1 Introduction As the lightest metal with the unique properties of energy production and storage,lithium is regarded as the new century energy metal.Lithium and its compounds were widely used in various industrial fie...1 Introduction As the lightest metal with the unique properties of energy production and storage,lithium is regarded as the new century energy metal.Lithium and its compounds were widely used in various industrial fields,especially in展开更多
Manganese dioxide(MnO_(2)) is considered as a potential cathode material for aqueous magnesium-ion batteries. However, the charge/discharge mechanism of MnO_(2)in aqueous electrolyte is still unclear. In present study...Manganese dioxide(MnO_(2)) is considered as a potential cathode material for aqueous magnesium-ion batteries. However, the charge/discharge mechanism of MnO_(2)in aqueous electrolyte is still unclear. In present study, highly porous δ-MnO_(2) is investigated, which delivers a high capacity of 252.1 m Ah g^(-1) at 0.05 A g^(-1) and excellent rate capability, i.e., 109.7 m Ah g^(-1) at 1 A g^(-1), but a low-capacity retention of 54.4% after 800 cycles at 1 A g^(-1). The two-step discharging process, namely a consequent H^(+) and Mg^(2+) insertion reaction, is verified, by comparing the electrochemical performance of δ-MnO_(2) in 1 M MgCl_(2) and 1 M MnCl_(2) aqueous electrolyte and analyzing detailedly the Mg content and the bonding state of Mn at different charge/discharge state. Furthermore, partial irreversibility of Mg^(-1) ion insertion/extraction is observed, which may be one of the major reasons leading to capacity decay.展开更多
基金Financial support from the National Natural Science Foundation of China (21276194)the Specialized Research Fund for the Doctoral Program of Chinese Higher Education (20101208110003)the Key Pillar Program of Tianjin Municipal Science and Technology (11ZCKGX02800)
文摘1 Introduction As the lightest metal with the unique properties of energy production and storage,lithium is regarded as the new century energy metal.Lithium and its compounds were widely used in various industrial fields,especially in
基金financial support by the National Natural Science Foundation of China (21975168)the Sichuan Science and Technology Program (2021JDJQ0020)the Fundamental Research Funds for the Central Universities (No. 1082204112219)。
文摘Manganese dioxide(MnO_(2)) is considered as a potential cathode material for aqueous magnesium-ion batteries. However, the charge/discharge mechanism of MnO_(2)in aqueous electrolyte is still unclear. In present study, highly porous δ-MnO_(2) is investigated, which delivers a high capacity of 252.1 m Ah g^(-1) at 0.05 A g^(-1) and excellent rate capability, i.e., 109.7 m Ah g^(-1) at 1 A g^(-1), but a low-capacity retention of 54.4% after 800 cycles at 1 A g^(-1). The two-step discharging process, namely a consequent H^(+) and Mg^(2+) insertion reaction, is verified, by comparing the electrochemical performance of δ-MnO_(2) in 1 M MgCl_(2) and 1 M MnCl_(2) aqueous electrolyte and analyzing detailedly the Mg content and the bonding state of Mn at different charge/discharge state. Furthermore, partial irreversibility of Mg^(-1) ion insertion/extraction is observed, which may be one of the major reasons leading to capacity decay.