In long period stacking ordered(LPSO)phase containing Mg-Zn-Y alloys,high elastic modulus and deformation kinks of LPSO phase considerably enhance the tensile yield strength,with slight detriment of or benefit to the ...In long period stacking ordered(LPSO)phase containing Mg-Zn-Y alloys,high elastic modulus and deformation kinks of LPSO phase considerably enhance the tensile yield strength,with slight detriment of or benefit to the ductility depending on its volume fraction.In present work,uniaxial tensile tests and fracture toughness tests are carried out using Mg99.2Zn0.2Y0.6,Mg97Zn1Y2,Mg89Zn4Y7 and Mg85Zn6Y9(at%)materials with different extrusion ratios.Extrusion processing enhances both strength and ductility due to the recrystallization of Mg grains.Variable plastic deformation mechanisms are activated depending on volume fraction of Mg and LPSO phase as well as their relative size during bending.{1012¯}<101¯1¯>tensile twins in Mg grains and deformation kinks in LPSO phase are observed,which dissipate large amount of deformation energy favoring for toughness.However,inherently brittle LPSO phase is detrimental to toughness.Microstructure-motivated empirical models for yield strength and fracture toughness prediction based on rule of mixtures are calibrated by experimental data.Energy release rates of individual mechanisms are estimated,which quantitatively indicate strong Mg/LPSO interaction.展开更多
The microstructure and damping capacities of MgZnxYi.33x(x=l-4at.%)alloys were discussed and researched.The main phase composition of the alloys consists of a_Mg and long-period stacking ordered(LPSO)phase.Due to incr...The microstructure and damping capacities of MgZnxYi.33x(x=l-4at.%)alloys were discussed and researched.The main phase composition of the alloys consists of a_Mg and long-period stacking ordered(LPSO)phase.Due to increasedLPSO phase,grain size was refined.LPSO phase was advantageous to the damping properties of the Mg-Zn-Y alloys.Mg-7%Zn-12.8%Y has the highest damping capacity up to0.04.Due to stacking fault probability,the LPSO phase in the Mg-Zn-Yalloys could be new damping source to dissipate energy so as to contribute to the improvement of damping capacities.展开更多
Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Z...Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase.展开更多
Long period stacking ordered(LPSO) structure phases were prepared by conventional solidification method in Mg(94)Zn3YxGd(3-x)(x=3,2,1.5,1,mole fraction) alloys,the microstructures,corrosion and compressive mec...Long period stacking ordered(LPSO) structure phases were prepared by conventional solidification method in Mg(94)Zn3YxGd(3-x)(x=3,2,1.5,1,mole fraction) alloys,the microstructures,corrosion and compressive mechanical properties of which were investigated,separately.The results reveal that the microstructures of the as-cast Mg(94)Zn3YxGd(3-x) alloys,with n(Zn)/n(Y+Gd)=1:1,consist of α(Mg) phase,Mg3Zn3RE2(W) phase,Mg(12)ZnRE(14H-LPSO) phase and a few bright cube-shaped Mg-Y-Gd phases.The formation and the distribution of LPSO-phase in the alloys can be influenced by the content of Gd.The volume fraction of 14H-LPSO phase increases first and then decreases with the increase of the Gd content.For the electrochemical impedance spectroscopy(EIS) measurement,a R(Q(R(QR))) model was used to fit the test results in 3.5%(mass fraction) NaCl solution at room temperature.The corrosion current densities of all samples are about 10-(-5) A/cm-2.When x(Gd)≤1%,Mg-Zn-Y-(Gd)alloy shows good corrosion resistance,which is better than that of the commercial AZ91 D magnesium alloy.The corrosion rate increases when the Gd content is higher than 1.5%.At room temperature,the compressive properties of Mg-Zn-Y-(Gd) alloys increase remarkably with the increase of the volume fraction of LPSO phase.In addition,the pinning effect of W-phase and dispersive cube-shaped Mg-Y-Gd phase is beneficial to improving the mechanical properties of as-cast Mg(94)Zn3YxGd(3-x) alloy in deformation process.展开更多
The hot tearing susceptibility of MgZn2.5YxZr0.5 (x=0.5, 1, 2, 4, 6) alloys was evaluated by thermodynamic calculations based on Clyne-Davies model. The microstructure and morphology of hot tearing regions of the al...The hot tearing susceptibility of MgZn2.5YxZr0.5 (x=0.5, 1, 2, 4, 6) alloys was evaluated by thermodynamic calculations based on Clyne-Davies model. The microstructure and morphology of hot tearing regions of the alloys were observed by X-ray diffraction and scanning electron microscopy. The solidification temperature and shrinkage stress during the solidification of MgZn2.5YxZr0.5 alloys in the“T”type hot tearing permanent-mold were acquired with the attached computer. The effect factors of hot tearing susceptibility of MgZn2.5YxZr0.5 alloys, such as the solidification temperature interval, the variation of solid fraction in vulnerable region, the residual liquid fraction in the final stage, the type of the second phase of the alloys were discussed based on the above calculation and observation. The results demonstrated that the hot tearing susceptibility in the investigated alloys was found as follows:MgZn2.5Y2Zr0.5&gt;MgZn2.5Y0.5Zr0.5&gt;MgZn2.5Y4Zr0.5&gt;MgZn2.5Y6Zr0.5&gt;MgZn2.5Y1Zr0.5. The highest hot tearing susceptibility of MgZn2.5Y2Zr0.5 alloy related to the following reasons: the largest freezing range, the biggest changing of the variation of solid fraction in vulnerable region, the least liquid film in the final stage of solidification, the formation of the second phase which worsens the liquid flow and interdendritic feeding after dendrite coherency.展开更多
A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the pol...A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the polygon-like morphology,another pattern of the icosahedral quasicrystal,has also been found in the Y-rich Mg-Zn-Y ternary alloys. The latter morphology results from the evolution of the former one. The growth mechanism of the petal-like morphology of the icosahedral quasicrystal was also discussed. Alloying composition,i.e.,Y element content,is a major factor inducing the morphology evolution of the icosahedral quasicrystal.展开更多
As-east mierostruetures and their distribution of Mg-Zn-Y ternary alloy with high magnesium, low zinc and yttrium were examined using Nikon Epiphot optical microscopy (OM), RigakuD/max-3C X- ray diffraetion (XRD),...As-east mierostruetures and their distribution of Mg-Zn-Y ternary alloy with high magnesium, low zinc and yttrium were examined using Nikon Epiphot optical microscopy (OM), RigakuD/max-3C X- ray diffraetion (XRD), and JEOL JSM-6700F scanning electron microscopy (SEM) equipped with an energydispersive X-ray spectroscopy (EDS). In the as-east mierostructures, Yttrium and zinc tend to segregate at grain boundaries,展开更多
The effect of high pressure during solidification on the microstructure and mechanical property of Mg-6Zn-1Y and Mg-6Zn-3Y was investigated using optical microscopy, scanning electronic microscopy, X-ray diffraction(...The effect of high pressure during solidification on the microstructure and mechanical property of Mg-6Zn-1Y and Mg-6Zn-3Y was investigated using optical microscopy, scanning electronic microscopy, X-ray diffraction(XRD) and Vickers-hardness testing. Under atmospheric-pressure solidification, Mg-6Zn-1Y consisted of α-Mg, Mg7Zn3 and Mg_3YZn_6; whilst Mg-6Zn-3Y consisted of α-Mg, Mg_3Y_2Zn_3 and Mg_3YZn_6. Under 6 GPa high-pressure solidification, both alloy consisted of α-Mg, MgZ n and Mg12 YZn. The shape of the main second phase changed from a lamellar structure formed for atmospheric-pressure solidification to small particles formed for solidification at 6 GPa pressure. The dendrite microstructure was refined and was more regular, and the length of the primary dendrite arm increased under 6 GPa high-pressure solidification, which was attributed to increasing thermal undercooling, compositional undercooling and kinetics undercooling. After solidification at 6 GPa pressure, the solid solubility of Y in the second phase and the Vickers-hardness increased from 15 wt.% and 69 MPa for Mg-6Zn-1Y to 49 wt.% and 97 MPa; and from 19 wt.% and 71 MPa for Mg-6Zn-3Y alloy to 20 wt.% and 92 MPa, respectively.展开更多
The existing form and grain refining effects of small zirconium addition in pure Mg, Mg-Yb and Mg-Zn binary alloys, and Mg-Zn-Yb ternary alloy (ZK60-Yb) were investigated. The results show that Zr element exists mai...The existing form and grain refining effects of small zirconium addition in pure Mg, Mg-Yb and Mg-Zn binary alloys, and Mg-Zn-Yb ternary alloy (ZK60-Yb) were investigated. The results show that Zr element exists mainly in single and cluster particles of pure α-Zr or Zn-Zr compounds inside grains and at grain boundaries. Only the particles located in the interior of grains can act as the nucleus for α-Mg growth and effectively promote the formation of fine equiaxed grains. The broken and dispersed Zr-rich particles produced during the hot extrusion process can form nebulous banded structure in which these fine particles may act as obstacles to dislocation motion in wrought magnesium alloys.展开更多
The mechanical properties and microstructure were investigated under different Zn content and heat treatment conditions in a Mg-Zn-YGd cast alloy.A part of the long period stacking order(LPSO)phases transformed to W-M...The mechanical properties and microstructure were investigated under different Zn content and heat treatment conditions in a Mg-Zn-YGd cast alloy.A part of the long period stacking order(LPSO)phases transformed to W-M^ZnaRE?phases with an increase in Zn content from 0.9 at.%to 1.8 at.%,and the ultimate tensile strength(UTS)increased from 229 MPa to 248 MPa.With solution treatment at 480°C,the content of the LPSO phase and strength sharply decreased in the Mg-1.8Zn-0.8Y-0.8Gd alloy,whereas this change was not significantly observed in the Mg-0.9Zn-O.8Y-O.8Gd alloy.After solution treatment,the elongation significantly improved and the UTS sharply decreased in both alloys.The lamellar and filminess LPSO phases were observed with aging treatment at 200℃.Moreover,the strengthening efficiency of lamellar and filminess LPSO phases was lower than that of the block LPSO phases.Therefore,the UTS of the T6 state was lower than that of the as-cast alloy.展开更多
Mg97−xZn1Y2Alx alloys with long-period stacking ordered(LPSO)structures were prepared by conventional casting method.The optical microscopy(OM),X-ray diffraction(XRD)and the scanning electron microscope(SEM)equipped w...Mg97−xZn1Y2Alx alloys with long-period stacking ordered(LPSO)structures were prepared by conventional casting method.The optical microscopy(OM),X-ray diffraction(XRD)and the scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS)were used to analyze the microstructure of the alloys with different compositions.Immersion test and electrochemical measurement were used to evaluate the corrosion behavior of the alloys at room temperature,and the corrosive medium is 3.5%NaCl aqueous solution.The results showed that,with the increasing aluminum(Al)addition,exceptα-Mg and LPSO phases,new phases also emerged on the grain boundaries.At the same time,the zigzag part of LPSO phases disappeared,and the boundaries between LPSO phases andα-Mg became smooth.Furthermore,the addition of Al to Mg-Zn-Y alloys could hinder the activity of cathodic hydrogen evolution reaction and improve the uniformity and compactness of the protective surface film,thus,enhanced the corrosion resistance of Mg-Zn-Y alloys.展开更多
Magnesium alloys possess lots of unique advantages as one of the most promising materials. However, relatively poor mechanical properties limit the application of Mg alloys. As a relatively excellent strengthing phase...Magnesium alloys possess lots of unique advantages as one of the most promising materials. However, relatively poor mechanical properties limit the application of Mg alloys. As a relatively excellent strengthing phase, icosahedral quasicrystal phased-phase) has great influence on Mg-Zn-Y-(Zr) alloys. The yield strength of Mg-Zn-Y-(Zr) alloys could reach 150 - 450 MPa at room temperature with different I-phase volume fractions, therefore the formation of I-phase has been regared as an effective method to improve the performance of Mg alloys. In this review paper, a series of researches about the Mg-Zn-Y-(Zr) alloys containing I-phase have been discussed, mainly including the current understandings about formation mechanism and I- phase structure, its orientation relationship with a-Mg matrix, and the effect of I-phase on Mg-Zn-Y-(Zr) alloys.展开更多
The wear behavior of an as-received Mg-Zn-Y-Zr alloy before and after a facile heat treatment was investigated under sliding in air and 0.5 wt.%NaCl solution.Results revealed that the wear resistance of the alloy was ...The wear behavior of an as-received Mg-Zn-Y-Zr alloy before and after a facile heat treatment was investigated under sliding in air and 0.5 wt.%NaCl solution.Results revealed that the wear resistance of the alloy was remarkably enhanced after the heat treatment,irrespective of testing condition.The wear mechanism was predominantly abrasive wear accompanied by oxidation under the dry sliding condition,while corrosive wear was dominant under sliding in the NaCl solution.The superior corrosive wear resistance was attributed to the homogenous distribution of fine I-phase precipitates in the alloy by the heat treatment,leading to a reduction in wear,corrosion as well as wear-corrosion synergy.The wear-accelerated corrosion rate was remarkably alleviated after the heat treatment.展开更多
Quaternary Mg-Zn-Y-Ce quasi-crystal-containing alloys were fabricated using a metal mold casting route. The microstructures of Mg-Zn-Y-Ce alloys and the distribution of the major elements were analyzed. The difference...Quaternary Mg-Zn-Y-Ce quasi-crystal-containing alloys were fabricated using a metal mold casting route. The microstructures of Mg-Zn-Y-Ce alloys and the distribution of the major elements were analyzed. The differences in morphology and micro-hardness between quaternary Mg-Zn-Y-Ce quasi-crystals and ternary Mg- Zn-Y quasi-crystals were discussed. The result showed that the micro-hardness of Mg-Zn-Y-Ce quasi-crystals reached peak value when the content of Ce was 0.8at.%. Subsequently, various contents of Mg-Zn-Y-0.8Ce alloys were used to strengthen AZ91 magnesium alloys. The microstructural modification and mechanical properties of reinforced AZ91 alloys with and without solution, as well as their aging treatments, were also studied. Further research showed that aging-treated AZ91-10wt.%(Mg-Zn-Y-0.8at.%Ce) alloys exhibited excellent mechanical properties: their Brinell hardness, tensile strength, and elongation were HV91, 252 MPa, and 4.1%, respectively. Through this study, the range of application of AZ91 alloys can further be extended.展开更多
The mechanisms of multimodal microstructure evolution and the effects of microstructural factors on mechanical properties must be elucidated to design new alloys with superior properties.In this study,high-fracture-to...The mechanisms of multimodal microstructure evolution and the effects of microstructural factors on mechanical properties must be elucidated to design new alloys with superior properties.In this study,high-fracture-toughness and ductile Mg_(96.75)Zn_(0.85)Y_(2.05)Al_(0.35) alloys were developed using rapidly solidified(RS)ribbon-consolidation technique,and the inherited multimodal microstructure evolution during plastic flow consolidation of the RS ribbons was investigated.The use of extrusion for plastic flow consolidation of the heat-treated RS ribbons produced a multimodal microstructure consisting of the worked grains with high Kernel average misorientation(KAM)angles(Group1),the ultrafine dynamically recrystallized(DRXed)grains with intermediate KAM angles(Group 2),and the fine DRXed grains with low KAM angles(Group 3).Groups 1 and 2 contribute to the alloy strengthening,while Group 3 contributes to improving ductility with strainhardening,resulting in enhancement of the fracture toughness.To form the multimodal microstructure,it was necessary to apply plastic flow with equivalent strains of>2.3 to the heat-treated RS ribbons possessing duplex microstructures with different dispersions of the long-period stacking ordered phase.展开更多
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ...Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 fr...Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 from bibliometric and scientific perspectives.More than 4680 articles on Mg and its alloys were published and indexed in the Web of Science(WoS)Core Collection database last year.The bibliometric analyses show that the traditional structural Mg alloys,functional Mg materials,and corrosion and protection of Mg alloys are still the main research focus.Therefore,this review paper mainly focuses on the research progress of Mg cast alloys,Mg wrought alloys,bio-magnesium alloys,Mg-based energy storage materials,corrosion and protection of Mg alloys in 2023.In addition,future research directions are proposed based on the challenges and obstacles identified throughout this review.展开更多
基金financial support from JSPS KAKENHI for Scientific Research on Innovative Areas MFS Materials Science(Grant Number JP18H05478)。
文摘In long period stacking ordered(LPSO)phase containing Mg-Zn-Y alloys,high elastic modulus and deformation kinks of LPSO phase considerably enhance the tensile yield strength,with slight detriment of or benefit to the ductility depending on its volume fraction.In present work,uniaxial tensile tests and fracture toughness tests are carried out using Mg99.2Zn0.2Y0.6,Mg97Zn1Y2,Mg89Zn4Y7 and Mg85Zn6Y9(at%)materials with different extrusion ratios.Extrusion processing enhances both strength and ductility due to the recrystallization of Mg grains.Variable plastic deformation mechanisms are activated depending on volume fraction of Mg and LPSO phase as well as their relative size during bending.{1012¯}<101¯1¯>tensile twins in Mg grains and deformation kinks in LPSO phase are observed,which dissipate large amount of deformation energy favoring for toughness.However,inherently brittle LPSO phase is detrimental to toughness.Microstructure-motivated empirical models for yield strength and fracture toughness prediction based on rule of mixtures are calibrated by experimental data.Energy release rates of individual mechanisms are estimated,which quantitatively indicate strong Mg/LPSO interaction.
基金National Natural Science Foundation of China(Nos.U1610123,51674226,51574207,51574206,51274175)International Cooperation project of the Ministry of Science and Technology of China(No.2014DFA50320)+4 种基金The Science and Technology Major Project of Shanxi Province(No.MC2016-06)International Science and Technology Cooperation Project of Shanxi Province(No.2015081041)Research Project Supported by Shanxi Scholarship Council of China(No.2016-Key 2)Transformation of Scientific and Technological Achievements Special Guide Project of Shanxi Province(No.201604D131029)Shanxi Province Science Foundation for Youths(No.201601D021062)
文摘The microstructure and damping capacities of MgZnxYi.33x(x=l-4at.%)alloys were discussed and researched.The main phase composition of the alloys consists of a_Mg and long-period stacking ordered(LPSO)phase.Due to increasedLPSO phase,grain size was refined.LPSO phase was advantageous to the damping properties of the Mg-Zn-Y alloys.Mg-7%Zn-12.8%Y has the highest damping capacity up to0.04.Due to stacking fault probability,the LPSO phase in the Mg-Zn-Yalloys could be new damping source to dissipate energy so as to contribute to the improvement of damping capacities.
基金the Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant(No.075-15-2022-1133)by the Strategic Academic Leadership Program“Priority 2030”(No.K2-2022-001)For the sample preparation and TEM investigation,the authors thank the Collective Use Equipment Center“Material Science and Metallurgy”for the equipment modernization program represented by the Ministry of Higher Education and Science of Russian Federation(No.075-15-2021-696).
文摘Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase.
基金Project(51374084)supported by the National Natural Science Foundation of ChinaProject supported by the Power Electronics Science and Education Development Program of Delta Environmental&Educational Foundation,ChinaProject(2010K10-08)supported by the Science and Technology Plan(Industrial Research)of Shaanxi Province,China
文摘Long period stacking ordered(LPSO) structure phases were prepared by conventional solidification method in Mg(94)Zn3YxGd(3-x)(x=3,2,1.5,1,mole fraction) alloys,the microstructures,corrosion and compressive mechanical properties of which were investigated,separately.The results reveal that the microstructures of the as-cast Mg(94)Zn3YxGd(3-x) alloys,with n(Zn)/n(Y+Gd)=1:1,consist of α(Mg) phase,Mg3Zn3RE2(W) phase,Mg(12)ZnRE(14H-LPSO) phase and a few bright cube-shaped Mg-Y-Gd phases.The formation and the distribution of LPSO-phase in the alloys can be influenced by the content of Gd.The volume fraction of 14H-LPSO phase increases first and then decreases with the increase of the Gd content.For the electrochemical impedance spectroscopy(EIS) measurement,a R(Q(R(QR))) model was used to fit the test results in 3.5%(mass fraction) NaCl solution at room temperature.The corrosion current densities of all samples are about 10-(-5) A/cm-2.When x(Gd)≤1%,Mg-Zn-Y-(Gd)alloy shows good corrosion resistance,which is better than that of the commercial AZ91 D magnesium alloy.The corrosion rate increases when the Gd content is higher than 1.5%.At room temperature,the compressive properties of Mg-Zn-Y-(Gd) alloys increase remarkably with the increase of the volume fraction of LPSO phase.In addition,the pinning effect of W-phase and dispersive cube-shaped Mg-Y-Gd phase is beneficial to improving the mechanical properties of as-cast Mg(94)Zn3YxGd(3-x) alloy in deformation process.
基金Project (2011BAE22B01) supported by the National Key Technologies R&D Program,ChinaProject (2013CB632203) supported by the National Basic Research Program of China
文摘The hot tearing susceptibility of MgZn2.5YxZr0.5 (x=0.5, 1, 2, 4, 6) alloys was evaluated by thermodynamic calculations based on Clyne-Davies model. The microstructure and morphology of hot tearing regions of the alloys were observed by X-ray diffraction and scanning electron microscopy. The solidification temperature and shrinkage stress during the solidification of MgZn2.5YxZr0.5 alloys in the“T”type hot tearing permanent-mold were acquired with the attached computer. The effect factors of hot tearing susceptibility of MgZn2.5YxZr0.5 alloys, such as the solidification temperature interval, the variation of solid fraction in vulnerable region, the residual liquid fraction in the final stage, the type of the second phase of the alloys were discussed based on the above calculation and observation. The results demonstrated that the hot tearing susceptibility in the investigated alloys was found as follows:MgZn2.5Y2Zr0.5&gt;MgZn2.5Y0.5Zr0.5&gt;MgZn2.5Y4Zr0.5&gt;MgZn2.5Y6Zr0.5&gt;MgZn2.5Y1Zr0.5. The highest hot tearing susceptibility of MgZn2.5Y2Zr0.5 alloy related to the following reasons: the largest freezing range, the biggest changing of the variation of solid fraction in vulnerable region, the least liquid film in the final stage of solidification, the formation of the second phase which worsens the liquid flow and interdendritic feeding after dendrite coherency.
基金the National Natural Science Foundation of China (No. 50571081)the Aviation Foundation of China (No. 04G53024).
文摘A petal-like icosahedral quasicrystal with five branches,which is considered to be the representative morphology of the icosahedral quasicrystal,has been observed in the Y-rich Mg-Zn-Y ternary alloys. Moreover,the polygon-like morphology,another pattern of the icosahedral quasicrystal,has also been found in the Y-rich Mg-Zn-Y ternary alloys. The latter morphology results from the evolution of the former one. The growth mechanism of the petal-like morphology of the icosahedral quasicrystal was also discussed. Alloying composition,i.e.,Y element content,is a major factor inducing the morphology evolution of the icosahedral quasicrystal.
文摘As-east mierostruetures and their distribution of Mg-Zn-Y ternary alloy with high magnesium, low zinc and yttrium were examined using Nikon Epiphot optical microscopy (OM), RigakuD/max-3C X- ray diffraetion (XRD), and JEOL JSM-6700F scanning electron microscopy (SEM) equipped with an energydispersive X-ray spectroscopy (EDS). In the as-east mierostructures, Yttrium and zinc tend to segregate at grain boundaries,
基金Project supported by the China Scholarship Council(2011836024)the International Science and Technology Cooperation Project of Jiangxi Province(20151BDH80006)+5 种基金the Prior Science and Technology Program led by the Returned Overseas Chinese Talents(RSTH[2015]192-GRSZ[2015]273)the Key Program of Natural Science Foundation of Jiangxi Province(20133BAB2000820144ACB20013)the Science and Technology Innovation Project of Jiangxi Academy of Sciences(2013-YYB-12013-XTPH1-192015XTTD04)
文摘The effect of high pressure during solidification on the microstructure and mechanical property of Mg-6Zn-1Y and Mg-6Zn-3Y was investigated using optical microscopy, scanning electronic microscopy, X-ray diffraction(XRD) and Vickers-hardness testing. Under atmospheric-pressure solidification, Mg-6Zn-1Y consisted of α-Mg, Mg7Zn3 and Mg_3YZn_6; whilst Mg-6Zn-3Y consisted of α-Mg, Mg_3Y_2Zn_3 and Mg_3YZn_6. Under 6 GPa high-pressure solidification, both alloy consisted of α-Mg, MgZ n and Mg12 YZn. The shape of the main second phase changed from a lamellar structure formed for atmospheric-pressure solidification to small particles formed for solidification at 6 GPa pressure. The dendrite microstructure was refined and was more regular, and the length of the primary dendrite arm increased under 6 GPa high-pressure solidification, which was attributed to increasing thermal undercooling, compositional undercooling and kinetics undercooling. After solidification at 6 GPa pressure, the solid solubility of Y in the second phase and the Vickers-hardness increased from 15 wt.% and 69 MPa for Mg-6Zn-1Y to 49 wt.% and 97 MPa; and from 19 wt.% and 71 MPa for Mg-6Zn-3Y alloy to 20 wt.% and 92 MPa, respectively.
基金supported by the Natural Sci-ence Foundation Project of Chongqing, China (No. 2007bb4338)the Developmental Fund of Southwest Nominal University (SWNUF,No. 2004009)
文摘The existing form and grain refining effects of small zirconium addition in pure Mg, Mg-Yb and Mg-Zn binary alloys, and Mg-Zn-Yb ternary alloy (ZK60-Yb) were investigated. The results show that Zr element exists mainly in single and cluster particles of pure α-Zr or Zn-Zr compounds inside grains and at grain boundaries. Only the particles located in the interior of grains can act as the nucleus for α-Mg growth and effectively promote the formation of fine equiaxed grains. The broken and dispersed Zr-rich particles produced during the hot extrusion process can form nebulous banded structure in which these fine particles may act as obstacles to dislocation motion in wrought magnesium alloys.
文摘The mechanical properties and microstructure were investigated under different Zn content and heat treatment conditions in a Mg-Zn-YGd cast alloy.A part of the long period stacking order(LPSO)phases transformed to W-M^ZnaRE?phases with an increase in Zn content from 0.9 at.%to 1.8 at.%,and the ultimate tensile strength(UTS)increased from 229 MPa to 248 MPa.With solution treatment at 480°C,the content of the LPSO phase and strength sharply decreased in the Mg-1.8Zn-0.8Y-0.8Gd alloy,whereas this change was not significantly observed in the Mg-0.9Zn-O.8Y-O.8Gd alloy.After solution treatment,the elongation significantly improved and the UTS sharply decreased in both alloys.The lamellar and filminess LPSO phases were observed with aging treatment at 200℃.Moreover,the strengthening efficiency of lamellar and filminess LPSO phases was lower than that of the block LPSO phases.Therefore,the UTS of the T6 state was lower than that of the as-cast alloy.
基金This work was supported by the National Natural Science Foundation of China(No.50571073)the Ph.D.Programs Foundation of Ministry of Education of China(No.20111402110004)the Natural Science Foundation of Shanxi Province,China(No.2009011028-3,2012011022-1).
文摘Mg97−xZn1Y2Alx alloys with long-period stacking ordered(LPSO)structures were prepared by conventional casting method.The optical microscopy(OM),X-ray diffraction(XRD)and the scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS)were used to analyze the microstructure of the alloys with different compositions.Immersion test and electrochemical measurement were used to evaluate the corrosion behavior of the alloys at room temperature,and the corrosive medium is 3.5%NaCl aqueous solution.The results showed that,with the increasing aluminum(Al)addition,exceptα-Mg and LPSO phases,new phases also emerged on the grain boundaries.At the same time,the zigzag part of LPSO phases disappeared,and the boundaries between LPSO phases andα-Mg became smooth.Furthermore,the addition of Al to Mg-Zn-Y alloys could hinder the activity of cathodic hydrogen evolution reaction and improve the uniformity and compactness of the protective surface film,thus,enhanced the corrosion resistance of Mg-Zn-Y alloys.
基金National Natural Science Foundation of China(Nos.U1610123,51674226,51574207)International Cooperation project of the Ministry of Science and Technology of China(No.2014DFA50320)Science and Technology Major Project of Shanxi Province(No.MC2016-06)
文摘Magnesium alloys possess lots of unique advantages as one of the most promising materials. However, relatively poor mechanical properties limit the application of Mg alloys. As a relatively excellent strengthing phase, icosahedral quasicrystal phased-phase) has great influence on Mg-Zn-Y-(Zr) alloys. The yield strength of Mg-Zn-Y-(Zr) alloys could reach 150 - 450 MPa at room temperature with different I-phase volume fractions, therefore the formation of I-phase has been regared as an effective method to improve the performance of Mg alloys. In this review paper, a series of researches about the Mg-Zn-Y-(Zr) alloys containing I-phase have been discussed, mainly including the current understandings about formation mechanism and I- phase structure, its orientation relationship with a-Mg matrix, and the effect of I-phase on Mg-Zn-Y-(Zr) alloys.
基金the National Natural Science Foundation of China Projects under Grant[Nos.5207011217,51871211 and 51701129]。
文摘The wear behavior of an as-received Mg-Zn-Y-Zr alloy before and after a facile heat treatment was investigated under sliding in air and 0.5 wt.%NaCl solution.Results revealed that the wear resistance of the alloy was remarkably enhanced after the heat treatment,irrespective of testing condition.The wear mechanism was predominantly abrasive wear accompanied by oxidation under the dry sliding condition,while corrosive wear was dominant under sliding in the NaCl solution.The superior corrosive wear resistance was attributed to the homogenous distribution of fine I-phase precipitates in the alloy by the heat treatment,leading to a reduction in wear,corrosion as well as wear-corrosion synergy.The wear-accelerated corrosion rate was remarkably alleviated after the heat treatment.
基金supported by the Hebei Provincial Natural Science Foundation of China(No. E2010000057)the International S & T Cooperation Program of China (No. 2010DFA51850)
文摘Quaternary Mg-Zn-Y-Ce quasi-crystal-containing alloys were fabricated using a metal mold casting route. The microstructures of Mg-Zn-Y-Ce alloys and the distribution of the major elements were analyzed. The differences in morphology and micro-hardness between quaternary Mg-Zn-Y-Ce quasi-crystals and ternary Mg- Zn-Y quasi-crystals were discussed. The result showed that the micro-hardness of Mg-Zn-Y-Ce quasi-crystals reached peak value when the content of Ce was 0.8at.%. Subsequently, various contents of Mg-Zn-Y-0.8Ce alloys were used to strengthen AZ91 magnesium alloys. The microstructural modification and mechanical properties of reinforced AZ91 alloys with and without solution, as well as their aging treatments, were also studied. Further research showed that aging-treated AZ91-10wt.%(Mg-Zn-Y-0.8at.%Ce) alloys exhibited excellent mechanical properties: their Brinell hardness, tensile strength, and elongation were HV91, 252 MPa, and 4.1%, respectively. Through this study, the range of application of AZ91 alloys can further be extended.
基金supported by the JSPS KAKENHI for Scientific Research on Innovative Areas“MFS Materials Science”(JP18H05476)for Scientific Researches(JP20H00312 and JP21H01673)support from the Research Fellowships of the JSPS for Young Scientists(21J13431)。
文摘The mechanisms of multimodal microstructure evolution and the effects of microstructural factors on mechanical properties must be elucidated to design new alloys with superior properties.In this study,high-fracture-toughness and ductile Mg_(96.75)Zn_(0.85)Y_(2.05)Al_(0.35) alloys were developed using rapidly solidified(RS)ribbon-consolidation technique,and the inherited multimodal microstructure evolution during plastic flow consolidation of the RS ribbons was investigated.The use of extrusion for plastic flow consolidation of the heat-treated RS ribbons produced a multimodal microstructure consisting of the worked grains with high Kernel average misorientation(KAM)angles(Group1),the ultrafine dynamically recrystallized(DRXed)grains with intermediate KAM angles(Group 2),and the fine DRXed grains with low KAM angles(Group 3).Groups 1 and 2 contribute to the alloy strengthening,while Group 3 contributes to improving ductility with strainhardening,resulting in enhancement of the fracture toughness.To form the multimodal microstructure,it was necessary to apply plastic flow with equivalent strains of>2.3 to the heat-treated RS ribbons possessing duplex microstructures with different dispersions of the long-period stacking ordered phase.
基金supported by the National Natural the Science Foundation of China(51971042,51901028)the Chongqing Academician Special Fund(cstc2020yszxjcyj X0001)+1 种基金the China Scholarship Council(CSC)Norwegian University of Science and Technology(NTNU)for their financial and technical support。
文摘Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
基金supported by the National Natural Science Foundation of China(Nos.52171104,52371093,52471117 and 52225101)the National Key Research and Development Program of China(No.2021YFB3701100).
文摘Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 from bibliometric and scientific perspectives.More than 4680 articles on Mg and its alloys were published and indexed in the Web of Science(WoS)Core Collection database last year.The bibliometric analyses show that the traditional structural Mg alloys,functional Mg materials,and corrosion and protection of Mg alloys are still the main research focus.Therefore,this review paper mainly focuses on the research progress of Mg cast alloys,Mg wrought alloys,bio-magnesium alloys,Mg-based energy storage materials,corrosion and protection of Mg alloys in 2023.In addition,future research directions are proposed based on the challenges and obstacles identified throughout this review.