Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,...Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.展开更多
近年来,城市轨道交通建设加速增长,对城市轨道交通车地通信系统的可靠运行提出了更高的要求。随着第四代移动网络(4th Generation mobile networks,4G)具体化的长期演进(Long Term Evolution,LTE)系统已经广泛地进行了部署,而且技术也...近年来,城市轨道交通建设加速增长,对城市轨道交通车地通信系统的可靠运行提出了更高的要求。随着第四代移动网络(4th Generation mobile networks,4G)具体化的长期演进(Long Term Evolution,LTE)系统已经广泛地进行了部署,而且技术也逐渐趋于成熟,地铁长期演进(Long Term Evolution for Metro,LTE-M)车地通信系统具有较强的抗干扰能力、支持快速移动状态下的列车通信、资源调度灵活等优点,突破融合不同通信制式的关键技术,研制出信号通信设备样机,并根据列车控制系统的业务需求对新的通信制式进行测试,保障城铁列车的安全稳定运行。展开更多
基金This research was supported by the National Natural Science Foundation of China(Grant No.71971016).On behalf of all co-authors,the corresponding author states that there is no conflict of interest.
文摘Purpose–To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure,energy-saving performance of the whole metro system cannot be guaranteed.Design/methodology/approach–A cooperative train control framework is formulated to regulate a novel train operation mode.The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train.An improved brute force(BF)algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.Findings–Case studies on the actual metro line in Guangzhou,China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters.The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.Originality/value–Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process,which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation.This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea,where energy-efficient train operation can be realised once train running time is determined,thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.
文摘近年来,城市轨道交通建设加速增长,对城市轨道交通车地通信系统的可靠运行提出了更高的要求。随着第四代移动网络(4th Generation mobile networks,4G)具体化的长期演进(Long Term Evolution,LTE)系统已经广泛地进行了部署,而且技术也逐渐趋于成熟,地铁长期演进(Long Term Evolution for Metro,LTE-M)车地通信系统具有较强的抗干扰能力、支持快速移动状态下的列车通信、资源调度灵活等优点,突破融合不同通信制式的关键技术,研制出信号通信设备样机,并根据列车控制系统的业务需求对新的通信制式进行测试,保障城铁列车的安全稳定运行。