Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed ...Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.展开更多
In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-...In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-Zn-Ca rods with greatly refined grains and high mechanical properties were produced.Compared to the previous as-cast microstructure,the grain size was reduced from more than 1 mm to around 4μm within 3 s by a single process cycle.The compressive yield strength was increased by 350%while the ultimate compressive strength by 53%.According to the established material flow behaviors by“tracer material”,the plastic material was transported by shear deformation.From the base material to the rod,the material experienced three stages,i.e.deformation by the tool,upward flow with additional tilt,followed by upward transportation.The microstructural evolution was revealed by“stop-action”technique.The microstructural development at regions adjacent to the rod is mainly controlled by twinning,dynamic recrystallization(DRX)as well as particle stimulated nucleation,while that within the rod is related to DRX combined with grain growth.展开更多
The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large ...The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large strain during the equal channel angular pressing,accompanied with very fine Ca_(2)Mg_(6)Zn_(3) phases with average diameter of 70 nm.The weak tension-compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twinning during the compression,because the slope(k)of twinning in Hall-Petch relationship is higher than that of dislocation slip,and the twinning deformation is difficult to take place with decreasing grain size.The basal slip is more active in the alloy after equal channel angular pressing,due to the non-basal texture components,which hinders the twinning activation and reduces the yield asymmetry.Furthermore,the presence of fine precipitate restricts the twinning activation,which also contributes to the reduction of yield asymmetry.展开更多
To expand the future clinic applications of biodegradable magnesium alloy,polymer coatings with excellent biocompatibility are the keys to solve the local alkalinity and rapid hydrogen release.Natural-organic silk fib...To expand the future clinic applications of biodegradable magnesium alloy,polymer coatings with excellent biocompatibility are the keys to solve the local alkalinity and rapid hydrogen release.Natural-organic silk fibroin provides an approach to fabricate a protective coating on biomedical Mg-Zn-Ca alloy,however,the adhesion force and mechanical properties of the coating on substrates are ought to be further improved without any chemical conversion/intermediate layer.Hereby,based on VUV/O;surface activation,a hybrid of silk fibroin and sodium alginate is proposed to enhance the adhesion force and mechanical properties of the composite coatings on hydrophilic Mg-Zn-Ca alloy surfaces.Various mass ratios of sodium alginate addition were investigated to achieve the optimum coating strategy.The nanoscratch test and nanoindentation test confirmed that the adhesion force was tripled and mechanical properties index was significantly improved when the mass ratio of silk fibroin/sodium alginate was 70/30 compared to pure silk fibroin or sodium alginate coatings.Meanwhile,the corrosion rate of the coated Mg-Zn-Ca alloy was significantly delayed with the addition of sodium alginate,resulting in a reaction layer during corrosion process.Furthermore,the mechanisms for both adhesion and corrosion processes were discussed in detail.Our findings offer more possibilities for the controllable surface performance of degradable metals.展开更多
Magnesium alloys with homogeneous degradation and controlled degradation rate are desirable for biodegradable materials.In the present work,Mg-3 wt.%Zn-0.2 wt.%Ca alloys with different columnar structures were fabrica...Magnesium alloys with homogeneous degradation and controlled degradation rate are desirable for biodegradable materials.In the present work,Mg-3 wt.%Zn-0.2 wt.%Ca alloys with different columnar structures were fabricated and the degradation in 0.9 wt.%NaCl were investigated.With the increase of the growth rate for the directional solidification,the microstructure of the directionally solidified(DSed)alloy evolved from cellular to dendritic coupled with the change of the spacing of the primary trunks(λ_(1))and the volume fraction(fv)of Ca_(2)Mg_(6)Zn_(3) phase.The results of the corrosion test suggested that the alloy with cellular structure experienced homogeneous corrosion and exhibited the lowest corrosion rate.The good corrosion resistance of the alloy with cellular structure was attributed to the protective corrosion products film(CPF),which was closely related to the fv of Ca_(2)Mg_(6)Zn_(3) phase andλ_(1).To evaluate the corrosion rates(CR)of the DSed Mg-Zn-Ca alloys with different microstructures,a parameterαwas proposed in this work,which was calculated byλ_(1) and the fv of Ca_(2)Mg_(6)Zn_(3) phase.The fitting result showed that there was a linear relationship between CR andα,which was CR=4.1899+0.00432α.This means that the CR of the DSed Mg-Zn-Ca alloy can be evaluated if the microstructure had been characterized.展开更多
Ternary alloys based on the Mg-Zn-Ca system were produced by twin-roll rapid solidification.The alloys were characterized by OM,SEM,HRTEM,XRD,EDS and Micro-hardness.The results show that the rapidly solidified flakes ...Ternary alloys based on the Mg-Zn-Ca system were produced by twin-roll rapid solidification.The alloys were characterized by OM,SEM,HRTEM,XRD,EDS and Micro-hardness.The results show that the rapidly solidified flakes are of fine dendritic cell structures with the cell size ranging from 1 to 5μm.The Mg-6Zn-5Ca alloy in RS and annealing(200℃for 1 h) states are mainly composed ofα-Mg,Mg_2Ca,Ca_2Mg_6Zn_3 and a small quantity of Mg_(51)Zn_(20),MgZn_2 and Mg_2Zn_3.Micro-hardness increases with the increment of Ca content and age hardening occurs after aging at 200℃in the flakes probably due to the precipitation strengthening of the fine precipitates Mg_2Ca and Ca_2Mg_6Zn_3.Some phases at the grain boundary in Mg-6Zn-5Ca alloy are identified by means of HRTEM,which may be beneficial to the improvement in thermal stability of the alloy.展开更多
In the present study,the texture evolution and mechanical anisotropy in a typical Mg–Zn–Ca alloy through hot cross rolling(CR)and unidirectional rolling(UR)were systematically studied.The results show that the rolli...In the present study,the texture evolution and mechanical anisotropy in a typical Mg–Zn–Ca alloy through hot cross rolling(CR)and unidirectional rolling(UR)were systematically studied.The results show that the rolling path greatly affects the annealed texture.The UR develops a texture with basal poles mainly distributing along the transverse direction(TD).By contrast,an ellipse-like(0002)texture with basal pole inclining largely away from the normal direction(ND)is developed after hot cross rolling and annealing.Therefore,the CR is an effective method to tailor the texture of the experimental alloy.Unfortunately,this ellipse-like texture could not reserve during the subsequent unidirectional hot rolling and annealing.Both UR and CR plates exhibit a strong planar mechanical anisotropy compared with the traditional unidirectional rolled plate.展开更多
Magnesium alloys such as Mg–Ca and Mg–Zn–Ca are good orthopaedic materials;however their tendency to corrode is high.Herein we utilize selective laser melting(SLM)to modify the surface of these Mg alloys to simulta...Magnesium alloys such as Mg–Ca and Mg–Zn–Ca are good orthopaedic materials;however their tendency to corrode is high.Herein we utilize selective laser melting(SLM)to modify the surface of these Mg alloys to simultaneously improve the corrosion behaviour and microhardness.The corrosion rate decreased from 2.1±0.2 mm/y to 1.0±0.1 mm/y for the laser-processed Mg–0.6Ca,and from 1.6±0.1 mm/y to 0.7±0.2 mm/y for laser-processed Mg–0.5Zn–0.3Ca.The microhardness increased from 46±1 HV to 56±1 HV for Mg–0.6Ca,and from 47±3 HV to 55±3 HV for Mg–0.5Zn–0.3Ca.In addition,good biocompatibility remained in the laser processed Mg alloys.The improved properties are attributed to laser-induced grain refinement,confined impurity elements,residual stress,and modified surface chemistry.The results demonstrated the potential of SLM as a surface engineering approach for developing advanced biomedical Mg alloys.展开更多
The effect of heat treatment on the mechanical and biocorrosion behaviour of the Mg-1 wt.%Zn-1 wt.%Ca(ZX11)and Mg-3 wt.%Zn-0.4 wt.%Ca(ZX30)alloys was evaluated.For this purpose,three-point bending tests as well as ele...The effect of heat treatment on the mechanical and biocorrosion behaviour of the Mg-1 wt.%Zn-1 wt.%Ca(ZX11)and Mg-3 wt.%Zn-0.4 wt.%Ca(ZX30)alloys was evaluated.For this purpose,three-point bending tests as well as electrochemical and immersion tests in Hank’s solution were performed on both alloys in four different thermal conditions:as-cast,solution-treated,peak-aged and over-aged.Microstructural examinations revealed that the as-cast ZX11 and ZX30 alloys exhibit a microstructure composed ofα-Mg grains separated by large Mg_(2)Ca and Ca_(2)Mg_(6)Zn_(3) particles and by large Ca_(2)Mg_(6)Zn_(3) particles,respectively.During solution treatment,the Ca_(2)Mg_(6)Zn_(3) precipitates at the grain boundaries(GBs)are fully dissolved in the ZX11 alloy,but mainly redistributed to form a more connected configuration in the ZX30 alloy,showing a poor age-hardening response.Consequently,after solution-treatment,galvanic corrosion and corrosion rate decreases in the former,but increases in the latter.The peak-aged condition displays the highest corrosion rate for both alloys,maybe due to an excessive number density of fine Ca_(2)Mg_(6)Zn_(3) particles acting as cathodic sites.However,the over-aged condition shows the lowest corrosion rate for the ZX11 alloy and a very similar one to that of the as-cast sample for the ZX30 alloy.The ZX11 alloy shows generally better biocorrosion behaviour than the ZX30 alloy to its lower content in the Ca_(2)Mg_(6)Zn_(3) phase and thus reduced galvanic corrosion.The Mg_(2)Ca phase present in the studied ZX11 alloy has been proved to exhibit an increased corrosion potential,which has been related to an observed enrichment with Zn.展开更多
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro...In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.展开更多
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
The effect of Ce/La misch metal addition on the microstructural evolution of as-cast and as-soluted Mg-5.3Zn-0.5Ca(wt.%) alloys was systematically investigated. It was found that Ce/La could effectively refine the a...The effect of Ce/La misch metal addition on the microstructural evolution of as-cast and as-soluted Mg-5.3Zn-0.5Ca(wt.%) alloys was systematically investigated. It was found that Ce/La could effectively refine the as-cast alloy and restrain grain growth during solution treatment, which was derived from the constitutional supercooling during solidification process and the formation of stable intermetallic compounds Ce Mg12 and Mg17La2. Furthermore, Ce/La microalloying and solution treatment resulted in an evolution from the original lamellar Ca2Mg6Zn3/α-Mg to the divorced eutectic structure. The thermal stability of Mg-Zn-Ca alloy could be effectively improved by Ce/La addition, because the low-melting-point binary Mg-Zn phase was transformed to Mg x Zn y-Ca-(Ce/La) phase with higher thermal stability and the amount of Ca2Mg6Zn3/α-Mg eutectic structure was reduced.展开更多
Seeding cells and scaffolds play pivotal roles in bone tissue engineering and regenerative medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising see...Seeding cells and scaffolds play pivotal roles in bone tissue engineering and regenerative medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising seeding cells in tissue regeneration and engineering for treatment applications.This study was carried out to explore the biocompatibility of scaffolds to seeding cells in vitro.Rod-like nano-hydroxyapatite(RN-HA)and flake-like micro-hydroxyapatite(FM-HA)coatings were prepared on Mg-Zn-Ca alloy substrates using micro-arc oxidation and electrochemical deposition.WJCs were utilized to investigate the cellular biocompatibility of Mg-Zn-Ca alloys after different surface modifications by observing the cell adhesion,morphology,proliferation,and osteoblastic differentiation.The in vitro results indicated that the RN-HA coating group was more suitable for cell proliferation and cell osteoblastic differentiation than the FM-HA group,demonstrating better biocompatibility.Our results suggested that the RN-HA coating on Mg-Zn-Ca alloy substrates might be of great potential in bone tissue engineering.展开更多
A magnesium alloy containing essential,non-toxic,biodegradable elements such as Ca and Zn has been fabricated using a novel twin-roll casting process(TRC).Microstructure,mechanical properties,in vivo corrosion and bio...A magnesium alloy containing essential,non-toxic,biodegradable elements such as Ca and Zn has been fabricated using a novel twin-roll casting process(TRC).Microstructure,mechanical properties,in vivo corrosion and biocompatibility have been assessed and compared to the properties of the rare earth(RE)element containing WE43 alloy.TRC Mg-0.5 wt% Zn-0.5 wt% Ca exhibited fine grains with an average grain size ranging from 70 to 150μm.Mechanical properties of a TRC Mg-0.5Zn-0.5Ca alloy showed an ultimate tensile strength of 220 MPa and ductility of 9.3%.The TRC Mg-0.5Zn-0.5Ca alloy showed a degradation rate of 0.51±0.07 mm/y similar to that of the WE43 alloy(0.47±0.09 mm/y)in the rat model after 1 week of implantation.By week 4 the biodegradation rates of both alloys studied were lowered and stabilized with fewer gas pockets around the implant.The histological analysis shows that both WE43 and TRC Mg-0.5Zn-0.5Ca alloy triggered comparable tissue healing responses at respective times of implantation.The presence of more organized scarring tissue around the TRC Mg-0.5Zn-0.5Ca alloys suggests that the biodegradation of the RE-free alloy may be more conducive to the tissue proliferation and remodelling process.展开更多
The effects of Nd addition on corrosion behavior of Mg66Zn30Ca4 amorphous alloys in simulated body fluids (SBF) were studied in this paper. Electrochemical properties of the samples before and after corrosion were d...The effects of Nd addition on corrosion behavior of Mg66Zn30Ca4 amorphous alloys in simulated body fluids (SBF) were studied in this paper. Electrochemical properties of the samples before and after corrosion were determined. Surface morphologies of samples after immersion in SBF at 37 ℃ for different times were observed under scanning electron microscope (SEM). Results show that the corrosion resistance of Mg-based alloys in SBF is improved with the addition of Nd element. The electrochemical properties indicate that microalloying Nd element to the alloys leads to an ennoblement in the open circuit potentials of the alloys and a decrease in the anodic current density in SBF, especially for the Mgee66-xZn30Ca4Ndx alloys with Nd content of 1.0at.%-1.5at.%. It was observed that the surface morphologies of the alloys immersed in SBF change with the Nd addition. A flake- like structure parallel to the alloy substrate formed on the surface of 1.0at.% Nd-containing alloy immersed in SBF for 7 days improves the corrosion resistance of the amorphous alloys by blocking the corrosion liquid from attacking the alloys.展开更多
The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits theirclinical application. In this study, to deal with this challenge, fluoride coating was prepared on MgeZneCa alloy...The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits theirclinical application. In this study, to deal with this challenge, fluoride coating was prepared on MgeZneCa alloy as the inner coating and then hydroxyapatite (HA) coating as the outer coating was depositedon fluoride coating by pulse reverse current electrodeposition (PRC-HA/MgF2). As a comparative study,the microstructure and corrosion properties of the composite coating with the outer coating fabricatedby traditional constant current electrodeposition (TED-HA/MgF2) were also investigated. Scanningelectron microscopy (SEM) images of the coatings show that the morphology of PRC-HA/MgF2 coating isdense and uniform, and presents nano-rod-like structure. Compared with that of TED-HA/MgF2, thecorrosion current density of Mg alloy coated with PRC-HA/MgF2 coatings decreases from 5.72× 10^-5 A/cm2 to 4.32× 10^-7 A/cm^2, and the corrosion resistance increases by almost two orders of magnitude. Inimmersion tests, samples coated with PRC-HA/MgF2 coating always show the lowest hydrogen evolutionamount, and could induce deposition of the hexagonal structure-apatite on the surface rapidly. Theresults show that the corrosion resistance and the bioactivity of the coatings have been improved byadopting double-pulse current mode in the process of preparing HA on fluoride coating, and the PRC-HA/MgF2 coating is worth of further investigation.展开更多
Mg-Zn-Ca-Mn series alloys are developed as promising candidates of 5G communication devices with excellent thermal conductivities,great ductility,and acceptable strength.In present paper,Mg-x Zn-0.4Ca-0.2Mn(x=2wt%,4wt...Mg-Zn-Ca-Mn series alloys are developed as promising candidates of 5G communication devices with excellent thermal conductivities,great ductility,and acceptable strength.In present paper,Mg-x Zn-0.4Ca-0.2Mn(x=2wt%,4wt%,6wt%)alloys were prepared by a near-solidus extrusion and the effect of Zn content on mechanical and thermal properties were investigated.The results showed that the addition of minor Ca led to the formation of Ca_(2)Mg_(6)Zn_(3) eutectic phase at grain boundaries.A type of bimodal microstructure occurred in the as-extruded alloys,where elongated coarse deformed grains were embedded in refined recrystallized grains matrix.Correspondingly,both yield strength and ductility of the alloys were significantly enhanced after extrusion due to the great grain refinement.Specially,higher Zn content led to the increment in yield strength and a slight reduction in elongation due to the larger fractions of second phase particles.The room temperature thermal conductivity of as-extruded alloys was also improved compared with that of as-cast counterparts.The increment of Zn content decreased the thermal conductivity of both as-cast and as-extruded alloys,which was due to the increased second phase fraction and solution atoms in the matrix,that hindering the motion of electrons.The as-extruded Mg-2Zn-0.4Ca-0.2Mn(wt%)alloy exhibited the highest elongation of 27.7% and thermal conductivity of 139.2 W/(m·K),combined with an acceptable ultimate tensile strength of 244.0 MPa.The present paper provides scientific guidance for the preparation of lightweight materials with high ductility and high thermal conductivity.展开更多
基金Project(NCET-11-0554)supported by the Program for New Century Excellent Talents in UniversityProject(2011BAE22B04)supportedby the National Key Technology R&D Program of ChinaProject(51271206)supported by the National Natural Science Foundation of China
文摘Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.
基金the China Scholarship Council for the award of fellowship and funding(No.202006230137)。
文摘In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-Zn-Ca rods with greatly refined grains and high mechanical properties were produced.Compared to the previous as-cast microstructure,the grain size was reduced from more than 1 mm to around 4μm within 3 s by a single process cycle.The compressive yield strength was increased by 350%while the ultimate compressive strength by 53%.According to the established material flow behaviors by“tracer material”,the plastic material was transported by shear deformation.From the base material to the rod,the material experienced three stages,i.e.deformation by the tool,upward flow with additional tilt,followed by upward transportation.The microstructural evolution was revealed by“stop-action”technique.The microstructural development at regions adjacent to the rod is mainly controlled by twinning,dynamic recrystallization(DRX)as well as particle stimulated nucleation,while that within the rod is related to DRX combined with grain growth.
基金The authors wish to highly acknowledge Prof.L.M.Wang of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,for his valuable suggestions and discussions.Thanks to the financial aid from the National Science&Technology Pillar Program(Grant No.2012BAE01B04)the National Natural Science Foundation of China(Grant No.51401200)the Natural Science Foundation of Jilin Province(Grant No.20140520099JH).
文摘The influence of equal channel angular pressing on the tension-compression yield asymmetry of extruded Mg-5.3 Zn-0.6 Ca(weight percent)alloy has been investigated.The microstructure was obviously refined by the large strain during the equal channel angular pressing,accompanied with very fine Ca_(2)Mg_(6)Zn_(3) phases with average diameter of 70 nm.The weak tension-compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twinning during the compression,because the slope(k)of twinning in Hall-Petch relationship is higher than that of dislocation slip,and the twinning deformation is difficult to take place with decreasing grain size.The basal slip is more active in the alloy after equal channel angular pressing,due to the non-basal texture components,which hinders the twinning activation and reduces the yield asymmetry.Furthermore,the presence of fine precipitate restricts the twinning activation,which also contributes to the reduction of yield asymmetry.
基金supported by the National Natural Science Foundation of China(Grant No.51975151)the China Postdoctoral Science Foundation(Grant No.2017M610207)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(Grant No.LH2019E041)the Fundamental Research Funds for Central Universities(Grant No.HIT.NSRIF.2019005)。
文摘To expand the future clinic applications of biodegradable magnesium alloy,polymer coatings with excellent biocompatibility are the keys to solve the local alkalinity and rapid hydrogen release.Natural-organic silk fibroin provides an approach to fabricate a protective coating on biomedical Mg-Zn-Ca alloy,however,the adhesion force and mechanical properties of the coating on substrates are ought to be further improved without any chemical conversion/intermediate layer.Hereby,based on VUV/O;surface activation,a hybrid of silk fibroin and sodium alginate is proposed to enhance the adhesion force and mechanical properties of the composite coatings on hydrophilic Mg-Zn-Ca alloy surfaces.Various mass ratios of sodium alginate addition were investigated to achieve the optimum coating strategy.The nanoscratch test and nanoindentation test confirmed that the adhesion force was tripled and mechanical properties index was significantly improved when the mass ratio of silk fibroin/sodium alginate was 70/30 compared to pure silk fibroin or sodium alginate coatings.Meanwhile,the corrosion rate of the coated Mg-Zn-Ca alloy was significantly delayed with the addition of sodium alginate,resulting in a reaction layer during corrosion process.Furthermore,the mechanisms for both adhesion and corrosion processes were discussed in detail.Our findings offer more possibilities for the controllable surface performance of degradable metals.
基金This work was supported by the Key Research and Development Plan of Shandong Province(2019JZZY020329)the National Key Research and Development Program of China(grant number.2017YFB0103904)+1 种基金the National Natural Science Foundation of China(No.51701211)DongGuan Innovative Research Team Program(2020607234007).
文摘Magnesium alloys with homogeneous degradation and controlled degradation rate are desirable for biodegradable materials.In the present work,Mg-3 wt.%Zn-0.2 wt.%Ca alloys with different columnar structures were fabricated and the degradation in 0.9 wt.%NaCl were investigated.With the increase of the growth rate for the directional solidification,the microstructure of the directionally solidified(DSed)alloy evolved from cellular to dendritic coupled with the change of the spacing of the primary trunks(λ_(1))and the volume fraction(fv)of Ca_(2)Mg_(6)Zn_(3) phase.The results of the corrosion test suggested that the alloy with cellular structure experienced homogeneous corrosion and exhibited the lowest corrosion rate.The good corrosion resistance of the alloy with cellular structure was attributed to the protective corrosion products film(CPF),which was closely related to the fv of Ca_(2)Mg_(6)Zn_(3) phase andλ_(1).To evaluate the corrosion rates(CR)of the DSed Mg-Zn-Ca alloys with different microstructures,a parameterαwas proposed in this work,which was calculated byλ_(1) and the fv of Ca_(2)Mg_(6)Zn_(3) phase.The fitting result showed that there was a linear relationship between CR andα,which was CR=4.1899+0.00432α.This means that the CR of the DSed Mg-Zn-Ca alloy can be evaluated if the microstructure had been characterized.
基金Project(04GK1008-1)supported by the Major Fund of Science and Technology of Hunan Province,China
文摘Ternary alloys based on the Mg-Zn-Ca system were produced by twin-roll rapid solidification.The alloys were characterized by OM,SEM,HRTEM,XRD,EDS and Micro-hardness.The results show that the rapidly solidified flakes are of fine dendritic cell structures with the cell size ranging from 1 to 5μm.The Mg-6Zn-5Ca alloy in RS and annealing(200℃for 1 h) states are mainly composed ofα-Mg,Mg_2Ca,Ca_2Mg_6Zn_3 and a small quantity of Mg_(51)Zn_(20),MgZn_2 and Mg_2Zn_3.Micro-hardness increases with the increment of Ca content and age hardening occurs after aging at 200℃in the flakes probably due to the precipitation strengthening of the fine precipitates Mg_2Ca and Ca_2Mg_6Zn_3.Some phases at the grain boundary in Mg-6Zn-5Ca alloy are identified by means of HRTEM,which may be beneficial to the improvement in thermal stability of the alloy.
基金the National Key Basic Research Program of China(2013CB632204)Natural Science Foundation of China(51671040).
文摘In the present study,the texture evolution and mechanical anisotropy in a typical Mg–Zn–Ca alloy through hot cross rolling(CR)and unidirectional rolling(UR)were systematically studied.The results show that the rolling path greatly affects the annealed texture.The UR develops a texture with basal poles mainly distributing along the transverse direction(TD).By contrast,an ellipse-like(0002)texture with basal pole inclining largely away from the normal direction(ND)is developed after hot cross rolling and annealing.Therefore,the CR is an effective method to tailor the texture of the experimental alloy.Unfortunately,this ellipse-like texture could not reserve during the subsequent unidirectional hot rolling and annealing.Both UR and CR plates exhibit a strong planar mechanical anisotropy compared with the traditional unidirectional rolled plate.
基金funded by the Shenzhen Science and Technology Innovation Commission(JCYJ20180504165824643)Shenzhen Industrial and Information Technology Bureau(ZDYBH201900000009)+1 种基金the support of Humboldt Research Fellowship for Experienced Researchersthe support of the Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices(IH150100024)
文摘Magnesium alloys such as Mg–Ca and Mg–Zn–Ca are good orthopaedic materials;however their tendency to corrode is high.Herein we utilize selective laser melting(SLM)to modify the surface of these Mg alloys to simultaneously improve the corrosion behaviour and microhardness.The corrosion rate decreased from 2.1±0.2 mm/y to 1.0±0.1 mm/y for the laser-processed Mg–0.6Ca,and from 1.6±0.1 mm/y to 0.7±0.2 mm/y for laser-processed Mg–0.5Zn–0.3Ca.The microhardness increased from 46±1 HV to 56±1 HV for Mg–0.6Ca,and from 47±3 HV to 55±3 HV for Mg–0.5Zn–0.3Ca.In addition,good biocompatibility remained in the laser processed Mg alloys.The improved properties are attributed to laser-induced grain refinement,confined impurity elements,residual stress,and modified surface chemistry.The results demonstrated the potential of SLM as a surface engineering approach for developing advanced biomedical Mg alloys.
基金Financial support from the project ADITIMAT-CM S2018/NMT-4411 funded by the Madrid Regional Government is gratefully acknowledgedreceived funding from the Spanish State Research Agency under the project RTI2018–096391-B-C31,which is also acknowledgedthe Spanish Ministry of Education,Culture and Sports for an FPU fellowship。
文摘The effect of heat treatment on the mechanical and biocorrosion behaviour of the Mg-1 wt.%Zn-1 wt.%Ca(ZX11)and Mg-3 wt.%Zn-0.4 wt.%Ca(ZX30)alloys was evaluated.For this purpose,three-point bending tests as well as electrochemical and immersion tests in Hank’s solution were performed on both alloys in four different thermal conditions:as-cast,solution-treated,peak-aged and over-aged.Microstructural examinations revealed that the as-cast ZX11 and ZX30 alloys exhibit a microstructure composed ofα-Mg grains separated by large Mg_(2)Ca and Ca_(2)Mg_(6)Zn_(3) particles and by large Ca_(2)Mg_(6)Zn_(3) particles,respectively.During solution treatment,the Ca_(2)Mg_(6)Zn_(3) precipitates at the grain boundaries(GBs)are fully dissolved in the ZX11 alloy,but mainly redistributed to form a more connected configuration in the ZX30 alloy,showing a poor age-hardening response.Consequently,after solution-treatment,galvanic corrosion and corrosion rate decreases in the former,but increases in the latter.The peak-aged condition displays the highest corrosion rate for both alloys,maybe due to an excessive number density of fine Ca_(2)Mg_(6)Zn_(3) particles acting as cathodic sites.However,the over-aged condition shows the lowest corrosion rate for the ZX11 alloy and a very similar one to that of the as-cast sample for the ZX30 alloy.The ZX11 alloy shows generally better biocorrosion behaviour than the ZX30 alloy to its lower content in the Ca_(2)Mg_(6)Zn_(3) phase and thus reduced galvanic corrosion.The Mg_(2)Ca phase present in the studied ZX11 alloy has been proved to exhibit an increased corrosion potential,which has been related to an observed enrichment with Zn.
基金financially supported by the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province,China(No.2023JH2/101600002)+3 种基金the Liaoning Provincial Natural Science Foundation,China(No.2022-YQ-09)the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program,China(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group,China(No.KJBLM202202)the Fundamental Research Funds for the Central Universities,China(Nos.N2201023 and N2325009)。
文摘In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
基金supported by the National Natural Science Foundation of China(51401200)Natural Science Foundation of Jilin Province(20140520099JH)+4 种基金National Science & Technology Pillar Program(2012BAE01B04)Chinese Academy of Sciences of Western Action Plan Project(KZCX2-XB3-06)the National Natural Science Foundation of China Major Project(91122030)National High Technology Research and Development Program of China(2011AA03A407)National Natural Science Foundation for Creative Research Group(20921002)
文摘The effect of Ce/La misch metal addition on the microstructural evolution of as-cast and as-soluted Mg-5.3Zn-0.5Ca(wt.%) alloys was systematically investigated. It was found that Ce/La could effectively refine the as-cast alloy and restrain grain growth during solution treatment, which was derived from the constitutional supercooling during solidification process and the formation of stable intermetallic compounds Ce Mg12 and Mg17La2. Furthermore, Ce/La microalloying and solution treatment resulted in an evolution from the original lamellar Ca2Mg6Zn3/α-Mg to the divorced eutectic structure. The thermal stability of Mg-Zn-Ca alloy could be effectively improved by Ce/La addition, because the low-melting-point binary Mg-Zn phase was transformed to Mg x Zn y-Ca-(Ce/La) phase with higher thermal stability and the amount of Ca2Mg6Zn3/α-Mg eutectic structure was reduced.
基金supported by the National Natural Science Foundation of China(81071008,81171177,and 30870634)the Strategic Priority Re-search Program of the Chinese Academy of Sciences(XDA01030300)+3 种基金the Program for New Century Excellent Talents in University(NCET-06-0611)the Excellent Youth Foundation of Henan Scientific Committee(114100510005)the Young Excellent Teachers in University Funded Projects of Henan ProvinceBureau of Science and Technology Development Project from Henan Province(122102310203)
文摘Seeding cells and scaffolds play pivotal roles in bone tissue engineering and regenerative medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising seeding cells in tissue regeneration and engineering for treatment applications.This study was carried out to explore the biocompatibility of scaffolds to seeding cells in vitro.Rod-like nano-hydroxyapatite(RN-HA)and flake-like micro-hydroxyapatite(FM-HA)coatings were prepared on Mg-Zn-Ca alloy substrates using micro-arc oxidation and electrochemical deposition.WJCs were utilized to investigate the cellular biocompatibility of Mg-Zn-Ca alloys after different surface modifications by observing the cell adhesion,morphology,proliferation,and osteoblastic differentiation.The in vitro results indicated that the RN-HA coating group was more suitable for cell proliferation and cell osteoblastic differentiation than the FM-HA group,demonstrating better biocompatibility.Our results suggested that the RN-HA coating on Mg-Zn-Ca alloy substrates might be of great potential in bone tissue engineering.
基金the support of the Australian Research Council through the ARC Research Hub for Advanced Manufacturing of Medical Devices(IH150100024).
文摘A magnesium alloy containing essential,non-toxic,biodegradable elements such as Ca and Zn has been fabricated using a novel twin-roll casting process(TRC).Microstructure,mechanical properties,in vivo corrosion and biocompatibility have been assessed and compared to the properties of the rare earth(RE)element containing WE43 alloy.TRC Mg-0.5 wt% Zn-0.5 wt% Ca exhibited fine grains with an average grain size ranging from 70 to 150μm.Mechanical properties of a TRC Mg-0.5Zn-0.5Ca alloy showed an ultimate tensile strength of 220 MPa and ductility of 9.3%.The TRC Mg-0.5Zn-0.5Ca alloy showed a degradation rate of 0.51±0.07 mm/y similar to that of the WE43 alloy(0.47±0.09 mm/y)in the rat model after 1 week of implantation.By week 4 the biodegradation rates of both alloys studied were lowered and stabilized with fewer gas pockets around the implant.The histological analysis shows that both WE43 and TRC Mg-0.5Zn-0.5Ca alloy triggered comparable tissue healing responses at respective times of implantation.The presence of more organized scarring tissue around the TRC Mg-0.5Zn-0.5Ca alloys suggests that the biodegradation of the RE-free alloy may be more conducive to the tissue proliferation and remodelling process.
基金financially supported by the"100 Talents Project"of Hebei Province,China(E2012100009)the Key Research Items in Science and Technology Support Program of Tianjin,China(12ZCZDGX46100)+1 种基金the Natural Science Foundation of Hebei Province,China(E2012202017)the National High Technology Research and Development Program(863 Program)of China(2013AA031002)
文摘The effects of Nd addition on corrosion behavior of Mg66Zn30Ca4 amorphous alloys in simulated body fluids (SBF) were studied in this paper. Electrochemical properties of the samples before and after corrosion were determined. Surface morphologies of samples after immersion in SBF at 37 ℃ for different times were observed under scanning electron microscope (SEM). Results show that the corrosion resistance of Mg-based alloys in SBF is improved with the addition of Nd element. The electrochemical properties indicate that microalloying Nd element to the alloys leads to an ennoblement in the open circuit potentials of the alloys and a decrease in the anodic current density in SBF, especially for the Mgee66-xZn30Ca4Ndx alloys with Nd content of 1.0at.%-1.5at.%. It was observed that the surface morphologies of the alloys immersed in SBF change with the Nd addition. A flake- like structure parallel to the alloy substrate formed on the surface of 1.0at.% Nd-containing alloy immersed in SBF for 7 days improves the corrosion resistance of the amorphous alloys by blocking the corrosion liquid from attacking the alloys.
基金We are grateful for the financial support of the National Hightech Research and Development Projects(863)(2015AA033603,2015AA020301)the National Key Research and Development Program of China(2016YFC1102403)the Major Science and Technology Projects in Henan Province(141100310900).
文摘The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits theirclinical application. In this study, to deal with this challenge, fluoride coating was prepared on MgeZneCa alloy as the inner coating and then hydroxyapatite (HA) coating as the outer coating was depositedon fluoride coating by pulse reverse current electrodeposition (PRC-HA/MgF2). As a comparative study,the microstructure and corrosion properties of the composite coating with the outer coating fabricatedby traditional constant current electrodeposition (TED-HA/MgF2) were also investigated. Scanningelectron microscopy (SEM) images of the coatings show that the morphology of PRC-HA/MgF2 coating isdense and uniform, and presents nano-rod-like structure. Compared with that of TED-HA/MgF2, thecorrosion current density of Mg alloy coated with PRC-HA/MgF2 coatings decreases from 5.72× 10^-5 A/cm2 to 4.32× 10^-7 A/cm^2, and the corrosion resistance increases by almost two orders of magnitude. Inimmersion tests, samples coated with PRC-HA/MgF2 coating always show the lowest hydrogen evolutionamount, and could induce deposition of the hexagonal structure-apatite on the surface rapidly. Theresults show that the corrosion resistance and the bioactivity of the coatings have been improved byadopting double-pulse current mode in the process of preparing HA on fluoride coating, and the PRC-HA/MgF2 coating is worth of further investigation.
基金supported by the Natural Science Basic Research Program of Shaanxi,China(Nos.2022JQ-305 and2022JQ-326)the Qin Chuang Yuan Platform High-Level Talent Project of Innovation and Entrepreneurship(No.QCYRCXM-2023-020)。
文摘Mg-Zn-Ca-Mn series alloys are developed as promising candidates of 5G communication devices with excellent thermal conductivities,great ductility,and acceptable strength.In present paper,Mg-x Zn-0.4Ca-0.2Mn(x=2wt%,4wt%,6wt%)alloys were prepared by a near-solidus extrusion and the effect of Zn content on mechanical and thermal properties were investigated.The results showed that the addition of minor Ca led to the formation of Ca_(2)Mg_(6)Zn_(3) eutectic phase at grain boundaries.A type of bimodal microstructure occurred in the as-extruded alloys,where elongated coarse deformed grains were embedded in refined recrystallized grains matrix.Correspondingly,both yield strength and ductility of the alloys were significantly enhanced after extrusion due to the great grain refinement.Specially,higher Zn content led to the increment in yield strength and a slight reduction in elongation due to the larger fractions of second phase particles.The room temperature thermal conductivity of as-extruded alloys was also improved compared with that of as-cast counterparts.The increment of Zn content decreased the thermal conductivity of both as-cast and as-extruded alloys,which was due to the increased second phase fraction and solution atoms in the matrix,that hindering the motion of electrons.The as-extruded Mg-2Zn-0.4Ca-0.2Mn(wt%)alloy exhibited the highest elongation of 27.7% and thermal conductivity of 139.2 W/(m·K),combined with an acceptable ultimate tensile strength of 244.0 MPa.The present paper provides scientific guidance for the preparation of lightweight materials with high ductility and high thermal conductivity.