This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node...This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.展开更多
There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly aff...There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.展开更多
To analyze the effect of different lowland rice varieties and different cooking methods on physical and chemical characteristics of cooked rice. A factorial randomized block design with two factors was used and each c...To analyze the effect of different lowland rice varieties and different cooking methods on physical and chemical characteristics of cooked rice. A factorial randomized block design with two factors was used and each combination of the factors was repeated three times. The first factor was rice variety(Ciherang and Ciliwung) and the second factor was the cooking method(stovetop, boiling and steaming, and rice cooker). Results showed that Ciherang and Ciliwung varieties were classified into slender grain rice type with yellowred color. The amylose content of Ciherang was classified as moderate, while the amylose content of Ciliwung classified as low. The most abundant amino acid contained in Ciherang and Ciliwung varieties was glutamic acid. Statistical analysis showed that cooking method had significant effects on texture, lightness, chroma, hue and moisture content of cooked rice. Rice cooked with liwet method had the lowest texture value, lowest lightness value, highest chroma value, and highest moisture content.展开更多
The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE s...The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.展开更多
Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the ...Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.展开更多
Root of characteristic equation for cylindrical Bessel equation eigenvalue problems on general interval is of great real physical importance at engineering and physical. First, the characteristic equation of cylindric...Root of characteristic equation for cylindrical Bessel equation eigenvalue problems on general interval is of great real physical importance at engineering and physical. First, the characteristic equation of cylindrical Bessel equation eigenvalue problem on general interval is given, second, by mean of compared method, we obtaining roots of characteristic equation with Matlab program is discussed.展开更多
In Guizhou Province,karst areas and springs are widely distributed,and hydrogeological conditions are complex in mining areas. Usually there are many hydrogeological units in a mining area,and the hydrogeological cond...In Guizhou Province,karst areas and springs are widely distributed,and hydrogeological conditions are complex in mining areas. Usually there are many hydrogeological units in a mining area,and the hydrogeological conditions are very different from that of most northern mining areas in China. In view of the uniqueness of mining areas in Guizhou Province,taking Zhijin area of Zhina mining area as an example,the planning characteristics of mining areas and characteristics of groundwater environment in Guizhou Province were analyzed firstly,and then the characteristics and key considerations of groundwater environmental impact assessment in mining areas of Guizhou Province were studied. For example,when the height of water flowing fractured zone,impact radius,and the amount of water resources affected are calculated,it is necessary to analyze and evaluate as many typical mines as possible. The impact on springs as the sources of residents' drinking water should be analyzed one by one.展开更多
Two-year-old Medicago sativa at budding initial stage was taken as research materials.Five methods were used to make green hay,including flatting stems + spraying 2.5% K2CO3,flatting stems,sun curing,drying in shade ...Two-year-old Medicago sativa at budding initial stage was taken as research materials.Five methods were used to make green hay,including flatting stems + spraying 2.5% K2CO3,flatting stems,sun curing,drying in shade and drying under 105 ℃ condition(CK).Besides,effects of different green hay making methods on dry characteristics and nutritional quality of M.sativa green hay were studied,and a comprehensive evaluation of M.sativa green hays was conducted.Results showed that,except CK,the drying rates in other making methods were all fast at first,and then slow down.Both of drying under 105 ℃ condition and flatting stems + spraying K2CO3 could speed up drying rate and reduce nutritional losses of green hay.Sun curing could also speed up drying rate,but it could not maintain the quality of green hay.The results of Grey Relational Analysis on five green hay making methods indicated that CK had the best comprehensive performance,followed by green hays made by flatting stems + spraying K2CO3.Therefore,flatting stems + spraying K2CO3 was a quick and easy method to make green hay,and it was worth to be recommended in practical production.展开更多
This article describes the geographical indication characteristics of Zhuanbu strawberry,a special product of Yinan County,Shandong Province,a national geographical indication agricultural product,including specific p...This article describes the geographical indication characteristics of Zhuanbu strawberry,a special product of Yinan County,Shandong Province,a national geographical indication agricultural product,including specific production area,unique production environment,rich human history and unique product quality,summarizes the unique production method of Zhuanbu strawberry from selection of production area and varieties,production management,timely harvesting and other aspects,and puts forward corresponding industrial development measures,in order to maintain the brand of Zhuanbu strawberry to the greatest extent and further improve the brand awareness and market competitiveness of Zhuanbu strawberry.展开更多
A cylindrical gates model of the static induction transistor is proposed and mirror method is used to calculate the distribution of electric potential.The results show that:the potential barrier is directly determined...A cylindrical gates model of the static induction transistor is proposed and mirror method is used to calculate the distribution of electric potential.The results show that:the potential barrier is directly determined by channel over pinched-off factor;gate efficiency η decreases as the gate dimension α 2 and shifted gate voltage are minished,and what differs from the first-order theory is that η will tend to zero at the shifted gate voltage tends to zero when V D=0;at low current,the voltage amplification factor μ increases as the drain current rising.When the drain current reaches certain degree,the voltage amplification factor keeps almost constant.In the end,an analytical description of SIT’s characteristic suited to both triode-like and mixed I-V characteristics are obtained.The predicted I-V curves are consistent perfectly with the reported experimental ones.展开更多
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th...The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.展开更多
The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann...The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.展开更多
In order to research the influence of coal-rock mass morphology of mining space on the flow law of gas,the laboratory physical model and numerical computation methods were adopted to simulate coal mining activities.Th...In order to research the influence of coal-rock mass morphology of mining space on the flow law of gas,the laboratory physical model and numerical computation methods were adopted to simulate coal mining activities.The simulation results indicate that,after coal seam mining,the loose rock accumulation body of free caving,ordered rock arrangement body of plate damage rich in longitudinal and transverse fractures and horizontal fissure body formed by rock mass deformation imbalance are formed from bottom to top in the mining space.For these three types of accumulation bodies,there are essential differences in the accumulation state,rock size and gas breakover characteristics.According to this,the coal-rock mass in the mining space is classified into gas turbulence channel area,gas transitional flow channel area and gas seepage channel area.In the turbulence channel area,the gas is distributed transversely and longitudinally and gas diffuses in the form of convection with Reynolds number R_e more than100;in the transitional flow channel area,one-way or two-way gas channels are crisscross and gas is of transitional flow regime with R,.between 10 and 100.In the seepage channel area,there are a few vertical gas channels with R,.less than 10.In this paper,the researches on the gas orientation method in different partitions were further carried out,gas orientation methods of low-level pipe burying,middle-level interception and high-level extraction were determined and an on-site industrial test was conducted,achieving the effective diversion of gas and verifying the reasonableness of gas channel partition.展开更多
Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenome...Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature.展开更多
The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the con...The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature.展开更多
By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine struc...By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine structure based on full- scale and actual measurement of prototype is proposed. On the basis of short-term field measurement results of structural response, research is carried out on the fatigue analysis of hinge joints at the upper part of the Soft Yoke single point Mooring System (SYMS) by simultaneously monitoring the environmental load and considering the design criteria of offshore structure. Through analysis of finite element modeling, the time-histories of typical stress response are obtained, and then the assessment of fatigue damage at key hinge joints is conducted. The simulation results indicate that the proposed method can accurately analyze the fatigue damage of offshore engineering structure caused by the effect of wave load. The present analytical method of fatigue characteristics can be extended on other offshore engineering structures subjected to meta-ocean load.展开更多
This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using prec...This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.展开更多
Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this wo...Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this work, random meso-structure of outwash deposits was constructed by the technique of computer random simulation based on characteristics of its meso-structure in the statistical sense and some simplifications, and a series of large direct shear tests on numerical samples of outwash deposits with stone contents of 15%, 30%, 45% and 60% were conducted using the discrete element method to further investigate its mechanical characteristics and failure mechanism under external load. The results show that the deformation characteristics and shear strength of outwash deposits are to some extent improved with the increase of stone content, and the shear stress–shear displacement curves of outwash deposits show great differences at the post-peak stage due to the random spatial distribution and content of stones. From the mesoscopic view, normal directions of contacts between "soil" and "stone" particles undergo apparent deflection as the shear displacement continues during the shearing process, accompanying redistribution of the magnitude of contact forces during the shearing process. For outwash deposits, the shear zone formed after shear failure is an irregular stripe due to the movements of stones near the shear zone, and it expands gradually with the increase of stone content. In addition, there is an approximately linear relation between the mean increment of internal friction angle and the stone content lying between 30% and 60%, and a concave nonlinear relation between the mean increment of cohesion and stone content, which are in good agreement with the existing research results.展开更多
The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,he...The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction.展开更多
A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented....A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented. Considering the fuzzy randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices axe constructed based on the fuzzy factor method and random factor method; from the Rayleigh's quotient of structural vibration, the structural fuzzy random dynamic characteristic is obtained by means of the interval arithmetic; the fuzzy numeric characteristics of dynamic characteristic axe then derived by using the random variable's moment function method and algebra synthesis method. Two examples axe used to illustrate the validity and rationality of the method given. The advantage of this method is that the effect of the fuzzy randomness of one of the structural parameters on the fuzzy randomness of the dynamic characteristic can be reflected expediently and objectively.展开更多
基金Anhui Provincial Natural Science Foundation(2308085QD124)Anhui Province University Natural Science Research Project(GrantNo.2023AH050918)The University Outstanding Youth Talent Support Program of Anhui Province.
文摘This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.
基金financially supported by the Major Science and Technology Project of MOT,China(Grant Nos.2013 328 224 070 and 2014 328 224 040)the National Natural Science Foundation of China(Grant No.51409134)
文摘There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.
基金supported by International Rice Research Institute (IRRI)Research Center of Sub-Optimal Land (PUR-PLSO) Universitas Sriwijaya
文摘To analyze the effect of different lowland rice varieties and different cooking methods on physical and chemical characteristics of cooked rice. A factorial randomized block design with two factors was used and each combination of the factors was repeated three times. The first factor was rice variety(Ciherang and Ciliwung) and the second factor was the cooking method(stovetop, boiling and steaming, and rice cooker). Results showed that Ciherang and Ciliwung varieties were classified into slender grain rice type with yellowred color. The amylose content of Ciherang was classified as moderate, while the amylose content of Ciliwung classified as low. The most abundant amino acid contained in Ciherang and Ciliwung varieties was glutamic acid. Statistical analysis showed that cooking method had significant effects on texture, lightness, chroma, hue and moisture content of cooked rice. Rice cooked with liwet method had the lowest texture value, lowest lightness value, highest chroma value, and highest moisture content.
文摘The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.
文摘Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.
文摘Root of characteristic equation for cylindrical Bessel equation eigenvalue problems on general interval is of great real physical importance at engineering and physical. First, the characteristic equation of cylindrical Bessel equation eigenvalue problem on general interval is given, second, by mean of compared method, we obtaining roots of characteristic equation with Matlab program is discussed.
文摘In Guizhou Province,karst areas and springs are widely distributed,and hydrogeological conditions are complex in mining areas. Usually there are many hydrogeological units in a mining area,and the hydrogeological conditions are very different from that of most northern mining areas in China. In view of the uniqueness of mining areas in Guizhou Province,taking Zhijin area of Zhina mining area as an example,the planning characteristics of mining areas and characteristics of groundwater environment in Guizhou Province were analyzed firstly,and then the characteristics and key considerations of groundwater environmental impact assessment in mining areas of Guizhou Province were studied. For example,when the height of water flowing fractured zone,impact radius,and the amount of water resources affected are calculated,it is necessary to analyze and evaluate as many typical mines as possible. The impact on springs as the sources of residents' drinking water should be analyzed one by one.
基金Supported by Tibet High Quality Freeze Resistance Bluegrass Varieties Breeding(Z2013C02N02_02)National Wool Sheep Grazing Grassland Ecological Position of Scientific Research Project(CARS-40-09B)
文摘Two-year-old Medicago sativa at budding initial stage was taken as research materials.Five methods were used to make green hay,including flatting stems + spraying 2.5% K2CO3,flatting stems,sun curing,drying in shade and drying under 105 ℃ condition(CK).Besides,effects of different green hay making methods on dry characteristics and nutritional quality of M.sativa green hay were studied,and a comprehensive evaluation of M.sativa green hays was conducted.Results showed that,except CK,the drying rates in other making methods were all fast at first,and then slow down.Both of drying under 105 ℃ condition and flatting stems + spraying K2CO3 could speed up drying rate and reduce nutritional losses of green hay.Sun curing could also speed up drying rate,but it could not maintain the quality of green hay.The results of Grey Relational Analysis on five green hay making methods indicated that CK had the best comprehensive performance,followed by green hays made by flatting stems + spraying K2CO3.Therefore,flatting stems + spraying K2CO3 was a quick and easy method to make green hay,and it was worth to be recommended in practical production.
基金Shandong Provincial Modern Agricultural Industrial Technology System:Project for Construction of Vegetation Innovative Team(SDAIT-05-18).
文摘This article describes the geographical indication characteristics of Zhuanbu strawberry,a special product of Yinan County,Shandong Province,a national geographical indication agricultural product,including specific production area,unique production environment,rich human history and unique product quality,summarizes the unique production method of Zhuanbu strawberry from selection of production area and varieties,production management,timely harvesting and other aspects,and puts forward corresponding industrial development measures,in order to maintain the brand of Zhuanbu strawberry to the greatest extent and further improve the brand awareness and market competitiveness of Zhuanbu strawberry.
文摘A cylindrical gates model of the static induction transistor is proposed and mirror method is used to calculate the distribution of electric potential.The results show that:the potential barrier is directly determined by channel over pinched-off factor;gate efficiency η decreases as the gate dimension α 2 and shifted gate voltage are minished,and what differs from the first-order theory is that η will tend to zero at the shifted gate voltage tends to zero when V D=0;at low current,the voltage amplification factor μ increases as the drain current rising.When the drain current reaches certain degree,the voltage amplification factor keeps almost constant.In the end,an analytical description of SIT’s characteristic suited to both triode-like and mixed I-V characteristics are obtained.The predicted I-V curves are consistent perfectly with the reported experimental ones.
基金This work was supported by the National Key R&D Program‘Transportation Infrastructure’project(No.2022YFB2603400).
文摘The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.
基金supported by the National Natural Science Foundation of China under Grants Nos.52165013 and 51565021.
文摘The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.
基金Financial supports for this work,provided by the State Key Basic Research Program of China(No.2011CB201204)
文摘In order to research the influence of coal-rock mass morphology of mining space on the flow law of gas,the laboratory physical model and numerical computation methods were adopted to simulate coal mining activities.The simulation results indicate that,after coal seam mining,the loose rock accumulation body of free caving,ordered rock arrangement body of plate damage rich in longitudinal and transverse fractures and horizontal fissure body formed by rock mass deformation imbalance are formed from bottom to top in the mining space.For these three types of accumulation bodies,there are essential differences in the accumulation state,rock size and gas breakover characteristics.According to this,the coal-rock mass in the mining space is classified into gas turbulence channel area,gas transitional flow channel area and gas seepage channel area.In the turbulence channel area,the gas is distributed transversely and longitudinally and gas diffuses in the form of convection with Reynolds number R_e more than100;in the transitional flow channel area,one-way or two-way gas channels are crisscross and gas is of transitional flow regime with R,.between 10 and 100.In the seepage channel area,there are a few vertical gas channels with R,.less than 10.In this paper,the researches on the gas orientation method in different partitions were further carried out,gas orientation methods of low-level pipe burying,middle-level interception and high-level extraction were determined and an on-site industrial test was conducted,achieving the effective diversion of gas and verifying the reasonableness of gas channel partition.
文摘Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(Grants 20113219110025,20133219110037)the National Natural Science Foundation of China(Grants 11102089,61304137)the Program for New Century Excellent Talents in University(NCET-10-0075)
文摘The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature.
基金financially supported by the National Natural Science Foundation of China(Grant No.15572072)the National Key Basic Research and Development Program(Grant Nos.2014CB046803 and 2016ZX05028-002-005)
文摘By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine structure based on full- scale and actual measurement of prototype is proposed. On the basis of short-term field measurement results of structural response, research is carried out on the fatigue analysis of hinge joints at the upper part of the Soft Yoke single point Mooring System (SYMS) by simultaneously monitoring the environmental load and considering the design criteria of offshore structure. Through analysis of finite element modeling, the time-histories of typical stress response are obtained, and then the assessment of fatigue damage at key hinge joints is conducted. The simulation results indicate that the proposed method can accurately analyze the fatigue damage of offshore engineering structure caused by the effect of wave load. The present analytical method of fatigue characteristics can be extended on other offshore engineering structures subjected to meta-ocean load.
文摘This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.
基金Project(2011CB013504) supported by the National Basic Research Program(973 Program)of ChinaProject(2013BAB06B01) supported by the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period+2 种基金Projects(11772118,51479049,51709282) supported by the National Natural Science Foundation of ChinaProject(2017M620838) supported by the Postdoctoral Science Foundation of ChinaProject(487237) supported by the Natural Sciences and Engineering Research Council of Canada
文摘Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this work, random meso-structure of outwash deposits was constructed by the technique of computer random simulation based on characteristics of its meso-structure in the statistical sense and some simplifications, and a series of large direct shear tests on numerical samples of outwash deposits with stone contents of 15%, 30%, 45% and 60% were conducted using the discrete element method to further investigate its mechanical characteristics and failure mechanism under external load. The results show that the deformation characteristics and shear strength of outwash deposits are to some extent improved with the increase of stone content, and the shear stress–shear displacement curves of outwash deposits show great differences at the post-peak stage due to the random spatial distribution and content of stones. From the mesoscopic view, normal directions of contacts between "soil" and "stone" particles undergo apparent deflection as the shear displacement continues during the shearing process, accompanying redistribution of the magnitude of contact forces during the shearing process. For outwash deposits, the shear zone formed after shear failure is an irregular stripe due to the movements of stones near the shear zone, and it expands gradually with the increase of stone content. In addition, there is an approximately linear relation between the mean increment of internal friction angle and the stone content lying between 30% and 60%, and a concave nonlinear relation between the mean increment of cohesion and stone content, which are in good agreement with the existing research results.
基金supported by the National Natural Science Foundation of China(No.51878127)the Fundamental Research Funds for the Central Universities(N180104013).
文摘The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction.
基金Project supported by the Natural Science Foundation of Shaanxi Province of China (No,A200214)
文摘A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented. Considering the fuzzy randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices axe constructed based on the fuzzy factor method and random factor method; from the Rayleigh's quotient of structural vibration, the structural fuzzy random dynamic characteristic is obtained by means of the interval arithmetic; the fuzzy numeric characteristics of dynamic characteristic axe then derived by using the random variable's moment function method and algebra synthesis method. Two examples axe used to illustrate the validity and rationality of the method given. The advantage of this method is that the effect of the fuzzy randomness of one of the structural parameters on the fuzzy randomness of the dynamic characteristic can be reflected expediently and objectively.