruiyue HUANG Zhongwei 《Petroleum Exploration and Development》 SCIE 2024年第2期440-452,共13页
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the... Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM. 展开更多
关键词 deep coalbed methane extreme massive hydraulic fracturing fracture network graded proppants slick water with variable viscosity Ordos Basin
下载PDF
Adsorption,in vitro digestion and human gut microbiota regulation characteristics of three Poria cocos polysaccharides 被引量:1
11
作者 Fangming Zhang Hui Zheng +10 位作者 Tao Zheng Pan Xu Yao Xu Yuxin Cao Fan Jia Yiqiong Zeng Yubing Fan Kai He Xinwen Dai Fengfei Hou Yong Yang 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1685-1697,共13页
Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysacch... Poria cocos(PC)is a famous traditional Chinese medicine(TCM)and a widely used healthcare ingredient,which has antiobesity,enhancing immunity and improving sleep effects.Traditionally,only water-soluble poria polysaccharide(WSP)is extracted and applied for clinical application,while insoluble polysaccharide(alkali-soluble poria polysaccharide,ASP)is discarded as herb residue.However,the whole PC has also been historically utilized as functional herbal food.Considering the beneficial role of dietary fiber and the traditional use of PC,ASP may also contribute substantially to the therapy function of PC.Compared to WSP,little attention has been paid to ASP and ASP modified product carboxymethyl poria polysaccharide(CMP)which has been used as an antitumor adjuvant drug.In this study,the oil,cholesterol,metal ions and polyphenols adsorption ability,in vitro simulated digestive and the gut microbiota fermentation characteristics of WSP,ASP and CMP were studied to evaluate the functional values of three P.cocos polysaccharides(PCPs).The results showed that all three PCPs had good adsorption capacity on cholesterol,polyphenols and metal ions(Cd^(2+)/Zn^(2+)/Mg^(2+)),among which ASP showed the highest capacity than WSP and CMP.The adsorption capacity of all three PCPs on heavy metal ions(Cd^(2+)/Zn^(2+))was stronger than that of non-heavy metal ions(Mg^(2+));The in vitro digestibility of all three PCPs was very low,but WSP was slightly higher than ASP and CMP;Moreover,the indigestible residue of all three PCPs could improve the richness and diversity of gut microbiota,among which ASP had the greatest influence.In general,ASP and CMP could significantly promote the proliferation of some probiotics and inhibit the growth of some harmful bacteria.The gut microbiota diversity of CMP was reduced,but the richness of probiotics,especially Parabacteroides distasonis was significantly enhanced compared with the ASP group,and the growth of harmful bacteria Klebsiella pneumoniae was inhibited after CMP treatment.The short-chain fatty acids(SCFAs)analysis results showed that all three PCPs could significantly promote the production of acetic acid,propionic acid and the total acid content compared with blank control group,and SCFAs producing activity was positively correlated with the proliferative capacity of probiotics.Taken together,the good adsorption characteristics and gut microbiota regulatory activity of ASP may lay foundation for its lipid-lowering and immune-improving function.Additionally,the probiotic effect of CMP and ASP indicated that except for only use the water extract of PC in clinic,CMP and ASP also can be used in healthcare to take full advantage of this valuable medicine. 展开更多
关键词 Poria cocos polysaccharides Alkali-soluble poria polysaccharide Carboxymethyl poria polysaccharide adsorption characteristics In vitro simulated digestion In vitro simulated gut microbiota fermentation
下载PDF
Non-thermal plasma enhanced catalytic conversion of methane into value added chemicals and fuels
12
作者 Shanza Baig Baharak Sajjadi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期265-301,I0006,共38页
Plasma catalysis has recently gained increased attention for its application in gas conversion,notably in processes like the dry reforming of methane aimed at transforming them into valuable chemicals and fuels.As thi... Plasma catalysis has recently gained increased attention for its application in gas conversion,notably in processes like the dry reforming of methane aimed at transforming them into valuable chemicals and fuels.As this field is still in its early developmental stages,there is a crucial necessity to explore the synergistic mechanism between plasma and catalysts.The optimization of catalysts is imperative to improve their selectivity and conversion rates for desired products in a plasma environment.Additionally,delving into microscale investigations of plasma characteristics,such as electron temperature and the density of energetic species,is essential to enhance the stability and activity of catalysts.This review examines recent advancements in various methane conversion techniques,encompassing Dry Reforming of Methane,Steam Methane Reforming,Pa rtial Oxidation of Metha ne,and Methane Decomposition utilizing non-thermal dielectric barrier discharge(DBD)plasma.The aim is to gain a deeper understanding of plasma-catalyst interactions and to refine catalyst selection strategies for maximizing the production of desired products such as syngas,oxygenates,or higher hydrocarbons.The review delves into the catalytic mechanisms that delineate the synergistic effects between DBD plasma and catalyst in each technology,shedding light on the role of diverse catalytic properties in activating methane molecules-a pivotal step in hybrid plasma-catalytic reactions.Various approaches employed by researchers in exploring suitable catalysts and optimal reaction conditions to bolster CH_(4) conversion rates and selectivity using DBD plasma are discussed.Additionally,the review identifies gaps in the realm of plasma catalysis,underscoring the necessity for further research to fully understand the underlying principles of plasma and catalyst which are not trivial to uncover. 展开更多
关键词 Non-thermal plasma DBD CATALYST methane
下载PDF
High adsorption selectivity of activated carbon and carbon molecular sieve boosting CO_(2)/N_(2) and CH_(4)/N_(2) separation
13
作者 Siang Chen Wenling Wu +4 位作者 Zhaoyang Niu Deqi Kong Wenbin Li Zhongli Tang Donghui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期282-297,共16页
Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In... Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane. 展开更多
关键词 Activated carbon Carbon molecular sieve Adsorbent evaluation adsorption equilibrium and kinetics Heat of adsorption SELECTIVITY
下载PDF
Fate and Behavior of Tetracycline Resistance Genes in Activated Carbon Adsorption
14
作者 Sri Anggreini Alma Rizky Aurellya +1 位作者 Wenqing Li Fusheng Li 《Journal of Water Resource and Protection》 CAS 2024年第1期1-16,共16页
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using... The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment. 展开更多
关键词 Antibiotic Resistance Genes adsorption Activated Carbon Drinking Water Treatment
下载PDF
The flow behavior of droplet adsorption on a liquid-liquid interface accompanied by cross-linking reaction and phase separation in a microchannel
15
作者 Haozhe Yi Taotao Fu +1 位作者 Chunying Zhu Youguang Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期60-70,共11页
The adsorption process of droplets on the liquid-liquid interface and phase separation process can regulate the spatial distribution of the fluid system,which are crucial for chemical engineering.However,the cross-lin... The adsorption process of droplets on the liquid-liquid interface and phase separation process can regulate the spatial distribution of the fluid system,which are crucial for chemical engineering.However,the cross-linking reaction,which is widely used in the field of polymers,can change the physical properties of the fluids and affect the flow behavior accordingly.A configuration of microchannels is designed to conveniently generate uniform droplets in one phase of the parallel flow.The flow behavior of the adsorption process of sodium alginate droplets on the liquid-liquid interface is investigated,and the subsequent process of phase separation is studied.In the process of droplet adsorption,the crosslinking reaction occurs synchronously,which makes the droplet viscosity and the elasticity modules of the droplet surface increase,thus affecting the dynamics of the adsorption process and the equilibrium shape of the droplet.The variation of the adsorption length with time is divided into three stages,which all conform to power law relationship.The exponents of the second and third stages deviate from the results of the Tanner's law.The flow pattern maps of droplet adsorption and phase separation are drawn,and the operating ranges of complete adsorption and complete separation are provided.This study provides a theoretical basis for further studying the flow behavior of droplets with cross-linking reaction in a microchannel. 展开更多
关键词 MICROFLUIDICS DROPLET Dynamics CROSSLINK adsorption Separation
下载PDF
Green Synthesis of Iron(Ⅱ,Ⅲ)-polyphenol Nanoparticles and Their Adsorption of Malachite Green
16
作者 胡玉 ZHOU Fan +5 位作者 ZHANG Nan PAN Xiaobin LI Shiying ZHANG Dong LI Li 张玲帆 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1025-1030,共6页
Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning elec... Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning electron microscopy(SEM),transmission electronic microscopy(TEM),X-ray energy-dispersive spectrometer(EDS),X-ray diffraction(XRD),fourier transform infrared spectroscopy(FTIR),and X-ray photoelectron spectroscopy(XPS)techniques.The experimental results show that FeNPs were in the form of amorphous iron(Ⅱ,Ⅲ)-polyphenol complex with different dispersity and morphologies.GT-Fe has the smallest size range of 25-35 nm,PG-Fe has a moderate size-distribution of 30-40 nm,while ML-Fe formed a tuberous net-type with a sheeting structure.PG-Fe displays the highest removal efficiency of 90.2%in 20 min towards cationic dye of malachite green(16.6%by ML-Fe and 69.3%by GT-Fe),which is attributed to its highest polyphenol content,lowest zeta potential,as well as the most Fe^(2+)on the surface of FeNPs.The removal mechanism was mainly induced by electrostatic adsorption based on pH and zeta potential tests. 展开更多
关键词 IRON NANOPARTICLES POMEGRANATE green tea MULBERRY adsorption
下载PDF
Screening the optimal Co_(x)/CeO_(2)(110)(x=1–6)catalyst for methane activation in coalbed gas
17
作者 Li’nan Huang Danyang Li +3 位作者 Lei Jiang Zhiqiang Li Dong Tian Kongzhai Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期256-271,共16页
The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,... The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,i.e.,selective and efficient conversion of methane from CBG.Methane activation,known as the“holy grail”,poses a challenge to the design and development of catalysts.The structural complexity of the active metal on the carrier is of particular concern.In this work,we have studied the nucleation growth of small Co clusters(up to Co_(6))on the surface of CeO_(2)(110)using density functional theory,from which a stable loaded Co/CeO_(2)(110)structure was selected to investigate the methane activation mechanism.Despite the relatively small size of the selected Co clusters,the obtained Co_(x)/CeO_(2)(110)exhibits interesting properties.The optimized Co_(5)/CeO_(2)(110)structure was selected as the optimal structure to study the activation mechanism of methane due to its competitive electronic structure,adsorption energy and binding energy.The energy barriers for the stepwise dissociation of methane to form CH3^(*),CH2^(*),CH^(*),and C^(*)radical fragments are 0.44,0.55,0.31,and 1.20 eV,respectively,indicating that CH^(*)dissociative dehydrogenation is the rate-determining step for the system under investigation here.This fundamental study of metal-support interactions based on Co growth on the CeO_(2)(110)surface contributes to the understanding of the essence of Co/CeO_(2) catalysts with promising catalytic behavior.It provides theoretical guidance for better designing the optimal Co/CeO_(2) catalyst for tailored catalytic reactions. 展开更多
关键词 Co cluster growth Ce-based catalysts methane activation DFT
下载PDF
Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
18
作者 Dong-Sheng Chen Ting-Ting Miao +3 位作者 Cheng Chang Xu-Yang Guo Meng-Yan Guan and Zhong-Li Ji 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期494-504,共11页
The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsid... The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsidence.In this study,we investigated the thermal transport and structural stability of methane hydrate under triaxial compression using molecular dynamics simulations.The results suggest that the thermal conductivity of methane hydrate increases with increasing compression strain.Two phonon transport mechanisms were identified as factors enhancing thermal conductivity.At low compressive strains,a low-frequency phonon transport channel was established due to the overlap of phonon vibration peaks between methane and water molecules.At high compressive strains,the filling of larger phonon bandgaps facilitated the opening of more phonon transport channels.Additionally,we found that a strain of0.04 is a watershed point,where methane hydrate transitions from stable to unstable.Furthermore,a strain of0.06 marks the threshold at which the diffusion capacities of methane and water molecules are at their peaks.At a higher strain of0.08,the increased volume compression reduces the available space,limiting the diffusion ability of water and methane molecules within the hydrate.The synergistic effect of the strong diffusion ability and high probability of collision between atoms increases the thermal conductivity of hydrates during the unstable period compared to the stable period.Our findings offer valuable theoretical insights into the thermal conductivity and stability of methane hydrates in reservoir stress environments. 展开更多
关键词 methane hydrate molecular dynamics thermal transport triaxial compression structural stability
下载PDF
Enhanced nitrite electroreduction to ammonia via interfacial dual-site adsorption
19
作者 Xiaokang Chen Shengliang Zhai +4 位作者 Yi Tan Le Su Dong Zhai Wei-Qiao Deng Hao Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期328-335,共8页
The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving t... The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator. 展开更多
关键词 Dual-site adsorption Nitrite electroreduction AMMONIA Pd Hydrogenation
下载PDF
Investigation of oxy-fuel combustion for methane and acid gas in a diffusion flame
20
作者 Songling Guo Xun Tao +5 位作者 Fan Zhou Mengyan Yu Yufan Wu Yunfei Gao Lu Ding Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期106-116,共11页
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl... Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions. 展开更多
关键词 Acid gas methane Oxy-fuel combustion OXIDATION Chemical analysis Carbon sulfides
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部