The selection of milling tools for Si C14Cu4Mg0.5Si based on Aluminium matrix 2A14 was analyzed, and the factors that affect the efficiency of the milling were discussed. The Si C14Cu4Mg0.5Si was designed for use on t...The selection of milling tools for Si C14Cu4Mg0.5Si based on Aluminium matrix 2A14 was analyzed, and the factors that affect the efficiency of the milling were discussed. The Si C14Cu4Mg0.5Si was designed for use on the moon landing vehicle or missile wings, but the hardness of aluminium-silicon carbide composite material was very high, much higher than the general hardness of cemented carbide, which will bring many difficulties in the aluminium-silicon carbide composite material processing. The chemical compositions of Si C14Cu4Mg0.5Si were analyzed. A new selected indexable cutter was designed to mill Si C14Cu4Mg0.5Si. The structure design of milling cutter was different from the conventional milling cutter, breaking the previous limitations to a certain extent, pioneering the idea. The tool material wear was detected by experiments. The mechanical and physical properties of Si C14Cu4Mg0.5Si were also tested. Si C14Cu4Mg0.5Si exhibited different surface quality characteristics under different milling tools.展开更多
The interaction of Ag atoms with a defective MgO(001) surface is systematically studied based on density functional theory. The Ag clusters are deposited on neutral and charged oxygen vacancies of the MgO(001) sur...The interaction of Ag atoms with a defective MgO(001) surface is systematically studied based on density functional theory. The Ag clusters are deposited on neutral and charged oxygen vacancies of the MgO(001) surface. The structures of Ag clusters take the shape of simple models of two- or three-dimensional (2D and 3D) metal particles deposited on the MgO surface. When the nucleation of the metal clusters occurs in the Fs (missing neutral O) centre, the interaction with the substrate is considerably stronger than that in the Fs^+ (missing O-) centre. The results show that the adsorption of Ag atoms on the MgO surface with oxygcn vacancy is stronger than on a clear MgO surface, thereby attracting more Ag atoms to cluster together, and forming atomic islands.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51275490,and 51475346)Specialized Research Fund for the Doctoral Program of Higher Education of China(20131420120002)Shanxi Province Science Foundation(2013011025-1)
文摘The selection of milling tools for Si C14Cu4Mg0.5Si based on Aluminium matrix 2A14 was analyzed, and the factors that affect the efficiency of the milling were discussed. The Si C14Cu4Mg0.5Si was designed for use on the moon landing vehicle or missile wings, but the hardness of aluminium-silicon carbide composite material was very high, much higher than the general hardness of cemented carbide, which will bring many difficulties in the aluminium-silicon carbide composite material processing. The chemical compositions of Si C14Cu4Mg0.5Si were analyzed. A new selected indexable cutter was designed to mill Si C14Cu4Mg0.5Si. The structure design of milling cutter was different from the conventional milling cutter, breaking the previous limitations to a certain extent, pioneering the idea. The tool material wear was detected by experiments. The mechanical and physical properties of Si C14Cu4Mg0.5Si were also tested. Si C14Cu4Mg0.5Si exhibited different surface quality characteristics under different milling tools.
基金Project supported by the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 09B021)
文摘The interaction of Ag atoms with a defective MgO(001) surface is systematically studied based on density functional theory. The Ag clusters are deposited on neutral and charged oxygen vacancies of the MgO(001) surface. The structures of Ag clusters take the shape of simple models of two- or three-dimensional (2D and 3D) metal particles deposited on the MgO surface. When the nucleation of the metal clusters occurs in the Fs (missing neutral O) centre, the interaction with the substrate is considerably stronger than that in the Fs^+ (missing O-) centre. The results show that the adsorption of Ag atoms on the MgO surface with oxygcn vacancy is stronger than on a clear MgO surface, thereby attracting more Ag atoms to cluster together, and forming atomic islands.