Potential oscillation during the electrocatalytic oxidation of methanol can be modulated by the specific adsorption of Cl- on the platinum electrode, which suppresses the electrocatalytic oxidation of methanol, and ma...Potential oscillation during the electrocatalytic oxidation of methanol can be modulated by the specific adsorption of Cl- on the platinum electrode, which suppresses the electrocatalytic oxidation of methanol, and makes the cross cycle in the cyclic voltammogram become smaller and finally disappear with the increase of Cl- concentration. The method is also applicable to the electrocatalytic oxidation of other small organic molecules.展开更多
Based on dual path reaction mechanism, a nonlinear dynamics model reflecting the potential oscilla- tion in electrooxidation of methanol on Pt surface was established. The model involves three variables, the electrode...Based on dual path reaction mechanism, a nonlinear dynamics model reflecting the potential oscilla- tion in electrooxidation of methanol on Pt surface was established. The model involves three variables, the electrode potential (e), the surface coverage of carbon monoxide (x), and adsorbed water (y). The chemical reactions and electrode potential were coupled together through the rate constant ki = exp(ai(e ? ei)). The analysis to the established model discloses the following: there are different kinetics be- haviors in different ranges of current densities. The chemical oscillation in methanol electrooxidation is assigned to two aspects, one from poison mediate CO of methanol electrooxidation, which is the in- duced factor of the chemical oscillation, and the other from the oxygen-containing species, such as H2Oa. The formation and disappearance of H2Oa deeply depend on the electrode potential, and directly cause the chemical oscillation. The established model makes clear that the potential oscillation in methanol electrooxidation is the result of the feedback of electrode potential e on the reactions in- volving poison mediates CO and oxygen-containing species H2Oa. The numerical analysis of the estab- lished model successfully explains why the potential oscillation in methanol galvanostatic oxidation on a Pt electrode only happens in a certain range of current densities but not at any current density.展开更多
<div style="text-align:justify;"> The rate of Methanol synthesis over a Cu/ZnO/Al<sub><span style="font-family:Verdana;">2</span></sub><span style="font-family...<div style="text-align:justify;"> The rate of Methanol synthesis over a Cu/ZnO/Al<sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> (60:30:10) catalyst has been measured using CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> (10:90) and CO/CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> (10:10:80) streams at 433, 443, 453, 463 and 473 K. Using the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> stream, it requires 12 × 10</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> s to achieve </span><span style="font-family:Verdana;">steady</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">state</span><span "=""><span style="font-family:Verdana;"> performance;this time reduces to 5.4 × 10</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> s on increasing the temperature to 463 K. Using the CO/CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> stream, steady State performance is not achieved even after 14.4 × 10</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> s at 433 K but is achieved after 9 × 10</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> s at 463 K. Significant deviations from </span><span style="font-family:Verdana;">steady state</span><span style="font-family:Verdana;"> behavior (~40% of </span><span style="font-family:Verdana;">steady state</span><span style="font-family:Verdana;">) are observed only at 453 K and only using the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> feed when gas chromatography (GC) is the analysis system. When the reactor output is connected directly into a flame ionization detector (FID), </span><span style="font-family:Verdana;">oscillation</span> </span><span style="font-family:Verdana;">is</span><span "=""><span style="font-family:Verdana;"> observed at all temperatures studied using a CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> stream. Injection of CO into the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> stream, which is synthesizing methanol at 473 K, produces a sharply spiked increase in the rate of methanol synthesis followed by an oscillatory relaxation to </span><span style="font-family:Verdana;">steady state</span><span style="font-family:Verdana;"> behavior. At 433 and 443</span><span style="font-family:Verdana;"> K</span></span><span style="font-family:Verdana;">,</span><span "=""> </span><span "=""><span style="font-family:Verdana;">the injection of CO into the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> stream again </span><span style="font-family:Verdana;">produce</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the sharply spiked increase in the rater of methanol synthesis, which returns to the baseline value without oscillations.</span> </div>展开更多
基金Financial support by the National Natural Science Foundation of China (20073012) is gratefully acknowledged.
文摘Potential oscillation during the electrocatalytic oxidation of methanol can be modulated by the specific adsorption of Cl- on the platinum electrode, which suppresses the electrocatalytic oxidation of methanol, and makes the cross cycle in the cyclic voltammogram become smaller and finally disappear with the increase of Cl- concentration. The method is also applicable to the electrocatalytic oxidation of other small organic molecules.
基金Supported by the National Natural Science Foundation of China (Grant No. 20676156)the Chinese Ministry of Education (Grant No. 307021)+1 种基金China National 863 Program (Grant Nos. 2006AA11A141 and 2007AA05Z124)Chongqing Sci&Tech Key Project (Grant No. CSTC2007AB6012)
文摘Based on dual path reaction mechanism, a nonlinear dynamics model reflecting the potential oscilla- tion in electrooxidation of methanol on Pt surface was established. The model involves three variables, the electrode potential (e), the surface coverage of carbon monoxide (x), and adsorbed water (y). The chemical reactions and electrode potential were coupled together through the rate constant ki = exp(ai(e ? ei)). The analysis to the established model discloses the following: there are different kinetics be- haviors in different ranges of current densities. The chemical oscillation in methanol electrooxidation is assigned to two aspects, one from poison mediate CO of methanol electrooxidation, which is the in- duced factor of the chemical oscillation, and the other from the oxygen-containing species, such as H2Oa. The formation and disappearance of H2Oa deeply depend on the electrode potential, and directly cause the chemical oscillation. The established model makes clear that the potential oscillation in methanol electrooxidation is the result of the feedback of electrode potential e on the reactions in- volving poison mediates CO and oxygen-containing species H2Oa. The numerical analysis of the estab- lished model successfully explains why the potential oscillation in methanol galvanostatic oxidation on a Pt electrode only happens in a certain range of current densities but not at any current density.
文摘<div style="text-align:justify;"> The rate of Methanol synthesis over a Cu/ZnO/Al<sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> (60:30:10) catalyst has been measured using CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> (10:90) and CO/CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> (10:10:80) streams at 433, 443, 453, 463 and 473 K. Using the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> stream, it requires 12 × 10</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> s to achieve </span><span style="font-family:Verdana;">steady</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">state</span><span "=""><span style="font-family:Verdana;"> performance;this time reduces to 5.4 × 10</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> s on increasing the temperature to 463 K. Using the CO/CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> stream, steady State performance is not achieved even after 14.4 × 10</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> s at 433 K but is achieved after 9 × 10</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> s at 463 K. Significant deviations from </span><span style="font-family:Verdana;">steady state</span><span style="font-family:Verdana;"> behavior (~40% of </span><span style="font-family:Verdana;">steady state</span><span style="font-family:Verdana;">) are observed only at 453 K and only using the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> feed when gas chromatography (GC) is the analysis system. When the reactor output is connected directly into a flame ionization detector (FID), </span><span style="font-family:Verdana;">oscillation</span> </span><span style="font-family:Verdana;">is</span><span "=""><span style="font-family:Verdana;"> observed at all temperatures studied using a CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> stream. Injection of CO into the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> stream, which is synthesizing methanol at 473 K, produces a sharply spiked increase in the rate of methanol synthesis followed by an oscillatory relaxation to </span><span style="font-family:Verdana;">steady state</span><span style="font-family:Verdana;"> behavior. At 433 and 443</span><span style="font-family:Verdana;"> K</span></span><span style="font-family:Verdana;">,</span><span "=""> </span><span "=""><span style="font-family:Verdana;">the injection of CO into the CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> stream again </span><span style="font-family:Verdana;">produce</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the sharply spiked increase in the rater of methanol synthesis, which returns to the baseline value without oscillations.</span> </div>