BACKGROUND Chromosomal Xq28 region duplication encompassing methyl-CpG-binding protein 2(MECP2)results in an identifiable phenotype and global developmental delay known as MECP2 duplication syndrome(MDS).This syndrome...BACKGROUND Chromosomal Xq28 region duplication encompassing methyl-CpG-binding protein 2(MECP2)results in an identifiable phenotype and global developmental delay known as MECP2 duplication syndrome(MDS).This syndrome has a wide range of clinical manifestations,including abnormalities in appearance,neurodevelopment,and gastrointestinal motility;recurrent infections;and spasticity.Here,we report a case of confirmed MDS at our institution.CASE SUMMARY A 12-year-old Chinese boy presented with intellectual disability(poor intellectual[reasoning,judgment,abstract thinking,and learning]and adaptive[lack of communication and absent social skills,apraxia,and ataxia]functioning)and dysmorphism.He had no history of recurrent infections,seizures,or bowel dysfunction,which is different from that in reported cases.Microarray comparative genomic hybridization confirmed MECP2 duplication in the patient and his mother who is a carrier.The duplication size was the same in the patient and his mother.No prophylactic antibiotic or anti-seizure therapy was offered to the patient or his mother before or after the consultation.CONCLUSION MDS is rare and has various clinical presentations.Clinical suspicion is critical in patients presenting with developmental delays.展开更多
Melatonin is a pleiotropic molecule that,after a short-term sleep deprivation,promotes the proliferation of neural stem cells in the adult hippocampus.However,this effect has not been observed in long-term sleep depri...Melatonin is a pleiotropic molecule that,after a short-term sleep deprivation,promotes the proliferation of neural stem cells in the adult hippocampus.However,this effect has not been observed in long-term sleep deprivation.The precise mechanism exerted by melatonin on the modulation of neural stem cells is not entirely elucidated,but evidence indicates that epigenetic regulators may be involved in this process.In this study,we investigated the effect of melatonin treatment during a 96-hour sleep deprivation and analyzed the expression of epigenetic modulators predicted by computational text mining and keyword clusterization.Our results showed that the administration of melatonin under sleep-deprived conditions increased the MECP2 expression and reduced the SIRT1 expression in the dentate gyrus.We observed that let-7 b,mir-132,and mir-124 were highly expressed in the dentate gyrus after melatonin administration,but they were not modified by sleep deprivation.In addition,we found more Sox2^+/5-bromo-2’-deoxyuridine(BrdU)^+cells in the subgranular zone of the sleep-deprived group treated with melatonin than in the untreated group.These findings may support the notion that melatonin modifies the expression of epigenetic mediators that,in turn,regulate the proliferation of neural progenitor cells in the adult dentate gyrus under long-term sleep-deprived conditions.All procedures performed in this study were approved by the Animal Ethics Committee of the University of Guadalajara,Mexico(approval No.CI-16610)on January 2,2016.展开更多
X-linked methyl-CpG binding protein 2 mutations can induce symptoms similar to those of Parkinson’s disease and dopamine metabolism disorders, but the specific role of X-linked methyl-CpG binding protein 2 in the pat...X-linked methyl-CpG binding protein 2 mutations can induce symptoms similar to those of Parkinson’s disease and dopamine metabolism disorders, but the specific role of X-linked methyl-CpG binding protein 2 in the pathogenesis of Parkinson’s disease remains unknown. In the present study, we used 6-hydroxydopamine-induced human neuroblastoma cell (SH-SY5Y cells) injury as a cell model of Parkinson’s disease. The 6-hydroxydopamine (50 μmol/L) treatment decreased protein levels for both X-linked methyl-CpG binding protein 2 and tyrosine hydroxylase in these cells, and led to cell death. However, overexpression of X-linked methyl-CpG binding protein 2 was able to ameliorate the effects of 6-hydroxydopamine, it reduced 6-hydroxydopamine-induced apoptosis, and increased the levels of tyrosine hydroxylase in SH-SY5Y cells. These findings suggesting that X-linked methyl-CpG binding protein 2 may be a potential therapeutic target for the treatment of Parkinson’s disease.展开更多
文摘BACKGROUND Chromosomal Xq28 region duplication encompassing methyl-CpG-binding protein 2(MECP2)results in an identifiable phenotype and global developmental delay known as MECP2 duplication syndrome(MDS).This syndrome has a wide range of clinical manifestations,including abnormalities in appearance,neurodevelopment,and gastrointestinal motility;recurrent infections;and spasticity.Here,we report a case of confirmed MDS at our institution.CASE SUMMARY A 12-year-old Chinese boy presented with intellectual disability(poor intellectual[reasoning,judgment,abstract thinking,and learning]and adaptive[lack of communication and absent social skills,apraxia,and ataxia]functioning)and dysmorphism.He had no history of recurrent infections,seizures,or bowel dysfunction,which is different from that in reported cases.Microarray comparative genomic hybridization confirmed MECP2 duplication in the patient and his mother who is a carrier.The duplication size was the same in the patient and his mother.No prophylactic antibiotic or anti-seizure therapy was offered to the patient or his mother before or after the consultation.CONCLUSION MDS is rare and has various clinical presentations.Clinical suspicion is critical in patients presenting with developmental delays.
基金supported by grants from Universidad de Guadalajara(PROSNI 2016,2017-8)to REGCpartially by grants from Consejo Nacional de Ciencia y Tecnologia(CONACyT No.PN 2016-01-465 and INFR-280414)+1 种基金PRODEP(213544)to OGPthe CONACyT Fellowship grant(374823)to AHG
文摘Melatonin is a pleiotropic molecule that,after a short-term sleep deprivation,promotes the proliferation of neural stem cells in the adult hippocampus.However,this effect has not been observed in long-term sleep deprivation.The precise mechanism exerted by melatonin on the modulation of neural stem cells is not entirely elucidated,but evidence indicates that epigenetic regulators may be involved in this process.In this study,we investigated the effect of melatonin treatment during a 96-hour sleep deprivation and analyzed the expression of epigenetic modulators predicted by computational text mining and keyword clusterization.Our results showed that the administration of melatonin under sleep-deprived conditions increased the MECP2 expression and reduced the SIRT1 expression in the dentate gyrus.We observed that let-7 b,mir-132,and mir-124 were highly expressed in the dentate gyrus after melatonin administration,but they were not modified by sleep deprivation.In addition,we found more Sox2^+/5-bromo-2’-deoxyuridine(BrdU)^+cells in the subgranular zone of the sleep-deprived group treated with melatonin than in the untreated group.These findings may support the notion that melatonin modifies the expression of epigenetic mediators that,in turn,regulate the proliferation of neural progenitor cells in the adult dentate gyrus under long-term sleep-deprived conditions.All procedures performed in this study were approved by the Animal Ethics Committee of the University of Guadalajara,Mexico(approval No.CI-16610)on January 2,2016.
基金sponsored by the Ph.D.Independent Research Projects of Wuhan University,No.201130302020017a grant from the Science and Technology Bureau of Hubei Province,No.2011CDB511the National Natural Science Foundation of China,No.81170769
文摘X-linked methyl-CpG binding protein 2 mutations can induce symptoms similar to those of Parkinson’s disease and dopamine metabolism disorders, but the specific role of X-linked methyl-CpG binding protein 2 in the pathogenesis of Parkinson’s disease remains unknown. In the present study, we used 6-hydroxydopamine-induced human neuroblastoma cell (SH-SY5Y cells) injury as a cell model of Parkinson’s disease. The 6-hydroxydopamine (50 μmol/L) treatment decreased protein levels for both X-linked methyl-CpG binding protein 2 and tyrosine hydroxylase in these cells, and led to cell death. However, overexpression of X-linked methyl-CpG binding protein 2 was able to ameliorate the effects of 6-hydroxydopamine, it reduced 6-hydroxydopamine-induced apoptosis, and increased the levels of tyrosine hydroxylase in SH-SY5Y cells. These findings suggesting that X-linked methyl-CpG binding protein 2 may be a potential therapeutic target for the treatment of Parkinson’s disease.