期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Nano-SiC and Nano-Si Doping on Critical Current Density of MgB_2
1
作者 H.K.Liu S.H.Zhou +6 位作者 S.Soltanian J.Horvat A.V.Pan M.J.Qin X.L.Wang M.Lonescu S.X.Dou 《Tsinghua Science and Technology》 SCIE EI CAS 2003年第3期307-315,共9页
The discovery of superconductivity in magnesium diboride (MgB2) has opened up a new field in materials science research. It offers a possibility of a new class of high performance superconducting materials for practic... The discovery of superconductivity in magnesium diboride (MgB2) has opened up a new field in materials science research. It offers a possibility of a new class of high performance superconducting materials for practical applications because of the relatively low cost of fabrication, high critical current densities (Jc) and fields, large coherence length, absence of weak links, higher Tc(TC = 39K) compared with Nb3Sn and Nb-Ti alloys (two or four times that of Nb,,Sn and Nb-Ti alloys). However, the weak flux pinning in the magnetic field remains a major challenge. This paper reports the most interesting results on nanomaterial (SiC and Si) doping in magnesium diboride. The high density of nano-scale defects introduced by doping is responsible for the enhanced pinning. The fabrication method, critical current density, microstructures, flux pinning and cost for magnesium diboride bulks, wires and tapes are also discussed. It is believed that high performance SiC doped MgB2 will have a great potential for many practical applications at 5K to 25K up to 5T. 展开更多
关键词 magnesium diboride (mgb2) mgb2/fe wires doped with nano-sic mgb2/fe wires doped with nano-si critical current density flux pinning
原文传递
Superconducting Properties and Microstructure in MgB_2 Bulks, Wires and Tapes
2
作者 冯勇 阎果 +3 位作者 赵勇 吴晓京 周廉 张平祥 《Tsinghua Science and Technology》 SCIE EI CAS 2003年第3期316-333,共18页
We prepared a series of MgB2 bulk samples under different temperatures, holding time and increasing rates in temperature by the solid state reaction. The thermodynamic behavior and phase formation in the Mg-B system w... We prepared a series of MgB2 bulk samples under different temperatures, holding time and increasing rates in temperature by the solid state reaction. The thermodynamic behavior and phase formation in the Mg-B system were studied by using DTA, XRD and SEM. The results indicate that the formation of the MgB2 phase is very fast and the high increasing rate in temperature is necessary to obtain high quality MgB2. In addition, the effects of the Zr-doping in Mg1-xZrxB2 bulk samples fabricated by the solid state reaction at ambient pressure on phase compositions, microstructure and flux pinning behavior were investigated by using XRD, SQUID magnetometer, SEM and TEM. Critical current density Jc can be significantly enhanced by the Zr-doping and the best data are achieved in Mg0.9Zr0.1B2. For this sample, Jc values are remarkably improved to 1. 83 × 106 A/cm2 in self-field and 5. 51 × 105 A/cm2in 1T at 20K. Also, high quality MgB2/Ta/Cu wires and tapes with and without Ti-doping, MgB2/Fe wires and 18 filament MgB2/NbZr/Cu tapes were fabricated by the powder-in-tube (PIT) method at ambient pressure. The phase compositions, microstructure features and flux pinning properties were studied. The results suggest that Fe is the best metal for these sheaths. MgB2/Fe wires exhibit very high Jc at high temperatures and high fields. Jc values reach as high as 1.43 × 105A/cm2(4. 2K, 4T) and 3.72 × 104 A/cm2(15K, 4T). 展开更多
关键词 mgb2 superconductors wires and tapes critical current density flux pinning microstructure and element doping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部