The development of superconducting joining technology for reacted magnesium diboride(MgB_(2))conductors remains a critical challenge for the advancement of cryogen-free MgB_(2)-based magnets for magnetic resonance ima...The development of superconducting joining technology for reacted magnesium diboride(MgB_(2))conductors remains a critical challenge for the advancement of cryogen-free MgB_(2)-based magnets for magnetic resonance imaging(MRI).Herein,the fabrication of superconducting joints using reacted carbon-doped multifilament MgB_(2)wires for MRI magnets is reported.To achieve successful superconducting joints,the powder-in-mold method was employed,which involved tuning the filament protection mechanism,the powder compaction pressure,and the heat treatment condition.The fabricated joints demonstrated clear superconducting-to-normal transitions in self-field,with effective magnetic field screening up to 0.5 T at 20 K.To evaluate the interface between one of the MgB_(2)filaments and the MgB_(2)bulk within the joint,serial sectioning was conducted for the first time in this type of superconducting joint.The serial sectioning revealed space formation at the interface,potentially caused by the volume shrinkage associated with the MgB_(2)formation or the combined effect of the volume shrinkage and the different thermal expansion coefficients of the MgB_(2)bulk,the filament,the mold,and the sealing material.These findings are expected to be pivotal in developing MgB_(2)superconducting joining technology for MRI magnet applications through interface engineering.展开更多
This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))wer...This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample.展开更多
A designed Mg_(88.7)Ni_(6.3)Y_(5)hydrogen storage alloy containing 14H type LPSO(long-period stacking ordered)and ternary eutectic structure was prepared by regulating the alloy composition and casting.The hydrogen st...A designed Mg_(88.7)Ni_(6.3)Y_(5)hydrogen storage alloy containing 14H type LPSO(long-period stacking ordered)and ternary eutectic structure was prepared by regulating the alloy composition and casting.The hydrogen storage performance of the alloy was improved by adding nano-flower-like TiO_(2)@C catalyst.The decomposition of the LPSO structure during hydrogenation led to the formation of plenty of nanocrystals which provided abundant interphase boundaries and activation sites.The nanoscale TiO_(2)@C catalyst was uniformly dispersed on the surface of alloy particles,and the"hydrogen overflow''effect of TiO_(2)@C accelerated the dissociation and diffusion of hydrogen on the surface of the alloy particles.As a result,the in-situ endogenous nanocrystals of the LPSO structure decomposition and the externally added flower-like TiO_(2)@C catalyst uniformly dispersed on the surface of the nanoparticles played a synergistic catalytic role in improving the hydrogen storage performance of the Mg-based alloy.With the addition of the TiO_(2)@C catalyst,the beginning hydrogen desorption temperature was reduced to 200℃.Furthermore,the saturated hydrogen absorption capacity of the sample was 5.32 wt.%,and it reached 4.25 wt.%H_(2) in 1 min at 200℃and 30 bar.展开更多
Objective Obesity-induced kidney injury contributes to the development of diabetic nephropathy(DN).Here,we identified the functions of ubiquitin-specific peptidase 19(USP19)in HK-2 cells exposed to a combination of hi...Objective Obesity-induced kidney injury contributes to the development of diabetic nephropathy(DN).Here,we identified the functions of ubiquitin-specific peptidase 19(USP19)in HK-2 cells exposed to a combination of high glucose(HG)and free fatty acid(FFA)and determined its association with TGF-beta-activated kinase 1(TAK1).Methods HK-2 cells were exposed to a combination of HG and FFA.USP19 mRNA expression was detected by quantitative RT-PCR(qRT-PCR),and protein analysis was performed by immunoblotting(IB).Cell growth was assessed by Cell Counting Kit-8(CCK-8)viability and 5-ethynyl-2′-deoxyuridine(EdU)proliferation assays.Cell cycle distribution and apoptosis were detected by flow cytometry.The USP19/TAK1 interaction and ubiquitinated TAK1 levels were assayed by coimmunoprecipitation(Co-IP)assays and IB.Results In HG+FFA-challenged HK-2 cells,USP19 was highly expressed.USP19 knockdown attenuated HG+FFA-triggered growth inhibition and apoptosis promotion in HK-2 cells.Moreover,USP19 knockdown alleviated HG+FFA-mediated PTEN-induced putative kinase 1(PINK1)/Parkin pathway inactivation and increased mitochondrial reactive oxygen species(ROS)generation in HK-2 cells.Mechanistically,USP19 stabilized the TAK1 protein through deubiquitination.Importantly,increased TAK1 expression reversed the USP19 knockdown-mediated phenotypic changes and PINK1/Parkin pathway activation in HG+FFA-challenged HK-2 cells.Conclusion The findings revealed that USP19 plays a crucial role in promoting HK-2 cell dysfunction induced by combined stimulation with HG and FFAs by stabilizing TAK1,providing a potential therapeutic strategy for combating DN.展开更多
Sodium-carbon dioxide(Na-CO_(2))batteries are regarded as promising energy storage technologies because of their impressive theoretical energy density and CO_(2)reutilization,but their practical applications are restr...Sodium-carbon dioxide(Na-CO_(2))batteries are regarded as promising energy storage technologies because of their impressive theoretical energy density and CO_(2)reutilization,but their practical applications are restricted by uncontrollable sodium dendrite growth and poor electrochemical kinetics of CO_(2)cathode.Constructing suitable multifunctional electrodes for dendritefree anodes and kinetics-enhanced CO_(2)cathodes is considered one of the most important ways to advance the practical application of Na-CO_(2)batteries.Herein,RuO2 nanoparticles encapsulated in carbon paper(RuCP)are rationally designed and employed as both Na anode host and CO_(2)cathode in Na-CO_(2)batteries.The outstanding sodiophilicity and high catalytic activity of RuCP electrodes can simultaneously contribute to homogenous Na+distribution and dendrite-free sodium structure at the anode,as well as strengthen discharge and charge kinetics at the cathode.The morphological evolution confirmed the uniform deposition of Na on RuCP anode with dense and flat interfaces,delivering enhanced Coulombic efficiency of 99.5%and cycling stability near 1500 cycles.Meanwhile,Na-CO_(2)batteries with RuCP cathode demonstrated excellent cycling stability(>350 cycles).Significantly,implementation of a dendrite-free RuCP@Na anode and catalytic-site-rich RuCP cathode allowed for the construction of a symmetric Na-CO_(2)battery with long-duration cyclability,offering inspiration for extensive practical uses of Na-CO_(2)batteries.展开更多
基金the Japan Society for the Promotion of Science(JSPS)KAKENHI Grant Number JP18F18714Cryogenic Station,Research Network and Facility Services Division,National Institute for Materials Science(NIMS),Japansupported by the ARC Linkage Project(LP200200689)。
文摘The development of superconducting joining technology for reacted magnesium diboride(MgB_(2))conductors remains a critical challenge for the advancement of cryogen-free MgB_(2)-based magnets for magnetic resonance imaging(MRI).Herein,the fabrication of superconducting joints using reacted carbon-doped multifilament MgB_(2)wires for MRI magnets is reported.To achieve successful superconducting joints,the powder-in-mold method was employed,which involved tuning the filament protection mechanism,the powder compaction pressure,and the heat treatment condition.The fabricated joints demonstrated clear superconducting-to-normal transitions in self-field,with effective magnetic field screening up to 0.5 T at 20 K.To evaluate the interface between one of the MgB_(2)filaments and the MgB_(2)bulk within the joint,serial sectioning was conducted for the first time in this type of superconducting joint.The serial sectioning revealed space formation at the interface,potentially caused by the volume shrinkage associated with the MgB_(2)formation or the combined effect of the volume shrinkage and the different thermal expansion coefficients of the MgB_(2)bulk,the filament,the mold,and the sealing material.These findings are expected to be pivotal in developing MgB_(2)superconducting joining technology for MRI magnet applications through interface engineering.
基金funded by China Postdoctoral Science Foundation(No.2021M700569)Chongqing Postdoctoral Science Foundation(No.7 cstc2021jcyj-bshX0087)。
文摘This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample.
基金partially supported by the National Key R&D Program of China(No.2020YFA0406204)the National Natural Science Foundation of China(No.52201265)+1 种基金Shaanxi Province Key Project of Research and Development Plan,China(No.2023-YBGY-294,No.2023KXJ-060)the Doctoral Scientific Research Starting Foundation of Shaanxi University of Science and Technology,China(No.2016GBJ-02)。
文摘A designed Mg_(88.7)Ni_(6.3)Y_(5)hydrogen storage alloy containing 14H type LPSO(long-period stacking ordered)and ternary eutectic structure was prepared by regulating the alloy composition and casting.The hydrogen storage performance of the alloy was improved by adding nano-flower-like TiO_(2)@C catalyst.The decomposition of the LPSO structure during hydrogenation led to the formation of plenty of nanocrystals which provided abundant interphase boundaries and activation sites.The nanoscale TiO_(2)@C catalyst was uniformly dispersed on the surface of alloy particles,and the"hydrogen overflow''effect of TiO_(2)@C accelerated the dissociation and diffusion of hydrogen on the surface of the alloy particles.As a result,the in-situ endogenous nanocrystals of the LPSO structure decomposition and the externally added flower-like TiO_(2)@C catalyst uniformly dispersed on the surface of the nanoparticles played a synergistic catalytic role in improving the hydrogen storage performance of the Mg-based alloy.With the addition of the TiO_(2)@C catalyst,the beginning hydrogen desorption temperature was reduced to 200℃.Furthermore,the saturated hydrogen absorption capacity of the sample was 5.32 wt.%,and it reached 4.25 wt.%H_(2) in 1 min at 200℃and 30 bar.
基金supported by Natural Science Foundation of Shaanxi Province(No.2023-JC-YB-743 and No.2021JQ-905).
文摘Objective Obesity-induced kidney injury contributes to the development of diabetic nephropathy(DN).Here,we identified the functions of ubiquitin-specific peptidase 19(USP19)in HK-2 cells exposed to a combination of high glucose(HG)and free fatty acid(FFA)and determined its association with TGF-beta-activated kinase 1(TAK1).Methods HK-2 cells were exposed to a combination of HG and FFA.USP19 mRNA expression was detected by quantitative RT-PCR(qRT-PCR),and protein analysis was performed by immunoblotting(IB).Cell growth was assessed by Cell Counting Kit-8(CCK-8)viability and 5-ethynyl-2′-deoxyuridine(EdU)proliferation assays.Cell cycle distribution and apoptosis were detected by flow cytometry.The USP19/TAK1 interaction and ubiquitinated TAK1 levels were assayed by coimmunoprecipitation(Co-IP)assays and IB.Results In HG+FFA-challenged HK-2 cells,USP19 was highly expressed.USP19 knockdown attenuated HG+FFA-triggered growth inhibition and apoptosis promotion in HK-2 cells.Moreover,USP19 knockdown alleviated HG+FFA-mediated PTEN-induced putative kinase 1(PINK1)/Parkin pathway inactivation and increased mitochondrial reactive oxygen species(ROS)generation in HK-2 cells.Mechanistically,USP19 stabilized the TAK1 protein through deubiquitination.Importantly,increased TAK1 expression reversed the USP19 knockdown-mediated phenotypic changes and PINK1/Parkin pathway activation in HG+FFA-challenged HK-2 cells.Conclusion The findings revealed that USP19 plays a crucial role in promoting HK-2 cell dysfunction induced by combined stimulation with HG and FFAs by stabilizing TAK1,providing a potential therapeutic strategy for combating DN.
基金support from the German Research Foundation(DFG:LE 2249/15-1)the Sino-German Center for Research Promotion(GZ1579)support from the China Scholarship Council(No.202106370041)
文摘Sodium-carbon dioxide(Na-CO_(2))batteries are regarded as promising energy storage technologies because of their impressive theoretical energy density and CO_(2)reutilization,but their practical applications are restricted by uncontrollable sodium dendrite growth and poor electrochemical kinetics of CO_(2)cathode.Constructing suitable multifunctional electrodes for dendritefree anodes and kinetics-enhanced CO_(2)cathodes is considered one of the most important ways to advance the practical application of Na-CO_(2)batteries.Herein,RuO2 nanoparticles encapsulated in carbon paper(RuCP)are rationally designed and employed as both Na anode host and CO_(2)cathode in Na-CO_(2)batteries.The outstanding sodiophilicity and high catalytic activity of RuCP electrodes can simultaneously contribute to homogenous Na+distribution and dendrite-free sodium structure at the anode,as well as strengthen discharge and charge kinetics at the cathode.The morphological evolution confirmed the uniform deposition of Na on RuCP anode with dense and flat interfaces,delivering enhanced Coulombic efficiency of 99.5%and cycling stability near 1500 cycles.Meanwhile,Na-CO_(2)batteries with RuCP cathode demonstrated excellent cycling stability(>350 cycles).Significantly,implementation of a dendrite-free RuCP@Na anode and catalytic-site-rich RuCP cathode allowed for the construction of a symmetric Na-CO_(2)battery with long-duration cyclability,offering inspiration for extensive practical uses of Na-CO_(2)batteries.