The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kineti...The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kinetics,and dynamic separation of Ca2+and Mg2+ions by strong acid cation resin,and the effects of phosphoric acid and nitric acid on the adsorption process were investigated.The results reveal that the adsorption process of Ca2+and Mg2+ions in pure water on resin is in good agreement with the Langmuir isotherm model and their maximal adsorption capacities are 1.86 mmol·g-1 and 1.83 mmol·g-1,respectively.The adsorption kinetics of Ca2+and Mg2+ions on resin fits better with the pseudo-first-order model,and the adsorption equilibrium in pure water is reached within 10 min contact time,while at the present of phosphoric acid,the adsorption rate of Ca2+and Mg2+ions on resin will go down.The dynamic separation experiments demonstrate that the designed column adsorption is able to undertake the separation of metal ions from the mix acids aqueous solution,but the dynamic operation should control the flow rate of mix acid solution.Besides nitric acid solution was proved to be effective to completely regenerate the spent resin and achieve the recyclable operation of separation process.展开更多
Dendrite growth and thermal runaway induce serious safety hazards,impeding the practical applications of lithium metal batteries(LMBs).Although extensive advances have been attained in terms of LMB safety,most work on...Dendrite growth and thermal runaway induce serious safety hazards,impeding the practical applications of lithium metal batteries(LMBs).Although extensive advances have been attained in terms of LMB safety,most work only focus on a single aspect at a time.This paper reports a multifunctional separator coated by Mg(OH)2 nanoflakes with various excellent properties including electrolyte wettability,ionic conductivity,Li+ transference number,puncture strength,thermal stability and flame retardance.When used in LMBs,the Mg(OH)2 nanoflake coatings enable uniform Li+ distributing,which makes it homogeneous to deposit lithium,realizing effective dendrite suppression and less volume expansion.Meanwhile,Mg(OH)2 coatings can ensure LMBs are in normal conditions without thermal runaway until 140 ℃.A part of lithium can be converted into Li+ ions by Mg(OH)2 during repeated charge/discharge cycles,not only reducing the risk of separator damage and consequent short circuit,but also replenishing the capacity loss of LMBs.The Mg(OH)2 nanoflakes can coat on all kinds of commercial separators to improve their performances,which offers a facile but effective strategy for fabricating multifunctional separators and a comprehensive insight into enhancing LMB safety.展开更多
Effect of Li and Ti additions on Lα(AI)+Mg2Si pseudobinary eutectic reaction in ternary Al-Mg-Si system has been investigated by thermoanalysis, directional solidification and metallographic techniques in this study....Effect of Li and Ti additions on Lα(AI)+Mg2Si pseudobinary eutectic reaction in ternary Al-Mg-Si system has been investigated by thermoanalysis, directional solidification and metallographic techniques in this study. It has been found that Li addition causes decreasing of the volume fraction of Mg2Si, while a little amount of Ti causes to increasing, which is of a great importance to the adjustment of phase constitution and alloy properties. Doping components have little influence on the eutectic temperature.展开更多
The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized suc...The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance.展开更多
基金Supported by a grant from Tianji Coal Chemical Group Co.Ltd.(Project no.2012-1978)Shenzhen Batian Ecological Engineering Co.,Ltd.(Project no.2013-0909).
文摘The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kinetics,and dynamic separation of Ca2+and Mg2+ions by strong acid cation resin,and the effects of phosphoric acid and nitric acid on the adsorption process were investigated.The results reveal that the adsorption process of Ca2+and Mg2+ions in pure water on resin is in good agreement with the Langmuir isotherm model and their maximal adsorption capacities are 1.86 mmol·g-1 and 1.83 mmol·g-1,respectively.The adsorption kinetics of Ca2+and Mg2+ions on resin fits better with the pseudo-first-order model,and the adsorption equilibrium in pure water is reached within 10 min contact time,while at the present of phosphoric acid,the adsorption rate of Ca2+and Mg2+ions on resin will go down.The dynamic separation experiments demonstrate that the designed column adsorption is able to undertake the separation of metal ions from the mix acids aqueous solution,but the dynamic operation should control the flow rate of mix acid solution.Besides nitric acid solution was proved to be effective to completely regenerate the spent resin and achieve the recyclable operation of separation process.
基金supported by the Natural Science Project from Science and Technology Department of Henan Province (172102410034)National Natural Science Foundation of China (NSFC-U1604120)。
文摘Dendrite growth and thermal runaway induce serious safety hazards,impeding the practical applications of lithium metal batteries(LMBs).Although extensive advances have been attained in terms of LMB safety,most work only focus on a single aspect at a time.This paper reports a multifunctional separator coated by Mg(OH)2 nanoflakes with various excellent properties including electrolyte wettability,ionic conductivity,Li+ transference number,puncture strength,thermal stability and flame retardance.When used in LMBs,the Mg(OH)2 nanoflake coatings enable uniform Li+ distributing,which makes it homogeneous to deposit lithium,realizing effective dendrite suppression and less volume expansion.Meanwhile,Mg(OH)2 coatings can ensure LMBs are in normal conditions without thermal runaway until 140 ℃.A part of lithium can be converted into Li+ ions by Mg(OH)2 during repeated charge/discharge cycles,not only reducing the risk of separator damage and consequent short circuit,but also replenishing the capacity loss of LMBs.The Mg(OH)2 nanoflakes can coat on all kinds of commercial separators to improve their performances,which offers a facile but effective strategy for fabricating multifunctional separators and a comprehensive insight into enhancing LMB safety.
文摘Effect of Li and Ti additions on Lα(AI)+Mg2Si pseudobinary eutectic reaction in ternary Al-Mg-Si system has been investigated by thermoanalysis, directional solidification and metallographic techniques in this study. It has been found that Li addition causes decreasing of the volume fraction of Mg2Si, while a little amount of Ti causes to increasing, which is of a great importance to the adjustment of phase constitution and alloy properties. Doping components have little influence on the eutectic temperature.
基金Project(10B054)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2011GK2002,2011FJ3160)supported by the Planned Science and Technology Program of Hunan Province,China
文摘The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance.