In this article, the author introduces a class of non-convolution Calder′on-Zygmund operators whose kernels are certain sums involving the products of Meyer wavelets and their convolutions. The boundedness on Besov s...In this article, the author introduces a class of non-convolution Calder′on-Zygmund operators whose kernels are certain sums involving the products of Meyer wavelets and their convolutions. The boundedness on Besov spaces Bp^0 ,q(1 ≤p,q ≤∞) is also obtained. Moreover, as an application, the author gives a brief proof of the known result that Hrmander condition can ensure the boundedness of convolution-type Calder′on-Zygmund operators on Besov spaces B^p0 ,q(1 ≤p,q ≤∞). However, the proof is quite different from the previous one.展开更多
We consider the parabolic equation with variable coefficients k(x)Uxx = ut, 0,x ≤1, t≥ 0, where 0 〈 α ≤ k(x) 〈 +∞, the solution on the boundary x = 0 is a given function g and ux(0,t) = 0. We use wavelet...We consider the parabolic equation with variable coefficients k(x)Uxx = ut, 0,x ≤1, t≥ 0, where 0 〈 α ≤ k(x) 〈 +∞, the solution on the boundary x = 0 is a given function g and ux(0,t) = 0. We use wavelet Galerkin method with Meyer multi-resolution analysis to obtain a wavelet approximating solution, and also get an estimate between the exact solution and the wavelet approximating solution of the problem.展开更多
We consider the problem K(x)Uxx = utt , 0 〈 x 〈 1, t 〉 0, with the boundary condition u(O,t) = g(t) E LZ(R) and ux(O,t) = 0, where K(x) is continuous and 0 〈α≤ K (x) 〈 +∞. This is an ill-posed p...We consider the problem K(x)Uxx = utt , 0 〈 x 〈 1, t 〉 0, with the boundary condition u(O,t) = g(t) E LZ(R) and ux(O,t) = 0, where K(x) is continuous and 0 〈α≤ K (x) 〈 +∞. This is an ill-posed problem in the sense that, if the solution exists, it does not depend continuously on g. Considering the existence of a solution u(x, .) E H2(R) and using a wavelet Galerkin method with Meyer multiresolution analysis, we regularize the ill-posedness of the problem. Furthermore we prove the uniqueness of the solution for this problem.展开更多
We consider the problem uxx(x, t) = ut(x, t), 0 ≤ x 〈 1, t ≥ 0, where the Cauchy data g(t) is given at x = 1. This is an ill-posed problem in the sense that a small disturbance on the boundary g(t) can prod...We consider the problem uxx(x, t) = ut(x, t), 0 ≤ x 〈 1, t ≥ 0, where the Cauchy data g(t) is given at x = 1. This is an ill-posed problem in the sense that a small disturbance on the boundary g(t) can produce a big alteration on its solution (if it exists). We shall define a wavelet solution to obtain the well-posed approximating problem in the scaling space Vj. In the previous papers, the theoretical results concerning the error estimate are L2-norm and the solutions aren't stable at x = 0. However, in practice, the solution is usually required to be stable at the boundary. In this paper we shall give uniform convergence on interval x ∈ [0, 1].展开更多
基金Sponsored by the NSF of South-Central University for Nationalities(YZZ08004)NNSF of China (10871209)
文摘In this article, the author introduces a class of non-convolution Calder′on-Zygmund operators whose kernels are certain sums involving the products of Meyer wavelets and their convolutions. The boundedness on Besov spaces Bp^0 ,q(1 ≤p,q ≤∞) is also obtained. Moreover, as an application, the author gives a brief proof of the known result that Hrmander condition can ensure the boundedness of convolution-type Calder′on-Zygmund operators on Besov spaces B^p0 ,q(1 ≤p,q ≤∞). However, the proof is quite different from the previous one.
基金Supported by the National Nature Science Foundation (No.10871012)the Beijing Nature Science Foundation(No.1082003)the Doctoral foundation of Beijing University of Technology (No.52006011200702)
文摘We consider the parabolic equation with variable coefficients k(x)Uxx = ut, 0,x ≤1, t≥ 0, where 0 〈 α ≤ k(x) 〈 +∞, the solution on the boundary x = 0 is a given function g and ux(0,t) = 0. We use wavelet Galerkin method with Meyer multi-resolution analysis to obtain a wavelet approximating solution, and also get an estimate between the exact solution and the wavelet approximating solution of the problem.
文摘We consider the problem K(x)Uxx = utt , 0 〈 x 〈 1, t 〉 0, with the boundary condition u(O,t) = g(t) E LZ(R) and ux(O,t) = 0, where K(x) is continuous and 0 〈α≤ K (x) 〈 +∞. This is an ill-posed problem in the sense that, if the solution exists, it does not depend continuously on g. Considering the existence of a solution u(x, .) E H2(R) and using a wavelet Galerkin method with Meyer multiresolution analysis, we regularize the ill-posedness of the problem. Furthermore we prove the uniqueness of the solution for this problem.
基金Supported by Beijing Natural Science Foundation (Grant Nos. 1092003 and 1082003)National Natural Science Foundation of China (Grant No. 10871012)+1 种基金Beijing Educational Committee Foundation (Grant No. 00600054R1002)Science and Technology Innovation Foundation of Beijing Educational Committee (Grant No. 00600054K2009)
文摘We consider the problem uxx(x, t) = ut(x, t), 0 ≤ x 〈 1, t ≥ 0, where the Cauchy data g(t) is given at x = 1. This is an ill-posed problem in the sense that a small disturbance on the boundary g(t) can produce a big alteration on its solution (if it exists). We shall define a wavelet solution to obtain the well-posed approximating problem in the scaling space Vj. In the previous papers, the theoretical results concerning the error estimate are L2-norm and the solutions aren't stable at x = 0. However, in practice, the solution is usually required to be stable at the boundary. In this paper we shall give uniform convergence on interval x ∈ [0, 1].