Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic cond...Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic conditions promote the production of methane by methanogenicmicroorganisms.Rice fields contribute a considerable portion of agricultural methane emissions,as riceplants provide both factors that enhance and limit methane production.Rice plants harbor both methaneproducingand methane-oxidizing microorganisms.Exudates from rice roots provide source for methaneproduction,while oxygen delivered from the root aerenchyma enhances methane oxidation.Studies haveshown that the diversity of these microorganisms depends on rice cultivars with some genes characterizedas harboring specific groups of microorganisms related to methane emissions.However,there is still aneed for research to determine the balance between methane production and oxidation,as rice plantspossess the ability to regulate net methane production.Various agronomical practices,such as fertilizerand water management,have been employed to mitigate methane emissions.Nevertheless,studiescorrelating agronomic and chemical management of methane with productivity are limited.Moreover,evidences for breeding low-methane-emitting rice varieties are scattered largely due to the absence ofcoordinated breeding programs.Research has indicated that phenotypic characteristics,such as rootbiomass,shoot architecture,and aerenchyma,are highly correlated with methane emissions.This reviewdiscusses available studies that involve the correlation between plant characteristics and methaneemissions.It emphasizes the necessity and importance of breeding low-methane-emitting rice varieties inaddition to existing agronomic,biological,and chemical practices.The review also delves into the idealphenotypic and physiological characteristics of low-methane-emitting rice and potential breeding techniques,drawing from studies conducted with diverse varieties,mutants,and transgenic plants.展开更多
Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to in...Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to investigate the effects of dietary xylooligosaccharides(XOS)and exogenous enzyme(EXE)supplementation on milk production,nutrient digestibility,enteric CH_(4) emissions,energy utilization efficiency of lactating Jersey dairy cows.Forty-eight lactating cows were randomly assigned to one of 4 treatments:(1)control diet(CON),(2)CON with 25 g/d XOS(XOS),(3)CON with 15 g/d EXE(EXE),and(4)CON with 25 g/d XOS and 15 g/d EXE(XOS+EXE).The 60-d experimental period consisted of a 14-d adaptation period and a 46-d sampling period.The enteric CO_(2)and CH_(4) emissions and O2 consumption were measured using two GreenFeed units,which were further used to determine the energy utilization efficiency of cows.Results Compared with CON,cows fed XOS,EXE or XOS+EXE significantly(P<0.05)increased milk yield,true protein and fat concentration,and energy-corrected milk yield(ECM)/DM intake,which could be reflected by the significant improvement(P<0.05)of dietary NDF and ADF digestibility.The results showed that dietary supplementation of XOS,EXE or XOS+EXE significantly(P<0.05)reduced CH_(4) emission,CH_(4)/milk yield,and CH_(4)/ECM.Furthermore,cows fed XOS demonstrated highest(P<0.05)metabolizable energy intake,milk energy output but lowest(P<0.05)of CH_(4) energy output and CH_(4) energy output as a proportion of gross energy intake compared with the remaining treatments.Conclusions Dietary supplementary of XOS,EXE or combination of XOS and EXE contributed to the improvement of lactation performance,nutrient digestibility,and energy utilization efficiency,as well as reduction of enteric CH_(4) emissions of lactating Jersey cows.This promising mitigation method may need further research to validate its long-term effect and mode of action for dairy cows.展开更多
Methane is an important greenhouse gas, and farmland is one of the im- portant emission sources of methane. Therefore, it's important to study the discharge of methane from cropland. This paper reviewed the methane e...Methane is an important greenhouse gas, and farmland is one of the im- portant emission sources of methane. Therefore, it's important to study the discharge of methane from cropland. This paper reviewed the methane emission from agricultural ecosystem, the factors controlling CH4 fluxes from soil, such as water regime, the soil characteristics, and the type and amount of applied fertilizers and so on, the management for mitigation of CH4 emission from cropland, especially from paddy field, and put forward some research suggestions on methane emission in the future. The objective of this paper is to provide reference for controlling methane emission in cropland.展开更多
From studies undertaken during 1995-2004, annual budgets of CH4 emissions from natural wetlands and its temporal and spatial variations were examined throughout China, and various factors influencing CH4 emissions wer...From studies undertaken during 1995-2004, annual budgets of CH4 emissions from natural wetlands and its temporal and spatial variations were examined throughout China, and various factors influencing CH4 emissions were also evaluated. The seasonal variation in CH4 emissions that increased with increasing plant growth reached its peak in August; decrease in the emissions was found in freshwater marshes but not in peatlands. Emissions were mainly controlled by temperature and depth of standing water. Low CH4 emissions at the early plant growing stages were not because of deficiency of organic C for CH4 production but because of low temperatures. Low temperatures not only reduced CH4 production but also stimulated CH4 oxidation by lowering the activity of other aerobic microbes which left more 02 in the rhizosphere for methanotrophs. Low summer temperatures (below 20 ℃) in the Qinghai-Tibetan Plateau lowered CH4 production and CH4 emission resulting in little or no seasonal variation of emissions. Diel and spatial variation in CH4 emissions depended on plant species. For plants that transport CH4 using the pressure-driven convective through-flow mechanism, diel variation in CH4 emissions was governed by diel variation of solar energy load (that produces temperature and vapor pressure differences within various plant tissues) and stomatal conductance. For plants that transport gases using the molecular diffusion mechanism only, the diel variation of CH4 emissions was because of differences in the magnitude of O2 produced through photosynthesis and then delivered into the rhizomes and/or rhizosphere for CH4 oxidation. Emergent plants could transport more CH4 than submerged plants because the former transport CH4 directly into the atmosphere rather than into water as do submerged plants where CH4 can be further be oxidized during its diffusion from water to the atmosphere. Emergent plants with high gas transport capacity could not only transport more CH4 into the atmosphere but also live in deeper water, which in turn would inundate more plant litter, resulting in increased availability of C for CH4 production. Annual CH4 emission from natural wetlands in China was estimated to be 1.76 Tg, up to 1.17 Tg of which was emitted from freshwater marshes. CH4 emission from freshwater marshes mainly occurred during the growing season and less than 8% was released during the freeze-thawing period despite the fact that thawing efficiently released CH4 fixed in ice column into the atmosphere.展开更多
Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on gr...Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.展开更多
The rice-duck ecological system is one of the major practices of the traditional Chinese agriculture. A study on the effect of reducing methane emission using this practice provided theoretical and practical basis for...The rice-duck ecological system is one of the major practices of the traditional Chinese agriculture. A study on the effect of reducing methane emission using this practice provided theoretical and practical basis for further development and utilization of this classical agricultural technique. The effect of reducing methane emission and the economic benefits of rice-duck ecological system were studied by carrying out a field experiment and by using economic methodology. The daily variation of CH4 emission in late rice paddy field was basically consistent with the daily variation of atmospheric temperature. The highest emission occurred at the full tillering stage of late rice with a rate of 24.1 or 32.2 or 40.5 mg m^-2 h^-1 in no-tillage area with duck and no-tillage area without duck and conventional-tillage area without duck, respectively. The inhibition of methane emission was apparently effective in the rice-duck ecological system during the initial tillering stage and the full tillering stage. Compared to the no-tillage area without duck, methane emission decreased by 2.333 g m^-2. Compared to the conventional-tillage area without duck, methane emission decreased by 4.723 g m^-2. During the production period of late rice, the amount of methane emission in no-tillage area with duck was 3.373 g m^-2 lesser than that of no-tillage area without duck, and 5.59 g m^-2 less than that of conventional-tillage without duck area. The economic significance was analyzed. Farmers adopting the rice-duck ecological system obtained 2 166 and 4 207 RMB yuan ha^-1 more income than those who adopted a no-tillage without duck technique or conventional-tillage without duck technique, respectively. In addition to the reduction of the environmental pollution by methane emission, the farmers who adopted the rice-duck ecological system achieved economic benefits of 5 000 RMB yuan ha^-1, which was 2 206 and 4 274 RMB yuan ha^-1 more than those who adopted a no-tillage without duck technique and a conventional-tillage without duck technique, respectively. The rice-duck ecological system not only increased the economic benefits for farmers, but also reduced methane emission in rice paddy field. A sustainable agricultural production mode was formed.展开更多
Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study...Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study was undertaken to evaluate the effect of the physiological state of Holstein-Friesian heifers on their enteric CH4 emissions while grazing a perennial ryegrass sward. Two experiments were conducted: Experiment 1 ran from May 2011 for 11 weeks and Experiment 2 ran from August 2011 for 10 weeks. In each experiment, Holstein-Friesian heifers were divided into three treatment groups (12 animals/group) consisting of calves, yearling heifers, and in-calf heifers (average ages: 8.5, 14.5, and 20.5 months, respectively). Methane emissions were estimated for each animal in the final week of each experiment using the sulfur hexafluoride tracer technique. Dry matter (DM) intake was estimated using the calculated metabolizable energy (ME) requirement divided by the ME concentration in the grazed grass. As expected, live weight increased with increasing animal age (P 〈 0.001); however, there was no difference in live weight gain among the three groups in Experiment 1, although in Experiment 2, this variable decreased with increasing animal age (P 〈 0.001 ). In Experiment 1, yearling heifers had the highest CH4 emissions (g·d^-1) and in-calf heifers produced more than calves (P 〈 0.001 ). When expressed as CH4 emissions per unit of live weight, DM intake, and gross energy (GE) intake, yearling heifers had higher emission rates than calves and in-calf heifers (P 〈 0.001). However, the effects on CH4 emissions were different in Experiment 2, in which CH, emissions (g·d^-1) increased linearly with increasing animal age (P 〈 0.001), although the difference between yearling and in-calf heifers was not significant. The CH4/live weight ratio was lower in in-calf heifers than in the other two groups (P 〈 0.001 ), while CH4 energy output as a proportion of GE intake was lower in calves than in yearling and in-calf heifers (P 〈 0.05). All data were then pooled and used to develop prediction equations for CH4 emissions. All relationships are significant (P 〈 0.001), with R2 values ranging from 0.630 to 0.682. These models indicate that CH4 emissions could be increased by 0.252 g.d-1 with an increase of I kg live weight or by 14.9 g·d^-1 with an increase of 1 kg·d^-1 of DM intake; or, the CH4 energy output could be increased by 0.046 MJ·d^-1 with an increase of 1 MJ·d^-1 of GE intake. These results provide an alternative approach for estimating CH4 emissions from grazine dairy heifers when actual CH, emission data are not available.展开更多
Methane(CH_(4))emissions from ruminant production are a significant source of anthropogenic greenhouse gas production,but few studies have examined the enteric CH_(4)emissions of lactating dairy cows under different f...Methane(CH_(4))emissions from ruminant production are a significant source of anthropogenic greenhouse gas production,but few studies have examined the enteric CH_(4)emissions of lactating dairy cows under different feeding regimes in China.This study aimed to investigate the influence of different dietary neutral detergent fiber/non-fibrous carbohydrate(NDF/NFC)ratios on production performance,nutrient digestibility,and CH_(4)emissions for Holstein dairy cows at various stages of lactation.It evaluated the performance of CH_(4)prediction equations developed using local dietary and milk production variables compared to previously published prediction equations developed in other production regimes.For this purpose,36 lactating cows were assigned to one of three treatments with differing dietary NDF/NFC ratios:low(NDF/NFC=1.19),medium(NDF/NFC=1.54),and high(NDF/NFC=1.68).A modified acid-insoluble ash method was used to determine nutrient digestibility,while the sulfur hexafluoride technique was used to measure enteric CH4 emissions.The results showed that the dry matter(DM)intake of cows at the early,middle,and late stages of lactation decreased significantly(P<0.01)from 20.9 to 15.4 kg d^(–1),15.3 to 11.6 kg d^(–1),and 16.4 to 15.0 kg d^(–1),respectively,as dietary NDF/NFC ratios increased.Across all three treatments,DM and gross energy(GE)digestibility values were the highest(P<0.05)for cows at the middle and late lactation stages.Daily CH_(4)emissions increased linearly(P<0.05),from 325.2 to 391.9 kg d^(–1),261.0 to 399.8 kg d^(–1),and 241.8 to 390.6 kg d^(–1),respectively,as dietary NDF/NFC ratios increased during the early,middle,and late stages of lactation.CH_(4)emissions expressed per unit of metabolic body weight,DM intake,NDF intake,or fat-corrected milk yield increased with increasing dietary NDF/NFC ratios.In addition,CH_(4)emissions expressed per unit of GE intake increased significantly(P<0.05),from 4.87 to 8.12%,5.16 to 9.25%,and 5.06 to 8.17%respectively,as dietary NDF/NFC ratios increased during the early,middle,and late lactation stages.The modelling results showed that the equation using DM intake as the single variable yielded a greater R^(2)than equations using other dietary or milk production variables.When data obtained from each lactation stage were combined,DM intake remained a better predictor of CH_(4)emissions(R^(2)=0.786,P=0.026)than any other variables tested.Compared to the prediction equations developed herein,previously published equations had a greater root mean square prediction error,reflecting their inability to predict CH_(4)emissions for Chinese Holstein dairy cows accurately.The quantification of CH_(4)production by lactating dairy cows under Chinese production systems and the development of associated prediction equations will help establish regional or national CH_(4)inventories and improve mitigation approaches to dairy production.展开更多
In this study, emission of methane have been measured in a Thai rice field. Clear patterns of diurnal variations of methane emission have been observed and were found to follow the diurnal variation of the soil temper...In this study, emission of methane have been measured in a Thai rice field. Clear patterns of diurnal variations of methane emission have been observed and were found to follow the diurnal variation of the soil temperature. A detailed explanation was given for explaining the occurrence of a methane emission peak at night.The effects of urea fertilization and field draining on methane emissions were discussed. Methane emission from Thai rice fields is estimated to be 3. 32 Tg CH_4(2. 49 Tg CH_4-C) each year , contributing about 3. 4% to global methane budget due to rice cultivation.展开更多
Methane emissions from Chinese paddy soil (Zhejiang Province) were measured over the rice growing seasons. Different fertilizers (organic and chemical) were applied, emissions of methane were high during two periods(5...Methane emissions from Chinese paddy soil (Zhejiang Province) were measured over the rice growing seasons. Different fertilizers (organic and chemical) were applied, emissions of methane were high during two periods(5 days after peak tillering and 7 days after heading flowering stage) and significant effect of fertilizers was observed. Methanogenic activities in soils treated with organic manures were obviously higher than those with chemical fertilizers. Among the organic manured fields the maximum methane emission from green manure, biogas residue and beef manure treatment were 52, 20 and 19 times respectively of that given by control, and among chemical fertilizers it was NH\-4HCO\-3>CO(NH 2) 2>(NH 4) 2SO 4>NH 4Cl>NaNO 3 with 2\^4, 2, 1\^5,1\^3 and 0\^2 times respectively of that from control.展开更多
In recent studies,proxy XCH_(4)retrievals from the Japanese Greenhouse gases Observing SATellite(GOSAT)have been used to constrain top-down estimation of CH_(4)emissions.Still,the resulting interannual variations ofte...In recent studies,proxy XCH_(4)retrievals from the Japanese Greenhouse gases Observing SATellite(GOSAT)have been used to constrain top-down estimation of CH_(4)emissions.Still,the resulting interannual variations often show significant discrepancies over some of the most important CH_(4)source regions,such as China and Tropical South America,by causes yet to be determined.This study compares monthly CH_(4)flux estimates from two parallel assimilations of GOSAT XCH_(4)retrievals from 2010 to 2019 based on the same Ensemble Kalman Filter(EnKF)framework but with the global chemistry transport model(GEOS-Chem v12.5)being run at two different spatial resolutions of 4°×5°(R4,lon×lat)and 2°×2.5°(R2,lon×lat)to investigate the effects of resolution-related model errors on the derived long-term global and regional CH_(4)emission trends.We found that the mean annual global methane emission for the 2010s is 573.04 Tg yr^(-1)for the inversion using the R4 model,which becomes about 4.4 Tg yr^(-1)less(568.63 Tg yr^(-1))when a finer R2 model is used,though both are well within the ensemble range of the 22 top-down results(2008-17)included in the current Global Carbon Project(from 550 Tg yr^(-1)to 594 Tg yr^(-1)).Compared to the R2 model,the inversion based on the R4 tends to overestimate tropical emissions(by 13.3 Tg yr^(-1)),which is accompanied by a general underestimation(by 8.9 Tg yr^(-1))in the extratropics.Such a dipole reflects differences in tropical-mid-latitude air exchange in relation to the model’s convective and advective schemes at different resolutions.The two inversions show a rather consistent long-term CH_(4)emission trend at the global scale and over most of the continents,suggesting that the observed rapid increase in atmospheric methane can largely be attributed to the emission growth from North Africa(1.79 Tg yr^(-2)for R4 and 1.29 Tg yr^(-2)for R2)and South America Temperate(1.08 Tg yr^(-2)for R4 and 1.21 Tg yr^(-2)for R2)during the first half of the 2010s,and from Eurasia Boreal(1.46 Tg yr^(-2)for R4 and 1.63 Tg yr^(-2)for R2)and Tropical South America(1.72 Tg yr-2 for R4 and 1.43 Tg yr^(-2)for R2)over 2015-19.In the meantime,emissions in Europe have shown a consistent decrease over the past decade.However,the growth rates by the two parallel inversions show significant discrepancies over Eurasia Temperate,South America Temperate,and South Africa,which are also the places where recent GOSAT inversions usually disagree with one other.展开更多
Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the met...Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the methane drainage technol- ogy. The growth of methane saturation of coal seams with the extraction depth, with simultaneously increasing output concen- tration, contributes to the increase of the quantity of methane emitted into longwall areas. The subject matter of the article has been directed at the predicted quantity of methane emissions into planned longwalls with roof caving in the layer of seams adjacent to the roof of large thickness. The performed prognostic calculations of methane emissions into the longwall working were referred to two sources, i.e. methane liberated during coal mining by means of a cutter-loader and methane originating from the degasification of the floor layer destressed by the longwall conducted in the close-to-roof layer. The calculations of predictions allow to refer to the planned longwall, on account of the emitting methane, with possible and safe output quantity. Planning of extraction in the close-to-roof layer of a seam of large thickness with roof caving is especially important in con- ditions of increasing methane saturation with the depth of deposition and should be preceded by a prognostic analysis for de- termining the extraction possibilities of the planned longwall.展开更多
Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,met...Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,methane accounting methods and research status for various agricultural emission source including rice fields,animal enteric fermentation and livestock and poultry manure management were overview,and the influencing factors of each emission source were analyzed and discussed.At the same time,it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation.Finally,mitigation strategies based on accounting results and actual situation are proposed.This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.展开更多
Dietary fat content can reduce the methane production of dairy cows;however,the relevance fatty acid(FA)composition has towards this inhibitory effect is debatable.Furthermore,in-depth studies elucidating the effects ...Dietary fat content can reduce the methane production of dairy cows;however,the relevance fatty acid(FA)composition has towards this inhibitory effect is debatable.Furthermore,in-depth studies elucidating the effects of unsaturated fatty acids(UFA)on rumen function and the mechanism of reducing methane(CH4)production are lacking.This study exposed 10 Holstein cows with the same parity,similar milk yield to two total mixed rations:low unsaturated FA(LUFA)and high unsaturated FA(HUFA)with similar fat content.The LUFA group mainly added fat powder(C16:0>90%),and the HUFA group mainly replaced fat powder with extruded flaxseed.The experiment lasted 26 d,the last 5 d of which,gas exchange in respiratory chambers was conducted to measure gas emissions.We found that an increase in the UFA in diet did not affect milk production(P>0.05)and could align the profile of milk FAs more closely with modern human nutritional requirements.Furthermore,we found that increasing the UFA content in the diet lead to a decrease in the abundance of Methanobrevibacter in the rumen(|linear discriminant analysis[LDA]score|>2 and P 2 and P<0.05),which ultimately decreased CH4 production(P<0.05).Our results illustrated the mechanism involving decreased CH4 production when fed a UFA diet in dairy cows.We believe that our study provides new evidence to explore CH4 emission reduction measures for dairy cows.展开更多
Shale gas is an important alternative natural gas source that can meet China's growing energy demand.However,methane emissions during shale gas production could largely determine whether it could be considered as ...Shale gas is an important alternative natural gas source that can meet China's growing energy demand.However,methane emissions during shale gas production could largely determine whether it could be considered as a bridging clean energy source.In this study,we performed methane emission measurements using three methods(on-site optical gas imaging,on-site methane patrolling,and downwind measurement)at shale gas production sites in Sichuan province,China,covering 18 well sites with 81 wells.The results showed that flowback water tanks were the major methane sources,with valves,separators,chemical injection pumps,and pneumatic controllers as other sources.The methane concentrations inside the 18 sites ranged from 1.42 to 459μmol mol−1,with over 59%of the sites having the highest concentration less than 50μmol mol−1.The optical gas imaging method,with its low detection limit over 5000μmol mol−1,could not capture the emission effectively.The three successful downwind measurements resulted in site level emission rates between 0.02 and 0.17 kg h−1.When divided by the number of wells at each site,the emission intensity was 4%–28%of the wellhead emission factor for natural gas production in China.More measurements are required to better quantify methane emissions from shale gas sites in China.For sites in mountainous regions or long-term low-wind regions,detection methods other than downwind measurements should be suitable for quantifying site-level emissions.展开更多
S The methane emission flux from rice paddies was simultaneously measured with automatic and manual methods in the suburban of Suzhou. Both methods were based on the static chamber/GC-FID techniques. Detail analysi...S The methane emission flux from rice paddies was simultaneously measured with automatic and manual methods in the suburban of Suzhou. Both methods were based on the static chamber/GC-FID techniques. Detail analysis of the experimental results indicates: a) The data of methane emission measured with the automatic method is reliable. b) About 11 or 19 o′clock of local time is recommended as the optimum sampling time for the manual spot measurement of methane emission from rice paddies. The methane emission fluxes measured by manual sampling at local time other than the optimum time have to be corrected. The correction coefficient may be determined by automatic and continuous measurement. c) In order to get a more accurate result, an empirical correction factor, such as 18%, is recommended to correct the seasonally total amount of measured methane emission by enlarging the automatically measured data or reducing the manually measured ones.展开更多
Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and thei...Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and their economic value from these two ecosystems can provide theoretical and practical basis for further development and utilization of these classical agricultural techniques. CH4 and N2O emissions from RD and RF ecological systems were measured in situ by using static chambers technique. Using global warming potentials (GWPs), we assessed the greenhouse effect of CH4 and N2O and their economic value. Results showed that the peaks of CH4 emission fluxes from RD and RF appeared at full tillering stage and at heading stage, and the average emission fluxes were significantly (P〈 0.05) lower than that from CK. N2O fluxes remained low when the field is flooded and high after draining the water. Compared with CK, the total amount of N2O emissions was significantly (P〈0.05) higher and slightly lower than those from RD and RF, respectively. In 2006 and 2007, the total greenhouse effect of CH4 and N20 from RD and RF were 4 728.3 and 4 611 kg CO2 ha^-1, 4 545 and 4 754.3 kg CO2 ha^-1, respectively. The costs of greenhouse effect were 970.89 and 946.81 RMB yuan ha^-1, and 933.25 and 976.23 RMB yuan ha^-1, respectively, which were significant lower than those from CK (5 997.6 and 5 391.5 RMB yuan ha^-1). Except for the environment cost of CH4 and N2O, the economic benefits from RD and RF were 2 210.64 and 4 881.92 RMB yuan ha^-1; 3 798.37 and 5 310.64 RMB yuan ha^-1, respectively, higher than those from CK. Therefore, RD and RF complex ecological planting and breeding models can effectively decrease and control CH4 and N2O emissions, and they are two of the effective strategies to reduce greenhouse gases from rice paddy fields and contribute in alleviating global warming. Thus, their adoption is important to the environment together with their economy benefits.展开更多
A three-year experiment was conducted in the middle-lower reaches of the Yangtze River in China to study the influence of continuous wheat straw return during the rice season and continuous rice straw return in wheat ...A three-year experiment was conducted in the middle-lower reaches of the Yangtze River in China to study the influence of continuous wheat straw return during the rice season and continuous rice straw return in wheat on methane (CH 4 ) emissions from rice fields in which, the rice-wheat rotation system is the most dominant planting pattern. The field experiment was initiated in October 2009 and has continued since the wheat-growing season of that year. The analyses for the present study were conducted in the second (2011) and third (2012) rice growing seasons. Four treatments, namely, the continuous return of wheat straw and rice straw in every season (WR), of rice straw but no wheat straw return (R), of wheat straw but no rice straw return (W) and a control with no straw return (CK), were laid out in a randomized split-plot design. The total seasonal CH 4 emissions ranged from 107.4 to 491.7 kg/ha (2011) and 160.3 to 909.6 kg/ha (2012). The increase in CH 4 emissions for treatments WR and W were 289% and 230% in the second year and 185% and 225% in the third year, respectively, in relation to CK. We observed less methane emissions in the treatment R than in CK by 14%-43%, but not statistically significant. Treatment R could increase rice productivity while no more CH 4 emission occurs. The difference in the total CH 4 emissions mainly related to a difference in the methane flux rate during the first 30-35 days after transplant in the rice growing season, which was caused by the amount of dissolved oxygen in paddy water and the amount of reducible soil materials.展开更多
Many studies on methane emissions from animal manure have revealed that animal manure is a major source of methane emissions to the atmosphere that can have negative consequences for people, animals and environment. I...Many studies on methane emissions from animal manure have revealed that animal manure is a major source of methane emissions to the atmosphere that can have negative consequences for people, animals and environment. In general, the release of methane can be influenced by the type of feed taken by animals, temperature, manure characteristics and so on. This study aimed at quantifying and comparing methane release from dairy manure with different piling treatments. Four treatments were designed including manure piling height 30, 45, 60 cm and adding 6 cm manure every day until the piling height was 60 cm. Static chamber method and gas chromatography were adopted to measure the methane emissions from April to June in 2009. Methane emission rates of all four manure treatments were low in the first week and then increased sharply until reaching the peak values. Subsequently, all the methane emission rates decreased and fluctuated within the steady range till the end of the experiment. Wilcoxon nonparametfic tests analysis indicated that methane emission rate was greatly influenced by manure piling height and manner. There were no significant relationships between methane emission rates and the temperatures of ambience and heap. However, regression analysis showed that the quadratic equations were found between emission rates of all treatments and the gas temperature in the barrels.展开更多
基金supported by the Improvement of Green Rice Plant Type Using Genetic Information Program, Rural Development Administration, Korea (Grant No. PJ01699202)
文摘Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic conditions promote the production of methane by methanogenicmicroorganisms.Rice fields contribute a considerable portion of agricultural methane emissions,as riceplants provide both factors that enhance and limit methane production.Rice plants harbor both methaneproducingand methane-oxidizing microorganisms.Exudates from rice roots provide source for methaneproduction,while oxygen delivered from the root aerenchyma enhances methane oxidation.Studies haveshown that the diversity of these microorganisms depends on rice cultivars with some genes characterizedas harboring specific groups of microorganisms related to methane emissions.However,there is still aneed for research to determine the balance between methane production and oxidation,as rice plantspossess the ability to regulate net methane production.Various agronomical practices,such as fertilizerand water management,have been employed to mitigate methane emissions.Nevertheless,studiescorrelating agronomic and chemical management of methane with productivity are limited.Moreover,evidences for breeding low-methane-emitting rice varieties are scattered largely due to the absence ofcoordinated breeding programs.Research has indicated that phenotypic characteristics,such as rootbiomass,shoot architecture,and aerenchyma,are highly correlated with methane emissions.This reviewdiscusses available studies that involve the correlation between plant characteristics and methaneemissions.It emphasizes the necessity and importance of breeding low-methane-emitting rice varieties inaddition to existing agronomic,biological,and chemical practices.The review also delves into the idealphenotypic and physiological characteristics of low-methane-emitting rice and potential breeding techniques,drawing from studies conducted with diverse varieties,mutants,and transgenic plants.
基金the Key Program for International S&T Cooperation Projects of China(2022YFE0130100)Central Public-interest Scientific Institution Basal Research Fund of Chinese Academy of Agricultural Sciences(Y2022GH12).
文摘Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to investigate the effects of dietary xylooligosaccharides(XOS)and exogenous enzyme(EXE)supplementation on milk production,nutrient digestibility,enteric CH_(4) emissions,energy utilization efficiency of lactating Jersey dairy cows.Forty-eight lactating cows were randomly assigned to one of 4 treatments:(1)control diet(CON),(2)CON with 25 g/d XOS(XOS),(3)CON with 15 g/d EXE(EXE),and(4)CON with 25 g/d XOS and 15 g/d EXE(XOS+EXE).The 60-d experimental period consisted of a 14-d adaptation period and a 46-d sampling period.The enteric CO_(2)and CH_(4) emissions and O2 consumption were measured using two GreenFeed units,which were further used to determine the energy utilization efficiency of cows.Results Compared with CON,cows fed XOS,EXE or XOS+EXE significantly(P<0.05)increased milk yield,true protein and fat concentration,and energy-corrected milk yield(ECM)/DM intake,which could be reflected by the significant improvement(P<0.05)of dietary NDF and ADF digestibility.The results showed that dietary supplementation of XOS,EXE or XOS+EXE significantly(P<0.05)reduced CH_(4) emission,CH_(4)/milk yield,and CH_(4)/ECM.Furthermore,cows fed XOS demonstrated highest(P<0.05)metabolizable energy intake,milk energy output but lowest(P<0.05)of CH_(4) energy output and CH_(4) energy output as a proportion of gross energy intake compared with the remaining treatments.Conclusions Dietary supplementary of XOS,EXE or combination of XOS and EXE contributed to the improvement of lactation performance,nutrient digestibility,and energy utilization efficiency,as well as reduction of enteric CH_(4) emissions of lactating Jersey cows.This promising mitigation method may need further research to validate its long-term effect and mode of action for dairy cows.
基金Supported by National Natural Science Foundation of China(31270488,31501274)~~
文摘Methane is an important greenhouse gas, and farmland is one of the im- portant emission sources of methane. Therefore, it's important to study the discharge of methane from cropland. This paper reviewed the methane emission from agricultural ecosystem, the factors controlling CH4 fluxes from soil, such as water regime, the soil characteristics, and the type and amount of applied fertilizers and so on, the management for mitigation of CH4 emission from cropland, especially from paddy field, and put forward some research suggestions on methane emission in the future. The objective of this paper is to provide reference for controlling methane emission in cropland.
基金the National Natural Science Foundation of China (No.40471121)the Field Station Foundation of the Chinese Academy,of Sciences.
文摘From studies undertaken during 1995-2004, annual budgets of CH4 emissions from natural wetlands and its temporal and spatial variations were examined throughout China, and various factors influencing CH4 emissions were also evaluated. The seasonal variation in CH4 emissions that increased with increasing plant growth reached its peak in August; decrease in the emissions was found in freshwater marshes but not in peatlands. Emissions were mainly controlled by temperature and depth of standing water. Low CH4 emissions at the early plant growing stages were not because of deficiency of organic C for CH4 production but because of low temperatures. Low temperatures not only reduced CH4 production but also stimulated CH4 oxidation by lowering the activity of other aerobic microbes which left more 02 in the rhizosphere for methanotrophs. Low summer temperatures (below 20 ℃) in the Qinghai-Tibetan Plateau lowered CH4 production and CH4 emission resulting in little or no seasonal variation of emissions. Diel and spatial variation in CH4 emissions depended on plant species. For plants that transport CH4 using the pressure-driven convective through-flow mechanism, diel variation in CH4 emissions was governed by diel variation of solar energy load (that produces temperature and vapor pressure differences within various plant tissues) and stomatal conductance. For plants that transport gases using the molecular diffusion mechanism only, the diel variation of CH4 emissions was because of differences in the magnitude of O2 produced through photosynthesis and then delivered into the rhizomes and/or rhizosphere for CH4 oxidation. Emergent plants could transport more CH4 than submerged plants because the former transport CH4 directly into the atmosphere rather than into water as do submerged plants where CH4 can be further be oxidized during its diffusion from water to the atmosphere. Emergent plants with high gas transport capacity could not only transport more CH4 into the atmosphere but also live in deeper water, which in turn would inundate more plant litter, resulting in increased availability of C for CH4 production. Annual CH4 emission from natural wetlands in China was estimated to be 1.76 Tg, up to 1.17 Tg of which was emitted from freshwater marshes. CH4 emission from freshwater marshes mainly occurred during the growing season and less than 8% was released during the freeze-thawing period despite the fact that thawing efficiently released CH4 fixed in ice column into the atmosphere.
基金the National Key Research and Development Program of China (2016YFD0300206-4)the National Natural Science Foundation of China (31461143015, 31471438)+3 种基金the National Key Technology R&D Program of China (2014AA10A605)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD-201501)the Top Talent Supporting Program of Yangzhou University (2015-01)the Hong Kong Research Grant Council (14122415,14160516,14177617,AoE/M-05/12,AoE/M-403/16)
文摘Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.
文摘The rice-duck ecological system is one of the major practices of the traditional Chinese agriculture. A study on the effect of reducing methane emission using this practice provided theoretical and practical basis for further development and utilization of this classical agricultural technique. The effect of reducing methane emission and the economic benefits of rice-duck ecological system were studied by carrying out a field experiment and by using economic methodology. The daily variation of CH4 emission in late rice paddy field was basically consistent with the daily variation of atmospheric temperature. The highest emission occurred at the full tillering stage of late rice with a rate of 24.1 or 32.2 or 40.5 mg m^-2 h^-1 in no-tillage area with duck and no-tillage area without duck and conventional-tillage area without duck, respectively. The inhibition of methane emission was apparently effective in the rice-duck ecological system during the initial tillering stage and the full tillering stage. Compared to the no-tillage area without duck, methane emission decreased by 2.333 g m^-2. Compared to the conventional-tillage area without duck, methane emission decreased by 4.723 g m^-2. During the production period of late rice, the amount of methane emission in no-tillage area with duck was 3.373 g m^-2 lesser than that of no-tillage area without duck, and 5.59 g m^-2 less than that of conventional-tillage without duck area. The economic significance was analyzed. Farmers adopting the rice-duck ecological system obtained 2 166 and 4 207 RMB yuan ha^-1 more income than those who adopted a no-tillage without duck technique or conventional-tillage without duck technique, respectively. In addition to the reduction of the environmental pollution by methane emission, the farmers who adopted the rice-duck ecological system achieved economic benefits of 5 000 RMB yuan ha^-1, which was 2 206 and 4 274 RMB yuan ha^-1 more than those who adopted a no-tillage without duck technique and a conventional-tillage without duck technique, respectively. The rice-duck ecological system not only increased the economic benefits for farmers, but also reduced methane emission in rice paddy field. A sustainable agricultural production mode was formed.
基金funded by the Department for Environment Food & Rural Affairsthe Scottish Government+2 种基金the Department of Agriculture and Rural Development for Northern Irelandthe Welsh Government as part of the UK’s Agricultural GHG Research Platform initiative
文摘Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study was undertaken to evaluate the effect of the physiological state of Holstein-Friesian heifers on their enteric CH4 emissions while grazing a perennial ryegrass sward. Two experiments were conducted: Experiment 1 ran from May 2011 for 11 weeks and Experiment 2 ran from August 2011 for 10 weeks. In each experiment, Holstein-Friesian heifers were divided into three treatment groups (12 animals/group) consisting of calves, yearling heifers, and in-calf heifers (average ages: 8.5, 14.5, and 20.5 months, respectively). Methane emissions were estimated for each animal in the final week of each experiment using the sulfur hexafluoride tracer technique. Dry matter (DM) intake was estimated using the calculated metabolizable energy (ME) requirement divided by the ME concentration in the grazed grass. As expected, live weight increased with increasing animal age (P 〈 0.001); however, there was no difference in live weight gain among the three groups in Experiment 1, although in Experiment 2, this variable decreased with increasing animal age (P 〈 0.001 ). In Experiment 1, yearling heifers had the highest CH4 emissions (g·d^-1) and in-calf heifers produced more than calves (P 〈 0.001 ). When expressed as CH4 emissions per unit of live weight, DM intake, and gross energy (GE) intake, yearling heifers had higher emission rates than calves and in-calf heifers (P 〈 0.001). However, the effects on CH4 emissions were different in Experiment 2, in which CH, emissions (g·d^-1) increased linearly with increasing animal age (P 〈 0.001), although the difference between yearling and in-calf heifers was not significant. The CH4/live weight ratio was lower in in-calf heifers than in the other two groups (P 〈 0.001 ), while CH4 energy output as a proportion of GE intake was lower in calves than in yearling and in-calf heifers (P 〈 0.05). All data were then pooled and used to develop prediction equations for CH4 emissions. All relationships are significant (P 〈 0.001), with R2 values ranging from 0.630 to 0.682. These models indicate that CH4 emissions could be increased by 0.252 g.d-1 with an increase of I kg live weight or by 14.9 g·d^-1 with an increase of 1 kg·d^-1 of DM intake; or, the CH4 energy output could be increased by 0.046 MJ·d^-1 with an increase of 1 MJ·d^-1 of GE intake. These results provide an alternative approach for estimating CH4 emissions from grazine dairy heifers when actual CH, emission data are not available.
基金supported by the Key Program for International S&T Cooperation Projects of China(2016YFE0109000)the National Natural Science Foundation of China(31802085 and 31702133)the Central Public-interest Scientific Institution Basal Research Fund of Chinese Academy of Agricultural Sciences(Y2021GH18-2)。
文摘Methane(CH_(4))emissions from ruminant production are a significant source of anthropogenic greenhouse gas production,but few studies have examined the enteric CH_(4)emissions of lactating dairy cows under different feeding regimes in China.This study aimed to investigate the influence of different dietary neutral detergent fiber/non-fibrous carbohydrate(NDF/NFC)ratios on production performance,nutrient digestibility,and CH_(4)emissions for Holstein dairy cows at various stages of lactation.It evaluated the performance of CH_(4)prediction equations developed using local dietary and milk production variables compared to previously published prediction equations developed in other production regimes.For this purpose,36 lactating cows were assigned to one of three treatments with differing dietary NDF/NFC ratios:low(NDF/NFC=1.19),medium(NDF/NFC=1.54),and high(NDF/NFC=1.68).A modified acid-insoluble ash method was used to determine nutrient digestibility,while the sulfur hexafluoride technique was used to measure enteric CH4 emissions.The results showed that the dry matter(DM)intake of cows at the early,middle,and late stages of lactation decreased significantly(P<0.01)from 20.9 to 15.4 kg d^(–1),15.3 to 11.6 kg d^(–1),and 16.4 to 15.0 kg d^(–1),respectively,as dietary NDF/NFC ratios increased.Across all three treatments,DM and gross energy(GE)digestibility values were the highest(P<0.05)for cows at the middle and late lactation stages.Daily CH_(4)emissions increased linearly(P<0.05),from 325.2 to 391.9 kg d^(–1),261.0 to 399.8 kg d^(–1),and 241.8 to 390.6 kg d^(–1),respectively,as dietary NDF/NFC ratios increased during the early,middle,and late stages of lactation.CH_(4)emissions expressed per unit of metabolic body weight,DM intake,NDF intake,or fat-corrected milk yield increased with increasing dietary NDF/NFC ratios.In addition,CH_(4)emissions expressed per unit of GE intake increased significantly(P<0.05),from 4.87 to 8.12%,5.16 to 9.25%,and 5.06 to 8.17%respectively,as dietary NDF/NFC ratios increased during the early,middle,and late lactation stages.The modelling results showed that the equation using DM intake as the single variable yielded a greater R^(2)than equations using other dietary or milk production variables.When data obtained from each lactation stage were combined,DM intake remained a better predictor of CH_(4)emissions(R^(2)=0.786,P=0.026)than any other variables tested.Compared to the prediction equations developed herein,previously published equations had a greater root mean square prediction error,reflecting their inability to predict CH_(4)emissions for Chinese Holstein dairy cows accurately.The quantification of CH_(4)production by lactating dairy cows under Chinese production systems and the development of associated prediction equations will help establish regional or national CH_(4)inventories and improve mitigation approaches to dairy production.
文摘In this study, emission of methane have been measured in a Thai rice field. Clear patterns of diurnal variations of methane emission have been observed and were found to follow the diurnal variation of the soil temperature. A detailed explanation was given for explaining the occurrence of a methane emission peak at night.The effects of urea fertilization and field draining on methane emissions were discussed. Methane emission from Thai rice fields is estimated to be 3. 32 Tg CH_4(2. 49 Tg CH_4-C) each year , contributing about 3. 4% to global methane budget due to rice cultivation.
文摘Methane emissions from Chinese paddy soil (Zhejiang Province) were measured over the rice growing seasons. Different fertilizers (organic and chemical) were applied, emissions of methane were high during two periods(5 days after peak tillering and 7 days after heading flowering stage) and significant effect of fertilizers was observed. Methanogenic activities in soils treated with organic manures were obviously higher than those with chemical fertilizers. Among the organic manured fields the maximum methane emission from green manure, biogas residue and beef manure treatment were 52, 20 and 19 times respectively of that given by control, and among chemical fertilizers it was NH\-4HCO\-3>CO(NH 2) 2>(NH 4) 2SO 4>NH 4Cl>NaNO 3 with 2\^4, 2, 1\^5,1\^3 and 0\^2 times respectively of that from control.
基金supported by the National Key R&D Plan of China(Grant No.SQ2019YFE013078)the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDRW-ZS-2019-1)the National Key R&D Program of China(Grant No.2017YFB0504000)。
文摘In recent studies,proxy XCH_(4)retrievals from the Japanese Greenhouse gases Observing SATellite(GOSAT)have been used to constrain top-down estimation of CH_(4)emissions.Still,the resulting interannual variations often show significant discrepancies over some of the most important CH_(4)source regions,such as China and Tropical South America,by causes yet to be determined.This study compares monthly CH_(4)flux estimates from two parallel assimilations of GOSAT XCH_(4)retrievals from 2010 to 2019 based on the same Ensemble Kalman Filter(EnKF)framework but with the global chemistry transport model(GEOS-Chem v12.5)being run at two different spatial resolutions of 4°×5°(R4,lon×lat)and 2°×2.5°(R2,lon×lat)to investigate the effects of resolution-related model errors on the derived long-term global and regional CH_(4)emission trends.We found that the mean annual global methane emission for the 2010s is 573.04 Tg yr^(-1)for the inversion using the R4 model,which becomes about 4.4 Tg yr^(-1)less(568.63 Tg yr^(-1))when a finer R2 model is used,though both are well within the ensemble range of the 22 top-down results(2008-17)included in the current Global Carbon Project(from 550 Tg yr^(-1)to 594 Tg yr^(-1)).Compared to the R2 model,the inversion based on the R4 tends to overestimate tropical emissions(by 13.3 Tg yr^(-1)),which is accompanied by a general underestimation(by 8.9 Tg yr^(-1))in the extratropics.Such a dipole reflects differences in tropical-mid-latitude air exchange in relation to the model’s convective and advective schemes at different resolutions.The two inversions show a rather consistent long-term CH_(4)emission trend at the global scale and over most of the continents,suggesting that the observed rapid increase in atmospheric methane can largely be attributed to the emission growth from North Africa(1.79 Tg yr^(-2)for R4 and 1.29 Tg yr^(-2)for R2)and South America Temperate(1.08 Tg yr^(-2)for R4 and 1.21 Tg yr^(-2)for R2)during the first half of the 2010s,and from Eurasia Boreal(1.46 Tg yr^(-2)for R4 and 1.63 Tg yr^(-2)for R2)and Tropical South America(1.72 Tg yr-2 for R4 and 1.43 Tg yr^(-2)for R2)over 2015-19.In the meantime,emissions in Europe have shown a consistent decrease over the past decade.However,the growth rates by the two parallel inversions show significant discrepancies over Eurasia Temperate,South America Temperate,and South Africa,which are also the places where recent GOSAT inversions usually disagree with one other.
文摘Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the methane drainage technol- ogy. The growth of methane saturation of coal seams with the extraction depth, with simultaneously increasing output concen- tration, contributes to the increase of the quantity of methane emitted into longwall areas. The subject matter of the article has been directed at the predicted quantity of methane emissions into planned longwalls with roof caving in the layer of seams adjacent to the roof of large thickness. The performed prognostic calculations of methane emissions into the longwall working were referred to two sources, i.e. methane liberated during coal mining by means of a cutter-loader and methane originating from the degasification of the floor layer destressed by the longwall conducted in the close-to-roof layer. The calculations of predictions allow to refer to the planned longwall, on account of the emitting methane, with possible and safe output quantity. Planning of extraction in the close-to-roof layer of a seam of large thickness with roof caving is especially important in con- ditions of increasing methane saturation with the depth of deposition and should be preceded by a prognostic analysis for de- termining the extraction possibilities of the planned longwall.
基金supported partly by the National Key R&D Program of China(No.2022YFE029500)the National Natural Science Foundation of China(No.51637005)+1 种基金the S&T Program of Hebei(No.G2020502001)the Information Plan of Chinese Academy of Sciences(No.CAS-WX 2023PY-0103)。
文摘Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,methane accounting methods and research status for various agricultural emission source including rice fields,animal enteric fermentation and livestock and poultry manure management were overview,and the influencing factors of each emission source were analyzed and discussed.At the same time,it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation.Finally,mitigation strategies based on accounting results and actual situation are proposed.This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.
基金supported by the National Key R&D Program of China (No.2022YFD1301001).
文摘Dietary fat content can reduce the methane production of dairy cows;however,the relevance fatty acid(FA)composition has towards this inhibitory effect is debatable.Furthermore,in-depth studies elucidating the effects of unsaturated fatty acids(UFA)on rumen function and the mechanism of reducing methane(CH4)production are lacking.This study exposed 10 Holstein cows with the same parity,similar milk yield to two total mixed rations:low unsaturated FA(LUFA)and high unsaturated FA(HUFA)with similar fat content.The LUFA group mainly added fat powder(C16:0>90%),and the HUFA group mainly replaced fat powder with extruded flaxseed.The experiment lasted 26 d,the last 5 d of which,gas exchange in respiratory chambers was conducted to measure gas emissions.We found that an increase in the UFA in diet did not affect milk production(P>0.05)and could align the profile of milk FAs more closely with modern human nutritional requirements.Furthermore,we found that increasing the UFA content in the diet lead to a decrease in the abundance of Methanobrevibacter in the rumen(|linear discriminant analysis[LDA]score|>2 and P 2 and P<0.05),which ultimately decreased CH4 production(P<0.05).Our results illustrated the mechanism involving decreased CH4 production when fed a UFA diet in dairy cows.We believe that our study provides new evidence to explore CH4 emission reduction measures for dairy cows.
基金supported by the National Natural Science Foundation of China(42072177,U19B6003)CNPC Science and Technology Development Projects(2021DJ6603).
文摘Shale gas is an important alternative natural gas source that can meet China's growing energy demand.However,methane emissions during shale gas production could largely determine whether it could be considered as a bridging clean energy source.In this study,we performed methane emission measurements using three methods(on-site optical gas imaging,on-site methane patrolling,and downwind measurement)at shale gas production sites in Sichuan province,China,covering 18 well sites with 81 wells.The results showed that flowback water tanks were the major methane sources,with valves,separators,chemical injection pumps,and pneumatic controllers as other sources.The methane concentrations inside the 18 sites ranged from 1.42 to 459μmol mol−1,with over 59%of the sites having the highest concentration less than 50μmol mol−1.The optical gas imaging method,with its low detection limit over 5000μmol mol−1,could not capture the emission effectively.The three successful downwind measurements resulted in site level emission rates between 0.02 and 0.17 kg h−1.When divided by the number of wells at each site,the emission intensity was 4%–28%of the wellhead emission factor for natural gas production in China.More measurements are required to better quantify methane emissions from shale gas sites in China.For sites in mountainous regions or long-term low-wind regions,detection methods other than downwind measurements should be suitable for quantifying site-level emissions.
文摘S The methane emission flux from rice paddies was simultaneously measured with automatic and manual methods in the suburban of Suzhou. Both methods were based on the static chamber/GC-FID techniques. Detail analysis of the experimental results indicates: a) The data of methane emission measured with the automatic method is reliable. b) About 11 or 19 o′clock of local time is recommended as the optimum sampling time for the manual spot measurement of methane emission from rice paddies. The methane emission fluxes measured by manual sampling at local time other than the optimum time have to be corrected. The correction coefficient may be determined by automatic and continuous measurement. c) In order to get a more accurate result, an empirical correction factor, such as 18%, is recommended to correct the seasonally total amount of measured methane emission by enlarging the automatically measured data or reducing the manually measured ones.
基金supported by Important National Science&Technoligy Specific Projects, China (2004BA520A02)
文摘Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and their economic value from these two ecosystems can provide theoretical and practical basis for further development and utilization of these classical agricultural techniques. CH4 and N2O emissions from RD and RF ecological systems were measured in situ by using static chambers technique. Using global warming potentials (GWPs), we assessed the greenhouse effect of CH4 and N2O and their economic value. Results showed that the peaks of CH4 emission fluxes from RD and RF appeared at full tillering stage and at heading stage, and the average emission fluxes were significantly (P〈 0.05) lower than that from CK. N2O fluxes remained low when the field is flooded and high after draining the water. Compared with CK, the total amount of N2O emissions was significantly (P〈0.05) higher and slightly lower than those from RD and RF, respectively. In 2006 and 2007, the total greenhouse effect of CH4 and N20 from RD and RF were 4 728.3 and 4 611 kg CO2 ha^-1, 4 545 and 4 754.3 kg CO2 ha^-1, respectively. The costs of greenhouse effect were 970.89 and 946.81 RMB yuan ha^-1, and 933.25 and 976.23 RMB yuan ha^-1, respectively, which were significant lower than those from CK (5 997.6 and 5 391.5 RMB yuan ha^-1). Except for the environment cost of CH4 and N2O, the economic benefits from RD and RF were 2 210.64 and 4 881.92 RMB yuan ha^-1; 3 798.37 and 5 310.64 RMB yuan ha^-1, respectively, higher than those from CK. Therefore, RD and RF complex ecological planting and breeding models can effectively decrease and control CH4 and N2O emissions, and they are two of the effective strategies to reduce greenhouse gases from rice paddy fields and contribute in alleviating global warming. Thus, their adoption is important to the environment together with their economy benefits.
基金supported by the National Science and Technology Support Plan Project in China (No. 2012BAD04B08, 2011BAD16B14)
文摘A three-year experiment was conducted in the middle-lower reaches of the Yangtze River in China to study the influence of continuous wheat straw return during the rice season and continuous rice straw return in wheat on methane (CH 4 ) emissions from rice fields in which, the rice-wheat rotation system is the most dominant planting pattern. The field experiment was initiated in October 2009 and has continued since the wheat-growing season of that year. The analyses for the present study were conducted in the second (2011) and third (2012) rice growing seasons. Four treatments, namely, the continuous return of wheat straw and rice straw in every season (WR), of rice straw but no wheat straw return (R), of wheat straw but no rice straw return (W) and a control with no straw return (CK), were laid out in a randomized split-plot design. The total seasonal CH 4 emissions ranged from 107.4 to 491.7 kg/ha (2011) and 160.3 to 909.6 kg/ha (2012). The increase in CH 4 emissions for treatments WR and W were 289% and 230% in the second year and 185% and 225% in the third year, respectively, in relation to CK. We observed less methane emissions in the treatment R than in CK by 14%-43%, but not statistically significant. Treatment R could increase rice productivity while no more CH 4 emission occurs. The difference in the total CH 4 emissions mainly related to a difference in the methane flux rate during the first 30-35 days after transplant in the rice growing season, which was caused by the amount of dissolved oxygen in paddy water and the amount of reducible soil materials.
基金supported by the Special Environmental Research Fund for Public Welfare(No.200809087)
文摘Many studies on methane emissions from animal manure have revealed that animal manure is a major source of methane emissions to the atmosphere that can have negative consequences for people, animals and environment. In general, the release of methane can be influenced by the type of feed taken by animals, temperature, manure characteristics and so on. This study aimed at quantifying and comparing methane release from dairy manure with different piling treatments. Four treatments were designed including manure piling height 30, 45, 60 cm and adding 6 cm manure every day until the piling height was 60 cm. Static chamber method and gas chromatography were adopted to measure the methane emissions from April to June in 2009. Methane emission rates of all four manure treatments were low in the first week and then increased sharply until reaching the peak values. Subsequently, all the methane emission rates decreased and fluctuated within the steady range till the end of the experiment. Wilcoxon nonparametfic tests analysis indicated that methane emission rate was greatly influenced by manure piling height and manner. There were no significant relationships between methane emission rates and the temperatures of ambience and heap. However, regression analysis showed that the quadratic equations were found between emission rates of all treatments and the gas temperature in the barrels.