The interfacial microstructures and configurations directly affect the comprehensive properties of the composites,but their interfacial adhesion mechanism is complicated to expound by experimental methods.In this work...The interfacial microstructures and configurations directly affect the comprehensive properties of the composites,but their interfacial adhesion mechanism is complicated to expound by experimental methods.In this work,based on the stacking sequence of the Mg/Mg_(2)Y interface models,nine different Mg/Mg_(2)Y interface configurations with top site,bridge site,and hollow site(HCP)under Mg1,Mg_(2),and Y terminations were successfully constructed and systematically explored by first-principles calculations.The results showed that the Mg_(2)Y(0001)surface with Y termination is the most stable when the yttrium chemical potential()is less than-1.09 eV;otherwise,Mg_(2)Y(0001)surface with Mg1 termination is the most stable.The seven-layer Mg(0001)and eleven-layer Mg_(2)Y(0001)slabs are employed to reflect the bulk-like interior properties.Additionally,the Mg(0001)/Mg_(2)Y(0001)with the Y-HCP stacking has the largest interface thermodynamic stability with the value of 2.383 J/m^(2) in all interface configurations owing to its largest work of adhesion.In addition,the interfacial energy of Y-HCP stacking is significantly smaller than those of Mg1-HCP when is approximately less than-0.55 eV,showing that it is more stable.The thermodynamic stability of Mg/Mg_(2)Y with Y-HCP is due to Mg-Y chemical bonds formed between Mg and Y atoms.Lastly,the Mg/Mg_(2)Y interfaces are strong interfaces based on the Griffith fracture theory.展开更多
The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic prope...The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic properties, and natural bond orbital(NBO) are calculated and discussed. The results show that the doped Mg atoms reduce the stabilities of pure Ni clusters. The Mg2Ni2, Mg2Ni4, and Mg2Ni6clusters are more stable than neighboring clusters. The system appears magic number characteristics. In addition, the hybridization phenomenon occurs, owing to the interaction of Mg and Ni. The result of charge transfer is that Ni atom is negative and the Mg atom is positive. We also conclude that the 3p and 4d orbitals of the Ni atom have an effect on the stabilities of the clusters.展开更多
基金supported by the National Natural Science Foundation of China (No.52225101)the Central Universities of China (2021CDJQY-040)+2 种基金the Guangdong Major Project of Basic and Applied Basic Research (2020B0301030006)the Independent Research Project of State Key Laboratory of Mechanical Transmissions (SKLMT-ZZKT-2022Z01,SKLMT-ZZKT-2022M12)the Chongqing Special Project of Science and Technology Innovation of China (cstc2021yszx-jcyj0007).
文摘The interfacial microstructures and configurations directly affect the comprehensive properties of the composites,but their interfacial adhesion mechanism is complicated to expound by experimental methods.In this work,based on the stacking sequence of the Mg/Mg_(2)Y interface models,nine different Mg/Mg_(2)Y interface configurations with top site,bridge site,and hollow site(HCP)under Mg1,Mg_(2),and Y terminations were successfully constructed and systematically explored by first-principles calculations.The results showed that the Mg_(2)Y(0001)surface with Y termination is the most stable when the yttrium chemical potential()is less than-1.09 eV;otherwise,Mg_(2)Y(0001)surface with Mg1 termination is the most stable.The seven-layer Mg(0001)and eleven-layer Mg_(2)Y(0001)slabs are employed to reflect the bulk-like interior properties.Additionally,the Mg(0001)/Mg_(2)Y(0001)with the Y-HCP stacking has the largest interface thermodynamic stability with the value of 2.383 J/m^(2) in all interface configurations owing to its largest work of adhesion.In addition,the interfacial energy of Y-HCP stacking is significantly smaller than those of Mg1-HCP when is approximately less than-0.55 eV,showing that it is more stable.The thermodynamic stability of Mg/Mg_(2)Y with Y-HCP is due to Mg-Y chemical bonds formed between Mg and Y atoms.Lastly,the Mg/Mg_(2)Y interfaces are strong interfaces based on the Griffith fracture theory.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022).
文摘The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic properties, and natural bond orbital(NBO) are calculated and discussed. The results show that the doped Mg atoms reduce the stabilities of pure Ni clusters. The Mg2Ni2, Mg2Ni4, and Mg2Ni6clusters are more stable than neighboring clusters. The system appears magic number characteristics. In addition, the hybridization phenomenon occurs, owing to the interaction of Mg and Ni. The result of charge transfer is that Ni atom is negative and the Mg atom is positive. We also conclude that the 3p and 4d orbitals of the Ni atom have an effect on the stabilities of the clusters.