In this paper we study the connection between the metric projection operator PK : B →K, where B is a reflexive Banach space with dual space B^* and K is a non-empty closed convex subset of B, and the generalized pr...In this paper we study the connection between the metric projection operator PK : B →K, where B is a reflexive Banach space with dual space B^* and K is a non-empty closed convex subset of B, and the generalized projection operators ∏K : B → K and πK : B^* → K. We also present some results in non-reflexive Banach spaces.展开更多
文摘In this paper we study the connection between the metric projection operator PK : B →K, where B is a reflexive Banach space with dual space B^* and K is a non-empty closed convex subset of B, and the generalized projection operators ∏K : B → K and πK : B^* → K. We also present some results in non-reflexive Banach spaces.