期刊文献+
共找到306篇文章
< 1 2 16 >
每页显示 20 50 100
Impressive strides in amelioration of corrosion behavior of Mg-based alloys through the PEO process combined with surface laser process: A review
1
作者 Arash Fattah-alhosseini Razieh Chaharmahali 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4390-4406,共17页
The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ce... The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ceramic-like oxide coating on the surface of Mg-based alloys,enhancing their resistance to corrosion. Research has demonstrated that PEO treatment can substantially improve the corrosion performance of alloys based on magnesium in the short term. In an effort to enhance the corrosion resistance of PEO coatings over an extended period of time, researchers have turned their attention to the use of laser processes as both pre-and post-treatments in conjunction with the PEO process. Various laser processes, such as laser shock melting(LSM), laser shock adhesion(LSA), laser shock texturing(LST), and laser shock peening(LSP), have been investigated for their potential to improve PEO coatings on Mg substrates and their alloys. These laser melting processes can homogenize and alter the microstructure of Mg-based alloys while leaving the bulk material unchanged, thereby modifying the substrate surface. However, the porous and rough structure of PEO coatings, with their open and interconnected pore structure, can reduce their long-term corrosion resistance. As such, various laser processes are well-suited for surface modification of these coatings. This study will first examine the PEO process and the various types of laser processes used in this process, before investigating the corrosion behavior of PEO coatings in conjunction with laser pre-and post-treatment processes. 展开更多
关键词 mg and its alloy Laser surface texturing Corrosion behavior PEO process
下载PDF
Superhydrophobic surface of Mg alloys:A review 被引量:26
2
作者 M.Yeganeh N.Mohammadi 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第1期59-70,共12页
In the present review,the formation of superhydrophobic(SHP)structures on the surface of Mg alloys was investigated.Different methods including hydrothermal technique,chemical and electrochemical deposition,conversion... In the present review,the formation of superhydrophobic(SHP)structures on the surface of Mg alloys was investigated.Different methods including hydrothermal technique,chemical and electrochemical deposition,conversion and polymer coating,and etching routes were discussed.The superhydrophobicity could form on the surface of Mg alloys by the application of different chemical,electrochemical,and physical methods followed by the immersion of these alloys in the solution containing modifying agents including fatty acids or long-chain molecules.The formed morphology,composition,and contact angle were reported and the effect of synthesis route on these characteristics was reviewed. 展开更多
关键词 mg alloys Superhydrophobic surfaces Chemical deposition Electrochemical coating Conversion coating Polymer coating ETCHING
下载PDF
First-principles Calculations of H_2O Adsorption Reaction on the GaN(0001) Surface 被引量:2
3
作者 胡春丽 陈勇 李俊篯 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第2期240-244,共5页
The adsorption and decomposition of H2O on GaN(0001) surface have been explored employing density functional theory (DFT). Two distinct adsorption features of H2O on GaN(0001) corresponding to molecular adsorpti... The adsorption and decomposition of H2O on GaN(0001) surface have been explored employing density functional theory (DFT). Two distinct adsorption features of H2O on GaN(0001) corresponding to molecular adsorption and H-OH dissociative adsorption are revealed by our calculations. The activities of the surface reactions of H2O on GaN(0001) surface are investigated. For the stepwise processes of H2O decomposition into H2 in gas phase and adsorbed O atom (H2O(g)→H2O(chem)→OH(chem) + H(chem)→2H(chem) + O(chem)→H2(g) + O(chem)), the first and second steps are facile and can even occur at room temperature; while the last two have high barriers and thus are difficult to proceed, especially the fourth step is endothermic. In short, H2O adsorption and decomposition into H2 in gas phase and adsorbed O atom on GaN(0001) surface are exothermic by -43.98 kcal/mol. 展开更多
关键词 H2O GaN(0001 surface DFT ADSORPTION REACTION
下载PDF
Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling 被引量:4
4
作者 Jing Han Cong Wang +3 位作者 Yuanming Song Zhiyuan Liu Jiapeng Sun Jiyun Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第8期1551-1558,共8页
Mg alloy casting parts commonly suffer from drawbacks of low surface properties,high susceptibility to corrosion,unsatisfactory absolute strength,and poor ductility,which seriously limit their wide application.Here,a ... Mg alloy casting parts commonly suffer from drawbacks of low surface properties,high susceptibility to corrosion,unsatisfactory absolute strength,and poor ductility,which seriously limit their wide application.Here,a surface nanocrystallization technique,i.e.,ultrasonic surface rolling(USR),was applied on an as-cast AZ91 Mg alloy sheet to improve its corrosion resistance and mechanical properties.The USR produces double smooth surfaces with Ra 0.036μm and gradient nanostructured surface layers on the sheet.Due to this special microstructure modification,the USR sheet exhibits 55%and 50%improvements in yield strength and ultimate tensile strength without visibly sacrificed ductility comparable to its untreated counterpart,as well as a 24%improvement in surface hardness.The USR sheet also shows good corrosion resistance in 3.5wt%NaCl aqueous solution.The corrosion current density of the USR sheet reduces by 63%after immersion for 1 h,and 25%after immersion for 24 h compared to that of the untreated counterpart.The enhanced strength and hardness are mainly related to the gradient nanostructure.The improved corrosion resistance is mainly ascribed to the decreased surface roughness,nanostructured surface,and residual compressive stress.The present results state that USR is an effective and attractive method to improve the multiple properties of Mg alloy cast-ing parts,and thus can be used as an additional and last working procedure to achieve high-performance Mg alloy casting parts. 展开更多
关键词 mg alloy ultrasonic surface rolling surface nanocrystallization microstructure strength corrosion
下载PDF
Water adsorption on the Be(0001) surface:from monomer to trimer adsorption 被引量:2
5
作者 宁华 陶向明 谭明秋 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第1期389-398,共10页
In this paper, the density functional theory has been used to perform a comparative theoretical study of water monomer, dimer, trimer, and bilayer adsorptions on the Be(0001) surface. In our calculations, the adsorb... In this paper, the density functional theory has been used to perform a comparative theoretical study of water monomer, dimer, trimer, and bilayer adsorptions on the Be(0001) surface. In our calculations, the adsorbed water molecules are energetically favoured adsorbed on the atop sites, and the dimer adsorption is found to be the most stable with a peak adsorption energy of - 437 meV. Further analyses have revealed that the essential bonding interaction between the water monomer and the metal substrate is the hybridization of the water 3al-like molecular orbital with the (s, P2) orbitals of the surface beryllium atoms. While in the case of the water dimer adsorption, the lbz-like orbital of the H2O molecule plays a dominant role. 展开更多
关键词 Be(0001)/H2O surface adsorption energy electronic structure
下载PDF
Compounded Surface Modification of ZK60 Mg Alloy by High Current Pulsed Electron Beam+Micro-plasma Oxidation 被引量:3
6
作者 高波 郝仪 +3 位作者 涂赣峰 石为喜 于福晓 李世伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第1期67-70,共4页
In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of... In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future. 展开更多
关键词 ZK60 mg alloy high current pulsed electron beam micro-plasma oxidation compounded surface modification corrosion resistance
下载PDF
Surface characterization and corrosion behavior of calcium phosphate(Ca-P)base composite layer on Mg and its alloys using plasma electrolytic oxidation(PEO):A review 被引量:8
7
作者 Razieh Chaharmahali Arash Fattah-alhosseini Kazem Babaei 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期21-40,共20页
Magnesium has been known as an appropriate biological material on account of its good biocompatibility and biodegradability properties in addition to advantageous mechanical properties.Mg and its alloys are of poor co... Magnesium has been known as an appropriate biological material on account of its good biocompatibility and biodegradability properties in addition to advantageous mechanical properties.Mg and its alloys are of poor corrosion resistance.Its high corrosion rate leads to its quick decomposition in the corrosive ambiance and as a result weakening its mechanical properties and before it is repaired,it will vanish.The corrosion and degradation rate must be controlled in the body to advance the usage of Mg and its alloys as implants.Different techniques have been utilized to boost biological properties.Plasma electrolytic oxidation(PEO)can provide porous and biocompatible coatings for implants among various techniques.Biodegradable implants are generally supposed to show enough corrosion resistance and mechanical integrity in the body environment.Much research has been carried out in order to produce PEO coatings containing calcium phosphate compounds.Calcium phosphates are really similar to bone mineral composition and present great biocompatibility.The present study deals with the usage of calcium phosphates as biocompatible coatings applied on Mg and its alloys to study the properties and control the corrosion rate. 展开更多
关键词 mg alloys Calcium phosphate(Ca-P) Plasma electrolytic oxidation(PEO) surface characterization Corrosion behavior
下载PDF
The First-principles Calculations of H_2S Adsorption and Decomposition on the ZnO(0001) Surface 被引量:1
8
作者 尹改玉 丁开宁 李俊篯 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第8期1139-1146,共8页
The adsorption and decomposition of H2S on the ZnO(0001) surface have been investigated with first-principles calculations.The results reveal that H2S is dissociatively adsorbed on the clean ZnO(0001) surface to g... The adsorption and decomposition of H2S on the ZnO(0001) surface have been investigated with first-principles calculations.The results reveal that H2S is dissociatively adsorbed on the clean ZnO(0001) surface to generate HS-and hydrogen species.To our interest,as indicated by Mulliken charge and density of states of the configuration calculation,the bonding mechanism of H2S on the ZnO(0001) surface can involve the donation of charge from the "s lone pairs" into the surface and the back donation of surface electrons to H2S.Therefore,the electrons should play an important role in decomposition.Furthermore,the reactivity of H2S adsorption and further thermal decomposition reactions on the ZnO(0001) surface have also been discussed by calculating the possible reaction pathways.As expected,H2 will be easily generated during the decomposition process. 展开更多
关键词 ZnO (0001 surface hydrogen sulfide DFT DECOMPOSITION thermal decomposition
下载PDF
Surface modification of biomedical Mg-Ca and Mg-Zn-Ca alloys using selective laser melting: Corrosion behaviour, microhardness and biocompatibility 被引量:3
9
作者 Xiyu Yao Jincheng Tang +5 位作者 Yinghao Zhou Andrej Atrens Matthew S.Dargusch Bjoern Wiese Thomas Ebel Ming Yan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2155-2168,共14页
Magnesium alloys such as Mg–Ca and Mg–Zn–Ca are good orthopaedic materials;however their tendency to corrode is high.Herein we utilize selective laser melting(SLM)to modify the surface of these Mg alloys to simulta... Magnesium alloys such as Mg–Ca and Mg–Zn–Ca are good orthopaedic materials;however their tendency to corrode is high.Herein we utilize selective laser melting(SLM)to modify the surface of these Mg alloys to simultaneously improve the corrosion behaviour and microhardness.The corrosion rate decreased from 2.1±0.2 mm/y to 1.0±0.1 mm/y for the laser-processed Mg–0.6Ca,and from 1.6±0.1 mm/y to 0.7±0.2 mm/y for laser-processed Mg–0.5Zn–0.3Ca.The microhardness increased from 46±1 HV to 56±1 HV for Mg–0.6Ca,and from 47±3 HV to 55±3 HV for Mg–0.5Zn–0.3Ca.In addition,good biocompatibility remained in the laser processed Mg alloys.The improved properties are attributed to laser-induced grain refinement,confined impurity elements,residual stress,and modified surface chemistry.The results demonstrated the potential of SLM as a surface engineering approach for developing advanced biomedical Mg alloys. 展开更多
关键词 mg alloys Selective laser melting surface modification Corrosion behaviour MICROHARDNESS
下载PDF
Microstructure and property modifications in surface layers of a Mg-4Sm-2Al-0.5Mn alloy induced by pulsed electron beam treatments 被引量:4
10
作者 Yingrui Liu Kemin Zhang +3 位作者 Jianxin Zou Ping Yan Xu Zhang Luxia Song 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期216-224,共9页
In this work,surface modification of a Mg-4Sm-2Al-0.5Mn alloy with high current pulse electron beam(HCPEB)under different number of pulses were investigated.The evolution in microstructure,composition and phase compon... In this work,surface modification of a Mg-4Sm-2Al-0.5Mn alloy with high current pulse electron beam(HCPEB)under different number of pulses were investigated.The evolution in microstructure,composition and phase components and properties in the surface layer before and after HCPEB treatment were characterized.It was found that the Al 11 Sm 3 and Al 2 Sm phases in the surface layer were gradually dissolved during HCPEB treatment,leading to the formation of a chemical homogeneous melted layers.Besides,deformation bands were formed in the treated layer due to the thermal stress generated during treatment.After 15 pulses treatment,the surface hardness increases to the maximum value of about 62.2 HV,about 61.2%higher than that of the untreated state.Electrochemical results show that the 15 pulses treated sample presents the best corrosion resistance in the 3.5wt%NaCl water solution by showing the highest corrosion potential(E_(corr))of-1.339V SEC and the lowest corrosion current density(I_(corr))of 1.48×10^(-6)A·cm^(-2).The results prove that the surface properties of the Mg-4Sm-2Al-0.5Mn alloy can be significantly improved by the HCPEB treatments under proper conditions. 展开更多
关键词 High current pulsed electron beam(HCPEB) surface modification mg rare earth alloy MICROSTRUCTURES CORROSION-RESISTANCE
下载PDF
Effects of O defects on adsorption of small Ag clusters on a MgO(001) surface 被引量:2
11
作者 邓永和 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期466-471,共6页
The interaction of Ag atoms with a defective MgO(001) surface is systematically studied based on density functional theory. The Ag clusters are deposited on neutral and charged oxygen vacancies of the MgO(001) sur... The interaction of Ag atoms with a defective MgO(001) surface is systematically studied based on density functional theory. The Ag clusters are deposited on neutral and charged oxygen vacancies of the MgO(001) surface. The structures of Ag clusters take the shape of simple models of two- or three-dimensional (2D and 3D) metal particles deposited on the MgO surface. When the nucleation of the metal clusters occurs in the Fs (missing neutral O) centre, the interaction with the substrate is considerably stronger than that in the Fs^+ (missing O-) centre. The results show that the adsorption of Ag atoms on the MgO surface with oxygcn vacancy is stronger than on a clear MgO surface, thereby attracting more Ag atoms to cluster together, and forming atomic islands. 展开更多
关键词 mg0(001) surface density functional theory calculations O defects Ag clusters
下载PDF
Mg,Ti-base surface integrated layer and bulk doping to suppress lattice oxygen evolution of Ni-rich cathode material at a high cut-off voltage 被引量:1
12
作者 Fan Peng Youqi Chu +7 位作者 Yu Li Qichang Pan Guangchang Yang Lixuan Zhang Sijiang Hu Fenghua Zheng Hongqiang Wang Qingyu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期434-444,I0012,共12页
The Nickel-rich layered cathode materials charged to 4.5 V can obtain a specific capacity of more than 200 m Ah g^(-1).However,the nickel-rich layered cathode materials suffer from the severe capacity fade during high... The Nickel-rich layered cathode materials charged to 4.5 V can obtain a specific capacity of more than 200 m Ah g^(-1).However,the nickel-rich layered cathode materials suffer from the severe capacity fade during high-voltage cycling,which is related to the phase transformation and the surface sides reactions caused by the lattice oxygen evolution.Here,the simultaneous construction of a Mg,Ti-based surface integrated layer and bulk doping through Mg,Ti surface treatment could suppress the lattice oxygen evolution of Nirich material at deep charging.More importantly,Mg and Ti are co-doped into the particles surface to form an Mg_(2)TiO_(4) and Mg_(0.5–x)Ti_(2–y)(PO_(4))_(3) outer layer with Mg and Ti vacancies.In the constructed surface integrated layer,the reverse electric field in the Mg_(2)TiO_(4) effectively suppressed the outward migration of the lattice oxygen anions,while Mg_(0.5–x)Ti_(2–y)(PO_(4))_(3) outer layer with high electronic conductivity and good lithium ion conductor could effectively maintained the stability of the reaction interface during highvoltage cycling.Meanwhile,bulk Mg and Ti co-doping can mitigate the migration of Ni ions in the bulk to keep the stability of transition metal–oxygen(M-O)bond at deep charging.As a result,the NCM@MTP cathode shows excellent long cycle stability at high-voltage charging,which keep high capacity retention of 89.3%and 84.3%at 1 C after 200 and 100 cycles under room and elevated temperature of 25 and 55°C,respectively.This work provides new insights for manipulating the surface chemistry of electrode materials to suppress the lattice oxygen evolution at high charging voltage. 展开更多
关键词 Ni-rich layered oxide mg Ti-base surface integrated layer Bulk doping Lattice oxygen evolution
下载PDF
Corrosion resistance of pulsed laser modified AZ31 Mg alloy surfaces 被引量:1
13
作者 S.Fajardo L.Miguélez +3 位作者 M.A.Arenas J.de Damborenea I.Llorente S.Feliu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第3期819-832,共14页
The effect of laser surface melting on the corrosion resistance of AZ31 Mg alloy in 0.1 M NaCl solution was investigated using different laser processing conditions(energy densities of 14 and 17 J cm^(-2)).Laser treat... The effect of laser surface melting on the corrosion resistance of AZ31 Mg alloy in 0.1 M NaCl solution was investigated using different laser processing conditions(energy densities of 14 and 17 J cm^(-2)).Laser treatment induced rough surfaces primarily composed of oxidized species of Mg.XPS analysis revealed that the surface concentration of Al increased significantly as a consequence of LSM.Electrochemical impedance spectroscopy showed that the laser treatment remarkably increased the polarization resistance of the AZ31 Mg alloy and induced a passive-like region of about 100 mV,as determined by potentiodynamic polarization.Analysis of the results obtained provide solid evidence that within the immersion times used in this study,LSM treatment increased the corrosion resistance of AZ31 Mg alloy under open circuit conditions and anodic polarization. 展开更多
关键词 mg alloys laser surface melting(LSM) Electrochemical impedance Potentiodynamic polarization corrosion resistance.
下载PDF
Hydrolysis hydrogen production mechanism of Mg10Ni10Ce alloy surface modified by SnO_(2) nanotubes in different aqueous systems 被引量:1
14
作者 Xiaojiang Hou Lu Yang +6 位作者 Kaiming Hou Hongchang Shi Lei Feng Guoquan Suo Xiaohui Ye Li Zhang Yanling Yang 《Green Energy & Environment》 SCIE CSCD 2021年第1期124-137,共14页
(Mg-10wt%Ni)-10wt%Ce(Mg10Ni10Ce)was ball-milled with SnO_(2)nanotubes and Mg10Ni10Ce-xSnO_(2)(x¼0,5,10 and 15 wt%)composites have been prepared.The phase compositions,microstructures,morphologies and hydrolysis H... (Mg-10wt%Ni)-10wt%Ce(Mg10Ni10Ce)was ball-milled with SnO_(2)nanotubes and Mg10Ni10Ce-xSnO_(2)(x¼0,5,10 and 15 wt%)composites have been prepared.The phase compositions,microstructures,morphologies and hydrolysis H2 generation performance in different aqueous systems(distilled water,tap water and simulated seawater)have been investigated and the corresponding hydrolysis mechanism of Mg10Ni10Ce and Mg10Ni10CeeSnO_(2)has been proposed.Adding a small amount of SnO_(2)nanotubes can significantly enhance the hydrolysis reaction of Mg10Ni10Ce,especially the initial hydrolysis kinetics and the final H_(2) generation yield.Unfortunately,the Mg10Ni10Ce-xSnO_(2)hardly reacts with distilled water at room temperature.The hydrolysis reaction rate of Mg10Ni10Cee5SnO_(2)composite in tap water is still very slow with only 17.3%generation yield after 1 h at 303 K.Fortunately,in simulated seawater(3.5 wt%NaCl solution),the hydrolytic H2 generation behavior of the Mg10Ni10Cee5SnO_(2)composite has been greatly improved,which can release as high as 468.6 mL g^(-1 )H_(2) with about 60.9%generation yield within 30 s at 303 K.The Cl destroys the passivation layer on MgeNieCe alloy surface and the added SnO_(2)nanotubes accelerate the hydrolysis reaction rate and enhance the H2 generation yield.The Mg10Ni10Cee5SnO_(2)composite can rapidly generate a large amount of H2 in simulated seawater in a short time,which is expected to be applied on portable H2 generators in the future. 展开更多
关键词 mg10Ni10Ce Hydrogen production surface modification Hydrolysis behavior Aqueous systems
下载PDF
Sea surface temperature and salinity reconstruction based on stable isotopes and Mg/Ca of planktonic foraminifera in the western Pacific Warm Pool during the last 155 ka 被引量:4
15
作者 仇晓华 李铁刚 +3 位作者 常凤鸣 南青云 熊志方 孙晗杰 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第1期187-200,共14页
Changes in sea surface temperature(SST), seawater oxygen isotope(δ 18 O sw), and local salinity proxy(δ 18 O sw-ss) in the past 155 ka were studied using a sediment core(MD06-3052) from the northern edge of the west... Changes in sea surface temperature(SST), seawater oxygen isotope(δ 18 O sw), and local salinity proxy(δ 18 O sw-ss) in the past 155 ka were studied using a sediment core(MD06-3052) from the northern edge of the western Pacifi c Warm Pool(WPWP), within the fl ow path of the bifurcation of the North Equatorial Current. Our records reveal a lead-lag relationship between paired Mg/Ca-SST and δ 18 O during Termination II and the last interglacial period. Similarity in SST between our site and the Antarctic temperature proxy and in CO 2 profi le showed a close connection between the WPWP and the Antarctic. Values of δ 18 O sw exhibited very similar variations to those of mean ocean δ 18 O sw, owing to the past sea-level changes on glacial-interglacial timescale. Calculated values of δ 18 O sw-ss refl ect a more saline condition during high local summer insolation(SI) periods. Such correspondence between δ 18 O sw-ss and local SI in the WPWP may refl ect complex interaction between ENSO and monsoon, which was stimulated by changes in solar irradiance and their infl uence on the local hydrologic cycle. This then caused a striking reorganization of atmospheric circulation over the WPWP. 展开更多
关键词 西太平洋暖池 海面温度 浮游有孔虫 稳定同位素 盐度 末次间冰期 Ca 太阳辐射
下载PDF
Laser Polishing of Laser Powder Bed Fusion AlSi10Mg Parts—Influence of Initial Surface Roughness on Achievable Surface Quality 被引量:2
16
作者 Markus Hofele Andre Roth +3 位作者 Jochen Schanz David K. Harrison Anjali K. M. De Silva Harald Riegel 《Materials Sciences and Applications》 2021年第1期15-41,共27页
Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing technique, which allows production of highly complex solid metal parts with good mechanical properties, compared to conventionally manufactured parts. Nevert... Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing technique, which allows production of highly complex solid metal parts with good mechanical properties, compared to conventionally manufactured parts. Nevertheless, the layer-by-layer fabrication process also offers several disadvantages, including a relatively high surface roughness depending on the shape of the component, its position and orientation during the fabrication process. This paper deals with investigations on the surface roughness reduction capability, and residual surface structures by laser polishing of LPBF AlSi10Mg parts under varying initial surface roughness in order to investigate the influence of the surface behavior and initial surface roughness to the achievable surface quality by laser polishing. Hereto test specimens with varying fabrication orientations regarding to the built platform are printed and further polished. Thereby the initial arithmetic roughness varies between 19.2 μm and 8.0 μm. It could be shown that the achievable surface roughness by laser polishing with continuous and pulsed laser radiation is increasing with rising initial roughness, but the relative roughness reduction is almost constant in the range of 95% - 97.5%. The analyzation of the residual roughness structures shows, that the main roughness differences is found in the middle and long structure wavelength regime, which are directly depending on the initial surface structures of 3D printing. 展开更多
关键词 Additive Manufacturing surface Roughness Aluminium AlSi10mg Laser Polishing Fabrication Orientation
下载PDF
Photocatalytic Dissociation of CH3OH on ZnO(0001) Surface
17
作者 Peng-xiao Liang Fei Xu +4 位作者 Zhen-xing Li Zhi-wen Luan Xing-an Wang Qing Guo Xue-ming Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第5期525-530,共6页
Photocatalysis of CH3OH on the ZnO(0001) surface has been investigated by using temperature-programmed desorption (TPD) method with a 266 nm laser light. TPD results show that part of the CH3OH adsorbed on ZnO(0001) s... Photocatalysis of CH3OH on the ZnO(0001) surface has been investigated by using temperature-programmed desorption (TPD) method with a 266 nm laser light. TPD results show that part of the CH3OH adsorbed on ZnO(0001) surface are in molecular form, while others are dissociated. The thermal reaction products of H2, CH3·, H2O, CO, CH2O, CO2 and CH3OH have been detected. Experiments with the UV laser light indicate that the irradiation can promote the dissociation of CH3OH/CH3O· to form CH2O, which can be fu- ture converted to HCOO- during heating or illumination. The reaction between CH3OHZn and OHad can form the H2O molecule at the Zn site. Both temperature and illumination promote the desorption of CH3· from CH3O·. The research provides a new insight into the photocatalytic reaction mechanism of CH3OH on ZnO(0001). 展开更多
关键词 Methanol Photocatalysis ZnO(0001) surface Temperature-programmed DESORPTION
下载PDF
Lu-Mg和Lu-Al合金热力学性质的理论分析
18
作者 纪凡 何荧 +1 位作者 向金秋 罗立平 《世界有色金属》 2024年第6期20-23,共4页
文章利用Miedema生成热模型计算Lu-Mg和Lu-Al二元合金的混合焓、过剩熵、过剩吉布斯自由能以及各组元的活度。结合Butler方程,计算Lu-Mg和Lu-Al合金熔体的表面张力以及表面相中各元素含量。研究结果表明,Lu-Mg和Lu-Al合金熔体的混合焓... 文章利用Miedema生成热模型计算Lu-Mg和Lu-Al二元合金的混合焓、过剩熵、过剩吉布斯自由能以及各组元的活度。结合Butler方程,计算Lu-Mg和Lu-Al合金熔体的表面张力以及表面相中各元素含量。研究结果表明,Lu-Mg和Lu-Al合金熔体的混合焓、过剩熵以及过剩吉布斯自由能都为负值,同时各组分活度较理想熔体有着一定负偏差,说明Lu与Mg和Al原子之间存在显著的相互作用力。Lu-Mg和Lu-Al合金熔体表面张力随Mg和Al含量的增加而减小,Mg和Al元素均会向熔体表面富集。 展开更多
关键词 MIEDEMA模型 Butler方程 活度 表面张力 Lu-mg Lu-Al
下载PDF
A DFT Study of Alkenes and Alkynes Reacting with H-GaN (0001) Surface
19
作者 胡春丽 陈勇 +1 位作者 李俊篯 章永凡 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第1期125-131,共7页
The addition reactions of alkenes and alkynes to the H-terminated GaN (0001) surface with a Ga dangling-bond have been studied employing periodic density functional theory (PDFT) calculations. Detailed information... The addition reactions of alkenes and alkynes to the H-terminated GaN (0001) surface with a Ga dangling-bond have been studied employing periodic density functional theory (PDFT) calculations. Detailed information on the reaction pathways of these alkenes and alkynes with H-GaN (0001) surface is provided, which indicates that the reactions contain two steps separated by the metastable intermediates: elementary addition reaction and H-abstraction process. From the energy curves, the reactions are clearly viable in the cases of ethene, styrene and phenylacetylene; while for ethyne, the H-abstraction barrier is higher than the desorption barrier of the intermediate, so the adsorbed C2H2 in intermediate is more likely to be desorbed back into the gas phase than to form a stable adsorbed species. Furthermore, it is obvious that for either alkenes or alkynes, the systems substituted by phenyl have more stable intermediates because π conjugation could improve their stabilities. 展开更多
关键词 ALKENES ALKYNES H-GaN (0001 surface DFT reaction pathway
下载PDF
Nucleation and growth behavior of coating film on Mg–Al–Zn alloy with different surface topographies via plasma electrolytic oxidation
20
作者 Nisa Nashrah Sung Hun Baek Young Gun Ko 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第8期2185-2192,共8页
This work was made to investigate how nucleation and growth behavior of the coating film were affected by surface topographies of Mg–Al–Zn alloy substrate during the initial stage of plasma electrolytic oxidation(PE... This work was made to investigate how nucleation and growth behavior of the coating film were affected by surface topographies of Mg–Al–Zn alloy substrate during the initial stage of plasma electrolytic oxidation(PEO).To satisfy this end,a single substrate was prepared by mechanical treatment exhibiting rough and smooth regions with an equal area on the surface.The rough region with prominent hills and grooves induced the breakdown of passive film,which was indicated by an early appearance of plasma discharge on the rough region since nucleation of coating film occurred preferentially around the hills.However,the coating film grown on the grooves was somewhat thicker and more porous than the film grown on the hills and smooth regions.This was due to the fact that the growth of the coating film was found to be localized in the presence of rough region,which was in line with the discharge activities.Herein,the nucleation and growth behavior during the initial stage of PEO will be discussed schematically on the basis of microstructural interpretation. 展开更多
关键词 mg alloy surface roughness Plasma electrolytic oxidation Coating film
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部