期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
5-Fluorouracil dose escalation generated desensitized colorectal cancer cells with reduced expression of protein methyltransferases and no epithelial-to-mesenchymal transition potential
1
作者 KIMBERLY FENECH ISAAC MICALLEF BYRON BARON 《Oncology Research》 SCIE 2024年第6期1047-1061,共15页
Background:Colorectal cancer(CRC)is one of the most frequently diagnosed cancers.In many cases,the poor prognosis of advanced CRC is associated with resistance to treatment with chemotherapeutic drugs such as 5-Fluoro... Background:Colorectal cancer(CRC)is one of the most frequently diagnosed cancers.In many cases,the poor prognosis of advanced CRC is associated with resistance to treatment with chemotherapeutic drugs such as 5-Fluorouracil(5-FU).The epithelial-to-mesenchymal transition(EMT)and dysregulation in protein methylation are two mechanisms associated with chemoresistance in many cancers.This study looked into the effect of 5-FU dose escalation on EMT and protein methylation in CRC.Materials and Methods:HCT-116,Caco-2,and DLD-1 CRC cell lines were exposed to dose escalation treatment of 5-FU.The motility and invasive potentials of the cells before and after treatment with 5-FU were investigated through wound healing and invasion assays.This was followed by aWestern blot which analyzed the protein expressions of the epithelial marker E-cadherin,mesenchymal marker vimentin,and the EMT transcription factor(EMTTF),the snail family transcriptional repressor 1(Snail)in the parental and desensitized cells.Western blotting was also conducted to study the protein expressions of the protein methyltransferases(PMTs),Euchromatic histone lysine methyltransferase 2(EHMT2/G9A),protein arginine methyltransferase(PRMT5),and SET domain containing 7/9(SETD7/9)along with the global lysine and arginine methylation profiles.Results:The dose escalation method generated 5-FU desensitized CRC cells with distinct morphological features and increased tolerance to high doses of 5-FU.The 5-FU desensitized cells experienced a decrease in migration and invasion when compared to the parental cells.This was reflected in the observed reduction in E-cadherin,vimentin,and Snail in the desensitized cell lines.Additionally,the protein expressions of EHMT2/G9A,PRMT5,and SETD7/9 also decreased in the desensitized cells and global protein lysine and arginine methylation became dysregulated with 5-FU treatment.Conclusion:This study showed that continuous,dose-escalation treatment of 5-FU in CRC cells generated 5-FU desensitized cancer cells that seemed to be less aggressive than parental cells. 展开更多
关键词 CHEMORESISTANCE Epithelial-to-mesenchymal transition Protein methylation Protein methyltransferases
下载PDF
Novel insights into histone lysine methyltransferases in cancer therapy:From epigenetic regulation to selective drugs
2
作者 Qili Liao Jie Yang +3 位作者 Shengfang Ge Peiwei Chai Jiayan Fan Renbing Jia 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第2期127-141,共15页
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chem... The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chemoresistance,invasiveness,and the immune microenvironment.Therapeutically,their promising effects are being evaluated in diversified preclinical and clinical trials,demonstrating encouraging outcomes in multiple malignancies.In this review,we have updated recent understandings of KMTs'functions and the development of their targeted inhibitors.First,we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis,tumor suppression,and immune regulation.In addition,we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors.In summary,we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers. 展开更多
关键词 Cancer EPIGENETICS Histone lysine methyltransferase Epigenetic inhibitors Combined therapeutic strategy Clinical application
下载PDF
DNA Methyltransferases Directed Anti-Cancerous Plant Medicine (Xanthomicrol and Galloyl) Based Molecular Docking and Dynamics Simulation 被引量:1
3
作者 Ehsan Heidari Soureshjani Ali Kazemi Babaheydari Elahe Saberi 《Computational Molecular Bioscience》 2015年第2期13-19,共7页
DNA methyltransferases 1 (DNMT1) has been looked as crucial targets against various types of cancers. MD simulations have advanced to a point where the atomic level information of biological macromolecule (protein or ... DNA methyltransferases 1 (DNMT1) has been looked as crucial targets against various types of cancers. MD simulations have advanced to a point where the atomic level information of biological macromolecule (protein or DNA-protein or protein-protein) can easily be advantageous to predict the functionality. In this study we utilize xanthomicrol and galloyl compounds to investigate potential compounds for the inhibition of DNMT1, and the results of these two compounds are compared with drug decitabine. Xanthomicrol and galloyl are found to dock successfully within the active site of DNMT1. A comparison of the inhibitory potential of screened xanthomicrol inhibited DNMT1 approximately is identical with those of their corresponding drugs, decitabine. The stability of the DNMT1 with the best docked xanthomicrol, were further analysed in molecular dynamics (MD) simulation and compared with those of the respective drugs namely decitabine which revealed stabilization of these complexes within 300 ns of simulation with better stability of DNMT1. 展开更多
关键词 DNA methyltransferases 1 DECITABINE MOLECULAR Dynamics Galloyl Xanthomicrol
下载PDF
Histone methyltransferases and demethylases:regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells 被引量:12
4
作者 Peng Deng Qian-Ming Chen +1 位作者 Christine Hong Cun-Yu Wang 《International Journal of Oral Science》 SCIE CAS CSCD 2015年第4期197-204,共8页
Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-ba... Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3-9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containine KMTs and JmiC domain-containinlz KDMs balance the osteogenic and adipogenic differentiation of MSCs. 展开更多
关键词 ADIPOGENESIS histone methylation histone lysine methyltransferase histone lysine demethylase mesenchymal stemcells osteogenesis
下载PDF
Potassium bisperoxo(1,10-phenanthroline) oxovanadate suppresses proliferation of hippocampal neuronal cell lines by increasing DNA methyltransferases 被引量:2
5
作者 Xiao-Li Tian Shu-Yuan Jiang +7 位作者 Xiao-Lu Zhang Jie Yang Jun-He Cui Xiao-Lei Liu Ke-Rui Gong Shao-Chun Yan Chun-Yang Zhang Guo Shao 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第5期826-833,共8页
Bisperoxo(1,10-phenanthroline) oxovanadate(BpV) can reportedly block the cell cycle. The present study examined whether BpV alters gene expression by affecting DNA methyltransferases(DNMTs), which would impact the cel... Bisperoxo(1,10-phenanthroline) oxovanadate(BpV) can reportedly block the cell cycle. The present study examined whether BpV alters gene expression by affecting DNA methyltransferases(DNMTs), which would impact the cell cycle. Immortalized mouse hippocampal neuronal precursor cells(HT_(22)) were treated with 0.3 or 3 μM BpV. Proliferation, morphology, and viability of HT_(22) cells were detected with an IncuCyte real-time video imaging system or inverted microscope and 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium, respectively. mRNA and protein expression of DNMTs and p21 in HT_(22) cells was detected by real-time polymerase chain reaction and immunoblotting, respectively. In addition, DNMT activity was measured with an enzyme-linked immunosorbent assay. Effects of BpV on the cell cycle were analyzed using flow cytometry. Results demonstrated that treatment with 0.3 μM BpV did not affect cell proliferation, morphology, or viability; however, treatment with 3 μM BpV decreased cell viability, increased expression of both DNMT3B mRNA and protein, and inhibited the proliferation of HT_(22) cells; and 3 μM BpV also blocked the cell cycle and increased expression of the regulatory factor p21 by increasing DNMT expression in mouse hippocampal neurons. 展开更多
关键词 nerve REGENERATION hippocampal neurons POTASSIUM bisperoxo(1 10-phenanthroline)oxovanadate DNA METHYLTRANSFERASE p21 HT22 CELL CELL cycle immunoblotting DNA methylation neural REGENERATION
下载PDF
Regulation of neuronal survival by DNA methyltransferases 被引量:1
6
作者 Judit Symmank Geraldine Zimmer 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第11期1768-1775,共8页
The limited regenerative capacity of neuronal cells requires tight orchestration of cell death and survival regulation in the context of longevity, age-associated diseases as well as during the development of the nerv... The limited regenerative capacity of neuronal cells requires tight orchestration of cell death and survival regulation in the context of longevity, age-associated diseases as well as during the development of the nervous system. Subordinate to genetic networks epigenetic mechanisms like DNA methylation and histone modifications are involved in the regulation of neuronal development, function and aging. DNA methylation by DNA methyltransferases (DNMTs), mostly correlated with gene silencing, is a dynamic and reversible process. In addition to their canonical actions performing cytosine methylation, DNMTs influence gene expression by interactions with histone modifying enzymes or complexes increasing the complexity of epigenetic transcriptional networks. DNMTs are expressed in neuronal progenitors, post-mi- totic as well as adult neurons. In this review, we discuss the role and mode of actions of DNMTs including downstream networks in the regulation of neuronal survival in the developing and aging nervous system and its relevance for associated disorders. 展开更多
关键词 DNA methyltransferase I cortical interneurons PAK6 neuronal aging neuropsychiatric diseases neurodevelopment neuronal death
下载PDF
The engagement of histone lysine methyltransferases with nucleosomes: structural basis, regulatory mechanisms, and therapeutic implications
7
作者 Yanjing Li Kexue Gei +2 位作者 Tingting Li Run Cai Yong Chen 《Protein & Cell》 SCIE CSCD 2023年第3期165-179,共15页
Histone lysine methyltransferases(HKMTs)deposit methyl groups onto lysine residues on histones and play important roles in regulating chromatin structure and gene expression.The structures and functions of HKMTs have ... Histone lysine methyltransferases(HKMTs)deposit methyl groups onto lysine residues on histones and play important roles in regulating chromatin structure and gene expression.The structures and functions of HKMTs have been extensively investigated in recent decades,significantly advancing our understanding of the dynamic regulation of histone methylation.Here,we review the recent progress in structural studies of representative HKMTs in complex with nucleosomes(H3K4,H3K27,H3K36,H3K79,and H4K20 methyltransferases),with emphasis on the molecular mechanisms of nucleosome recognition and trans-histone crosstalk by these HKMTs.These structural studies inform HKMTs'roles in tumorigenesis and provide the foundations for developing new therapeutic approachestargetingHKMTs incancers. 展开更多
关键词 NUCLEOSOME cryo-EM structures histone methyltransferases epigenetics histone methylation tumorigenesis
原文传递
Unraveling the relationship between histone methylation and nonalcoholic fatty liver disease
8
作者 Li Xu Yu-Hong Fan +1 位作者 Xiao-Jing Zhang Lan Bai 《World Journal of Hepatology》 2024年第5期703-715,共13页
Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,... Non-alcoholic fatty liver disease(NAFLD)poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits.Its complexity stems from genetic predisposition,environmental influences,and metabolic factors.Epigenetic processes govern various cellular functions such as transcription,chromatin structure,and cell division.In NAFLD,these epigenetic tendencies,especially the process of histone methylation,are intricately intertwined with fat accumulation in the liver.Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis.While early-stage NAFLD is reversible,its progression to severe stages becomes almost irreversible.Therefore,early detection and intervention in NAFLD are crucial,and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease. 展开更多
关键词 Non-alcoholic fatty liver disease MECHANISM Histone methylation methyltransferases Demethytrasferases Epigenetic modification ADIPOGENESIS
下载PDF
DNA methyltransferases in hematological malignancies 被引量:10
9
作者 Nguyet-Minh Hoang Lixin Rui 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2020年第7期361-372,共12页
DNA methyltransferases(DNMTs)are an evolutionarily conserved family of DNA methylases,transferring a methyl group onto the fifth carbon of a cytosine residue.The mammalian DNMT family includes three major members that... DNA methyltransferases(DNMTs)are an evolutionarily conserved family of DNA methylases,transferring a methyl group onto the fifth carbon of a cytosine residue.The mammalian DNMT family includes three major members that have functional methylation activities,termed DNMT1,DNMT3A,and DNMT3B.DNMT3A and DNMT3B are responsible for methylation establishment,whereas DNMT1 maintains methylation during DNA replication.Accumulating evidence demonstrates that regulation of DNAmethylation by DNMTs is critical for normal hematopoiesis.Aberrant DNA methylation due to DNMT dysregulation and mutations is known as an important molecular event of hematological malignancies,such as DNMT3A mutations in acute myeloid leukemia.In this reviewwe first describe the basic methylation mechanisms of DNMTs and their functions in lymphocyte maturation and differentiation,We then discuss the current understanding of DNA methylation heterogeneity in leukemia and lymphoma to highlight the importance of studying DNA methylation targets.We also discuss DNMT mu-tations and pathogenic roles in human leukemia and lymphoma.We summarize the recent understanding of how DNMTs interact with transcription factors or cofactors to repress the expression of tumor suppressor genes.Firnally.we highlight current clinical studies using DNMT inhibitors for the treatment of these hematological malignancies. 展开更多
关键词 DNA methyltransferases LEUKEMIA LYMPHOMA Tumor suppressor DNA methylation
原文传递
Facile synthesis of N-6 adenosine modified analogue toward S-adenosyl methionine derived probe for protein arginine methyltransferases 被引量:1
10
作者 Wei Hong James Dowden 《Chinese Chemical Letters》 SCIE CAS CSCD 2011年第12期1439-1442,共4页
Chemically modified cellular co-factors that provide function,such as immobilization or incorporation of fluorescent dyes,are valuable probes of biological activity.A convenient route to obtain S-adenosyl methionine(... Chemically modified cellular co-factors that provide function,such as immobilization or incorporation of fluorescent dyes,are valuable probes of biological activity.A convenient route to obtain S-adenosyl methionine(AdoMet) analogues modified at N-6 adenosine to feature a linker terminating in azide functionality is described herein.Subsequent decoration of such AdoMet analogues with guanidinium terminated linkers leads to novel potential bisubstrate inhibitors for protein arginine methyltrans-ferases, PRMTs. 展开更多
关键词 Protein arginine methyltransferases S-Adenosyl methionine NUCLEOSIDES
原文传递
The interplay mechanism between IDH mutation, MGMT-promoter methylation, and PRMT5 activity in the progression of grade 4 astrocytoma: unraveling the complex triad theory
11
作者 MAHER KURDI ALAA ALKHOTANI +7 位作者 ABDULRAHMAN SABBAGH EYAD FAIZO AHMED I.LARY AHMED K.BAMAGA MAJID ALMANSOURI BADR HAFIZ THAMER ALSHARIF SALEH BAEESA 《Oncology Research》 SCIE 2024年第6期1037-1045,共9页
Background:The dysregulation of Isocitrate dehydrogenase(IDH)and the subsequent production of 2-Hydroxyglutrate(2HG)may alter the expression of epigenetic proteins in Grade 4 astrocytoma.The interplay mechanism betwee... Background:The dysregulation of Isocitrate dehydrogenase(IDH)and the subsequent production of 2-Hydroxyglutrate(2HG)may alter the expression of epigenetic proteins in Grade 4 astrocytoma.The interplay mechanism between IDH,O-6-methylguanine-DNA methyltransferase(MGMT)-promoter methylation,and protein methyltransferase proteins-5(PRMT5)activity,with tumor progression has never been described.Methods:A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors.Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis.Inter-cohort statistical significance was evaluated.Results:Both IDH-mutant WHO grade 4 astrocytomas(n=22,64.7%)and IDH-wildtype glioblastomas(n=12,35.3%)had upregulated PRMT5 gene expression except in one case.Out of the 22 IDH-mutant tumors,10(45.5%)tumors showed MGMT-promoter methylation and 12(54.5%)tumors had unmethylated MGMT.All IDH-wildtype tumors had unmethylated MGMT.There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma(p-value=0.006).Statistically significant differences in progression-free survival(PFS)were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide(TMZ)or TMZ plus other chemotherapies,regardless of their IDH or MGMT-methylation status(p-value=0.0014).Specifically,IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation,who received only TMZ,have exhibited longer PFS.Conclusions:The relationship between PRMT5,MGMT-promoter,and IDH is not tridirectional.However,accumulation of D2-hydroxyglutarate(2-HG),which partially activates 2-OG-dependent deoxygenase,may not affect their activities.In IDH-wildtype glioblastomas,the 2HG-2OG pathway is typically inactive,leading to PRMT5 upregulation.TMZ alone,compared to TMZ-plus,can increase PFS in upregulated PRMT5 tumors.Thus,using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression. 展开更多
关键词 Grade 4 astrocytoma GLIOBLASTOMA Isocitrate dehydrogenase(IDH) O-6-methylguanine-DNA methyltransferase(MGMT) Protein methyltransferase proteins-5(PRMT5) Progression-free survival(PFS)
下载PDF
Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants
12
作者 Sheng Ma Jacqueline Martin-Laffon +6 位作者 Morgane Mininno Oceane Gigarel Sabine Brugiere Olivier Bastien Marianne Tardift Stephane Ravanel Claude Alban 《Molecular Plant》 SCIE CAS CSCD 2016年第4期569-581,共13页
Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. G... Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sati- vum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former spe- cies. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro- Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. 展开更多
关键词 SET-domain protein methyltransferase site-directed mutagenesis chimeric enzyme methylation molecular evolution green lineage
原文传递
Targeting H3K36 methyltransferases NSDs:a promising strategy for tumor targeted therapy
13
作者 Xuerun Peng Qian Peng Lei Zhong 《Signal Transduction and Targeted Therapy》 SCIE CSCD 2021年第7期1933-1934,共2页
Recently,two studies published in Nature identified genetic changes in the nuclear receptor-binding SET domain protein(NSD)family of histone methyltransferases as oncogenic drivers in some malignancies,and revealed th... Recently,two studies published in Nature identified genetic changes in the nuclear receptor-binding SET domain protein(NSD)family of histone methyltransferases as oncogenic drivers in some malignancies,and revealed the nucleosome-based recognition and histone-modification mechanisms of NSD2 and NSD3. 展开更多
关键词 METHYLTRANSFERASE TARGETED THERAPY
原文传递
Reduced non-CpG methylation is a potential epigenetic target after spinal cord injury
14
作者 Zhourui Wu Chen Li +3 位作者 Ran Zhu Yiqiu Cao Thomas C.Chen Liming Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2489-2496,共8页
DNA methylation is a critical epigenetic regulator in the occurrence and development of diseases and is closely related to various functional responses in relation to spinal cord injury.To investigate the role of DNA ... DNA methylation is a critical epigenetic regulator in the occurrence and development of diseases and is closely related to various functional responses in relation to spinal cord injury.To investigate the role of DNA methylation in spinal cord injury,we constructed a library with reduced-representation bisulfite sequencing data obtained at various time points(day 0-42)after spinal cord injury in mice.Global DNA methylation levels,specifically non-CpG(CHG and CHH)methylation levels,decreased modestly following spinal cord injury.Stages post-spinal cord injury were classified as early(day 0-3),intermediate(day7-14),and late(day 28-42)based on similarity and hie rarchical cluste ring of global DNA methylation patterns.The non-CpG methylation level,which included CHG and CHH methylation levels,was markedly reduced despite accounting for a minor proportion of total methylation abundance.At multiple genomic sites,including the 5’untranslated regions,promoter,exon,intron,and 3’untranslated regions,the non-CpG methylation level was markedly decreased following spinal cord injury,whereas the CpG methylation level remained unchanged at these locations.Approximately one-half of the differentially methylated regions were located in intergenic areas;the other differentially methylated regions in both CpG and non-CpG regions were cluste red in intron regions,where the DNA methylation level was highest.The function of genes associated with differentially methylated regions in promoter regions was also investigated.From Gene Ontology analysis results,DNA methylation was implicated in a number of essential functional responses to spinal cord injury,including neuronal synaptic connection creation and axon regeneration.Notably,neither CpG methylation nor non-CpG methylation was implicated in the functional response of glial or inflammatory cells.In summary,our work elucidated the dynamic pattern of DNA methylation in the spinal co rd following injury and identified reduced nonCpG methylation as an epigenetic target after spinal cord injury in mice. 展开更多
关键词 CpG methylation cytosine fraction differentially methylated regions DNA methylation DNA methyltransferases dynamic signatures Gene Ontology non-CpG methylation single-cell RNA-Seq spinal cord injury
下载PDF
Inhibition of histone methyltransferase PRMT5 attenuates cisplatininduced hearing loss through the PI3K/Akt-mediated mitochondrial apoptotic pathway
15
作者 Zhiwei Zheng Benyu Nan +5 位作者 Chang Liu Dongmei Tang Wen Li Liping Zhao Guohui Nie Yingzi He 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第6期590-602,共13页
This study aimed to evaluate the therapeutic potential of inhibiting protein arginine methyltransferase 5(PRMT5)in cisplatin-induced hearing loss.The effects of PRMT5 inhibition on cisplatin-induced auditory injury we... This study aimed to evaluate the therapeutic potential of inhibiting protein arginine methyltransferase 5(PRMT5)in cisplatin-induced hearing loss.The effects of PRMT5 inhibition on cisplatin-induced auditory injury were determined using immunohistochemistry,apoptosis assays,and auditory brainstem response.The mechanism of PRMT5 inhibition on hair cell survival was assessed using RNA-seq and Cleavage Under Targets and Tagment-quantitative polymerase chain reaction(CUT&Tag-qPCR)analyses in the HEI-OC1 cell line.Pharmacological inhibition of PRMT5 significantly alleviated cisplatin-induced damage to hair cells and spiral ganglion neurons in the cochlea and decreased apoptosis by protecting mitochondrial function and preventing the accumulation of reactive oxygen species.CUT&Tag-qPCR analysis demonstrated that inhibition of PRMT5 in HEI-OC1 cells reduced the accumulation of H4R3me2s/H3R8me2s marks at the promoter region of the Pik3ca gene,thus activating the expression of Pik3ca.These findings suggest that PRMT5 inhibitors have strong potential as agents against cisplatininduced ototoxicity and can lay the foundation for further research on treatment strategies of hearing loss. 展开更多
关键词 Protein arginine methyltransferase 5 (PRMT5) LLY-283 CISPLATIN Hearing loss Hair cell Spiral ganglion neuron
下载PDF
Chidamide,Decitabine,Cytarabine,Aclarubicin,and Granulocyte Colony-stimulating Factor Therapy for Patients with Relapsed/Refractory Acute Myeloid Leukemia:A Retrospective Study from a Single-Center
16
作者 Fan-cong KONG Ling QI +3 位作者 Yu-lan ZHOU Min YU Wen-feng HUANG Fei LI 《Current Medical Science》 SCIE CAS 2023年第6期1151-1161,共11页
Objective Preclinical evidence and clinical trials have suggested synergistic effects of epigenetic modifiers in combination with cytotoxic agents for the treatment of leukemia.However,their efficacy in patients with ... Objective Preclinical evidence and clinical trials have suggested synergistic effects of epigenetic modifiers in combination with cytotoxic agents for the treatment of leukemia.However,their efficacy in patients with relapsed/refractory acute myeloid leukemia(R/R AML)remains unclear.Methods Clinical data of R/R AML patients who received a CDCAG regimen(chidamide,decitabine,cytarabine,aclarubicin,and granulocyte colony-stimulating factor)from July 1,2018 to October 31,2021 at our center were retrospectively assessed,and the safety and efficacy of the CDCAG regimen were evaluated.Patients were followed up until November 30,2021,with a median follow-up of 21.6 months(95%CI:10.0–33.2 months).Results A total of 67 patients were enrolled.Two patients died within 3 weeks after the initiation,and therefore only 65 patients underwent the assement for clinical response and survival.It was found that 56.9%patients achieved complete remission with a median overall survival(OS)of 9.6 months.The median OS of responders was 25.9 months,while that of non-responders was 5.0 months(P<0.0001).Patients with gene mutations had a superior overall response rate(ORR)(80.4%vs.45.5%,P=0.043)compared to those without gene mutations.The presence of DNA methyltransferase 3 A(DNMT3A),ten-eleven translocation-2(TET2),and isocitrate dehydrogenase 1/2(IDH1/2)mutations did not affect the response rate(88.2%vs.68.9%,P=0.220)and reflected a better OS(not attained vs.9.0 months,P=0.05).The most common non-hematologic adverse events were pulmonary infection(73.1%),followed by febrile neutropenia(23.9%)and sepsis(19.4%).Conclusions The CDCAG regimen was effective and well-tolerated in R/R AML patients,increasing the potential for allogeneic hematopoietic stem cell transplantation.Moreover,patients with DNMT3A,TET2,and IDH1/2 mutations might benefit from this regimen. 展开更多
关键词 relapsed/refractory acute myeloid leukemia histone deacetylase inhibitor DNA methyltransferase inhibitor salvage therapy
下载PDF
Protein arginine methyltransferase 6 is a novel substrate of protein arginine methyltransferase 1
17
作者 Meng-Tong Cao You Feng Y George Zheng 《World Journal of Biological Chemistry》 2023年第5期84-98,共15页
BACKGROUND Post-translational modifications play key roles in various biological processes.Protein arginine methyltransferases(PRMTs)transfer the methyl group to specific arginine residues.Both PRMT1 and PRMT6 have em... BACKGROUND Post-translational modifications play key roles in various biological processes.Protein arginine methyltransferases(PRMTs)transfer the methyl group to specific arginine residues.Both PRMT1 and PRMT6 have emerges as crucial factors in the development and progression of multiple cancer types.We posit that PRMT1 and PRMT6 might interplay directly or in-directly in multiple ways accounting for shared disease phenotypes.AIM To investigate the mechanism of the interaction between PRMT1 and PRMT6.METHODS Gel electrophoresis autoradiography was performed to test the methyltranferase activity of PRMTs and characterize the kinetics parameters of PRMTs.Liquid chromatography-tandem mass spectrometryanalysis was performed to detect the PRMT6 methylation sites.RESULTS In this study we investigated the interaction between PRMT1 and PRMT6,and PRMT6 was shown to be a novel substrate of PRMT1.We identified specific arginine residues of PRMT6 that are methylated by PRMT1,with R106 being the major methylation site.Combined biochemical and cellular data showed that PRMT1 downregulates the enzymatic activity of PRMT6 in histone H3 methylation.CONCLUSION PRMT6 is methylated by PRMT1 and R106 is a major methylation site induced by PRMT1.PRMT1 methylation suppresses the activity of PRMT6. 展开更多
关键词 Posttranslational modification Arginine methylation Protein arginine methyltransferase 1 Protein arginine methyltransferase 6 CROSS-TALK Protein-protein interaction
下载PDF
蛋白质精氨酸甲基转移酶1调控DNA损伤修复和细胞凋亡 被引量:2
18
作者 张一超 吴韦韦 +2 位作者 李奥 刘宝华 庞秋香 《海洋科学》 CAS 北大核心 2020年第3期146-152,共7页
蛋白质精氨酸甲基转移酶1 (protein arginine methyltransferases 1, PRMT1)是PRMT家族中的重要一员,属于Ⅰ型PRMTs,细胞内超过85%的蛋白质精氨酸的甲基化由其催化。PRMT1通过调节底物的甲基化水平,从而调控蛋白的功能及蛋白参与的细胞... 蛋白质精氨酸甲基转移酶1 (protein arginine methyltransferases 1, PRMT1)是PRMT家族中的重要一员,属于Ⅰ型PRMTs,细胞内超过85%的蛋白质精氨酸的甲基化由其催化。PRMT1通过调节底物的甲基化水平,从而调控蛋白的功能及蛋白参与的细胞活动和生理过程,包括细胞信号转导,DNA损伤修复,转录调控,RNA代谢,蛋白质相互作用等。本文着重讨论PRMT1的结构、底物及其在DNA损伤修复和细胞凋亡中的功能。 展开更多
关键词 PRMT1(protein ARGININE methyltransferases 1) 甲基化 DNA损伤修复 细胞凋亡
下载PDF
Thiopurine S-methyltransferase polymorphisms and thiopurine toxicity in treatment of inflammatory bowel disease 被引量:10
19
作者 Xian-Wen Dong Qing Zheng +2 位作者 Ming-Ming Zhu Jing-Lu Tong Zhi-Hua Ran 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第25期3187-3195,共9页
AIM: To evaluate the relationship between thiopu- rine S-methyltransferase (TPMT) polymorphisms and thiopurine-induced adverse drug reactions (ADRs) in inflammatory bowel disease (IBD). METHODS: Eligible articles that... AIM: To evaluate the relationship between thiopu- rine S-methyltransferase (TPMT) polymorphisms and thiopurine-induced adverse drug reactions (ADRs) in inflammatory bowel disease (IBD). METHODS: Eligible articles that compared the frequency of TPMT polymorphisms among thiopurine-tolerant and-intolerant adult IBD patients were included. Statistical analysis was performed with Review Manager 5.0. Sub-analysis/sensitivity analysis was also performed. RESULTS: Nine studies that investigated a total of 1309 participants met our inclusion criteria. The inci- dence of TPMT gene mutation was increased 2.93-fold (95% CI: 1.68-5.09, P = 0.0001) and 5.93-fold (95% CI: 2.96-11.88, P < 0.00001), respectively, in IBD patients with thiopurine-induced overall ADRs and bone marrow toxicity (BMT), compared with controls. The OR for TPMT gene mutation in IBD patients withthiopurine-induced hepatotoxicity and pancreatitis was 1.51 (95% CI: 0.54-4.19, P = 0.43) and 1.02 (95% CI: 0.26-3.99, P = 0.98) vs controls, respectively. CONCLUSION: This meta-analysis suggests that the TPMT polymorphisms are associated with thiopurine-induced overall ADRs and BMT, but not with hepatotoxicity and pancreatitis. 展开更多
关键词 methyltransferases Inflammatory bowel diseases META-ANALYSIS Adverse drug reactions Bone marrow toxicity
下载PDF
香蕉MaPRMT1基因的分离及表达分析(英文)
20
作者 刘凡 张建斌 +3 位作者 贾彩红 杨景豪 徐碧玉 金志强 《Agricultural Science & Technology》 CAS 2008年第3期70-74,102,共6页
[Objective] The aim of experiment was to lay molecular foundation for studying maturity mechanism of banana after harvest. [Method] The combined method of suppressing subtractive hybridization and cDNA micro-array wer... [Objective] The aim of experiment was to lay molecular foundation for studying maturity mechanism of banana after harvest. [Method] The combined method of suppressing subtractive hybridization and cDNA micro-array were used to obtain cDNA segment of one PRMT gene in banana and the whole cDNA sequence of the gene was cloned.The bioinformatics analysis was operated on it,in addition, the expression profile analysis was conducted in different organs and different mature periods of banana.[Result] The whole length of cDNA in MaPRMT1 was 1 158 bp and possessed a complete open reading frame,which could encode 385 amino acids.It had high homology with PRMT in plant,containing one Methyltransf_1 domain.The MaPRMT1 gene was expressed in root,stem,leaf and fruit of banana and the expression levels in stem and leaf were relatively high.As the increase of days after harvest,the expression level declined gradually,however it reached maximum when ethylene release was biggest,then it declined.[Conclusion] MaPRMT1 belonged to the first kind of arginine methyltransferase and it was expressed differently in different organs and fruits at different mature periods. 展开更多
关键词 BANANA Protein ARGININE METHYLTRANSFERASE (PRMT) MUSA acu minata PRMT1(MaPRMT1) Gene differential expression REVERSE transcriptase-polynerase chain reaction(RT-PCR)
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部