Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive to...Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results.展开更多
Micro computed tomography (Micro-CT) was applied to obtain three-dimensional images of the microstructure of cement paste (water-to-cement mass ratio of 0.5) at different ages. By using the Amira software, component p...Micro computed tomography (Micro-CT) was applied to obtain three-dimensional images of the microstructure of cement paste (water-to-cement mass ratio of 0.5) at different ages. By using the Amira software, component phases of the cement paste such as pores, hydration products, and unhydrated clinker particles were segmented from each other based on their 3D image grey levels; their relative contents were also calculated with the software, and the data are 61.2%, 0% and 38.8% at the beginning of hydration and 11.8%, 78.5% and 9.7% at 28 d age, respectively. The hydration degree of cement paste at different ages was compared with the experimental data acquired by loss on ignition (LOI) tests. The results show that the calculated and measured data reasonably agree with each other, which indicates that micro-CT is a useful and reliable approach to characterize the micro structure evolution of hydrating cement paste.展开更多
The spatial resolution and the relative density resolution are the two most critical indicators in CT system. The method recommended in the ASTM E1695-95 and GJB 5311-2004 is only suitable to the fan-beam CT system. I...The spatial resolution and the relative density resolution are the two most critical indicators in CT system. The method recommended in the ASTM E1695-95 and GJB 5311-2004 is only suitable to the fan-beam CT system. In this paper, for industrial cone-beam micro CT system, we will adopt the edge response function (ERF) created by the step edges of a steel ball to measure the system 3D PSF and MTF. To describe the contrast discrimination function more accurately, we will first propose to extend the two-dimensional measurement region to the three-dimensional space. Our experimental spatial resolution is (55.56+0.56) lp/mm and the relative density resolution is 1% within 300 μm×300 μm×300 μm according to the 3σ rule.展开更多
Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to a...Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to address leakage defects in die-cast Al alloys.In this study,the efficacy of the VPI technique in sealing alloy parts was investigated using a combination of nondestructive micro X-ray computed tomography(micro XCT)and a standard leak test.The results demonstrate that the commonly used water leak test is insufficient for determining the sealing performance.Instead,micro XCT shows distinct advantages by enabling more comprehensive analysis.It reveals the presence of a low atomic number impregnates sealant within casting defects,which has low grey contrast and allows for visualizing primary leakage paths in 3D.The effective atomic number of impregnated resin is 6.75 and that of Al alloy is 13.69 by dual-energy X-ray CT.This research findings will contribute to enhancing the standard VPI process parameters and the properties of impregnating sealants to improve quality assurance for impregnation in industrial metals.展开更多
As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitab...As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitable ingredient for LACP. Under a flowing nitrogen environment, two kinds of unique burning surfaces were observed to occur for 5-ATZ, used as a single reacting propellant ingredient with the addition of carbon, under laser ablation. Both surfaces are hollow structures and differ by the possible presence of edges. Using micro computed tomography, the 3D perspective structures of both surfaces were revealed. Resorting to various characterization methods, a unified formation mechanism for both surfaces is proposed. This mechanism specifically applies to laser ablation, but could be crucial to common burning mechanisms in LACP.展开更多
As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning ra...As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning rate of 5-aminotetrazole(5-ATZ) propellant has been studied by testing pressed samples under different combustor pressures and laser powers. Based on micro computed tomography(Micro CT),an advanced thickness-over-time(TOT) method to characterize the regression of the produced nonplanar burning surface is established. Because of a shell structure covering the combustion surface,the burning rate of the implemented 5-ATZ propellant is not constant during laser ablation. Resorting to functional fitting, a new law of non-constant burning including the effect of the observed unique burning surface structures is proposed. Accordingly, applicable combustion conditions of 5-ATZ based propellants have been preliminarily speculated for future research activities.展开更多
The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this pap...The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this paper,an adaptive enhancement design method based on the non-uniform stress distribution in structures with uniform thickness is proposed to design the P-type TPMS lattice structures with higher mechanical properties.Two types of structures are designed by adjusting the adaptive thickness distribution in the TPMS.One keeps the same relative density,and the other keeps the same of non-enhanced region thickness.Compared with the uniform lattice structure,the elastic modulus for the structure with the same relative density increases by more than 17%,and the yield strength increases by more than 10.2%.Three kinds of TPMS lattice structures are fabricated by laser powder bed fusion(L-PBF)with 316L stainless steel to verify the proposed enhanced design.The manufacture-induced geometric deviation between the as-design and as-printed models is measured by micro X-ray computed tomography(μ-CT)scans.The quasi-static compression experimental results of P-type TPMS lattice structures show that the reinforced structures have stronger elastic moduli,ultimate strengths,and energy absorption capabilities than the homogeneous P-TPMS lattice structure.展开更多
The possibility of the use of recycled aggregates from the construction industry in green concrete production is of increasing importance to reduce the negative environmental impact associated with construction and de...The possibility of the use of recycled aggregates from the construction industry in green concrete production is of increasing importance to reduce the negative environmental impact associated with construction and demolition wastes.The objective of this study is to investigate the effect of recycled concrete aggregate(RCA)quality on the properties of hardened concrete properties such as compressive strength,splitting tensile strength,density,water absorption capacity and porosity accessible to water.The RCA used in this study was obtained from the crushing of waste concrete with two different compressive strengths(LRCA obtained from the crushing of waste concrete having compressive strengths below 30 MPa and HRCA obtained from the crushing of waste concrete having compressive strengths above 30 MPa).The natural coarse limestone aggregate was 100%replaced with coarse LRCA and HRCA.As a result of the study,the use of 100%HRCA and%100 LRCA instead of limestone coarse aggregate in the concrete adversely affected its mechanical and physical properties.In addition,HRCA showed better performance in terms of compressive strength,tensile strength,water absorption and porosity compared to the use of LRCA.Furthermore,the percentage of adhered mortar on the surface of LRCA and HRCA was analyzed using a computerized micro tomography device,and it was found that the percentages of attached mortar and aggregates are 61%and 35.5%for LRCA,whilst the attached mortar and aggregate contents for HRCA are 45.9%and 53.7%,respectively.展开更多
Changes in structure of oral solid dosage forms(OSDF) elementally determine the drug release and its therapeutic effects.In this research,synchrotron radiation X-ray micro-computed tomography was utilized to visualize...Changes in structure of oral solid dosage forms(OSDF) elementally determine the drug release and its therapeutic effects.In this research,synchrotron radiation X-ray micro-computed tomography was utilized to visualize the 3 D structure of enteric coated pellets recovered from the gastrointestinal tract of rats.The structures of pellets in solid state and in vitro compendium media were measured.Pellets in vivo underwent morphological and structural changes which differed significantly from those in vitro compendium media.Thus,optimizations of the dissolution media were performed to mimic the appropriate in vivo conditions by introducing pepsin and glass microspheres in media.The sphericity,pellet volume,pore volume and porosity of the in vivo esomeprazole magnesium pellets in stomach for2 h were recorded 0.47,1.55 × 10^(8)μm^(3),0.44 × 10^(8)μm^(3)and 27.6%,respectively.After adding pepsin and glass microspheres,the above parameters in vitro reached to 0.44,1.64 × 10^(8)μm^(3)0.38 × 10^(8)μm^(3)and 23.0%,respectively.Omeprazole magnesium pellets behaved similarly.The structural features of pellets between in vitro media and in vivo condition were bridged successfully in terms of 3 D structures to ensure better design,characterization and quality control of advanced OSDF.展开更多
This work deals with the investigation of the synergistic effect of bagasse ash with sisal-banana-kenaf-flax fibers reinforced epoxy composite for their flexural behavior.The composites with three combinations of hybr...This work deals with the investigation of the synergistic effect of bagasse ash with sisal-banana-kenaf-flax fibers reinforced epoxy composite for their flexural behavior.The composites with three combinations of hybrid fibers viz.sisal/kenaf(HSK),banana/kenaf(HBK),and banana/flax(HBF)with bagasse ash(BGA)as filler material are fabricated using vacuum bag assisted resin transfer molding.Experiments were conducted based on L27 orthogonal array to understand the influence of control factor viz.fiber volume,alkali concentration&BGA over output response.A'-ray micro computed tomography analysis was conducted over the developed sample to infer the uniform dispersion of fiber and filler material.The experimental results reveal that the addition of fiber up to 30 vol%depicts better strength and further addition results in a negative impact.Increasing in order of BGA decreases the flexural strength of the developed composites.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 12102312 and 41372314)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Open Foundation, Chengdu University of Technology, China (Grant No. SKLGP2021K011)
文摘Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results.
基金Project(2009CB623201) supported by the National Basic Research Program of ChinaProjects(50902106, 51272193) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0660) supported by New Century Excellent Talents in Universities of China
文摘Micro computed tomography (Micro-CT) was applied to obtain three-dimensional images of the microstructure of cement paste (water-to-cement mass ratio of 0.5) at different ages. By using the Amira software, component phases of the cement paste such as pores, hydration products, and unhydrated clinker particles were segmented from each other based on their 3D image grey levels; their relative contents were also calculated with the software, and the data are 61.2%, 0% and 38.8% at the beginning of hydration and 11.8%, 78.5% and 9.7% at 28 d age, respectively. The hydration degree of cement paste at different ages was compared with the experimental data acquired by loss on ignition (LOI) tests. The results show that the calculated and measured data reasonably agree with each other, which indicates that micro-CT is a useful and reliable approach to characterize the micro structure evolution of hydrating cement paste.
文摘The spatial resolution and the relative density resolution are the two most critical indicators in CT system. The method recommended in the ASTM E1695-95 and GJB 5311-2004 is only suitable to the fan-beam CT system. In this paper, for industrial cone-beam micro CT system, we will adopt the edge response function (ERF) created by the step edges of a steel ball to measure the system 3D PSF and MTF. To describe the contrast discrimination function more accurately, we will first propose to extend the two-dimensional measurement region to the three-dimensional space. Our experimental spatial resolution is (55.56+0.56) lp/mm and the relative density resolution is 1% within 300 μm×300 μm×300 μm according to the 3σ rule.
文摘Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to address leakage defects in die-cast Al alloys.In this study,the efficacy of the VPI technique in sealing alloy parts was investigated using a combination of nondestructive micro X-ray computed tomography(micro XCT)and a standard leak test.The results demonstrate that the commonly used water leak test is insufficient for determining the sealing performance.Instead,micro XCT shows distinct advantages by enabling more comprehensive analysis.It reveals the presence of a low atomic number impregnates sealant within casting defects,which has low grey contrast and allows for visualizing primary leakage paths in 3D.The effective atomic number of impregnated resin is 6.75 and that of Al alloy is 13.69 by dual-energy X-ray CT.This research findings will contribute to enhancing the standard VPI process parameters and the properties of impregnating sealants to improve quality assurance for impregnation in industrial metals.
基金supported by the Shanghai Aerospace Science & Technology Innovation Fund (Grant No. SAST201363)the Fundamental Research Funds for the Central Universities (Grant No. 30919012102 in part)。
文摘As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitable ingredient for LACP. Under a flowing nitrogen environment, two kinds of unique burning surfaces were observed to occur for 5-ATZ, used as a single reacting propellant ingredient with the addition of carbon, under laser ablation. Both surfaces are hollow structures and differ by the possible presence of edges. Using micro computed tomography, the 3D perspective structures of both surfaces were revealed. Resorting to various characterization methods, a unified formation mechanism for both surfaces is proposed. This mechanism specifically applies to laser ablation, but could be crucial to common burning mechanisms in LACP.
基金supported by the Shanghai Aerospace Science & Technology Innovation Fund (grant No. SAST201363)the Fundamental Research Funds for the Central Universities (grant No. 30919012102 in part)。
文摘As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning rate of 5-aminotetrazole(5-ATZ) propellant has been studied by testing pressed samples under different combustor pressures and laser powers. Based on micro computed tomography(Micro CT),an advanced thickness-over-time(TOT) method to characterize the regression of the produced nonplanar burning surface is established. Because of a shell structure covering the combustion surface,the burning rate of the implemented 5-ATZ propellant is not constant during laser ablation. Resorting to functional fitting, a new law of non-constant burning including the effect of the observed unique burning surface structures is proposed. Accordingly, applicable combustion conditions of 5-ATZ based propellants have been preliminarily speculated for future research activities.
基金supported by the National Natural Science Foundation of China(Nos.12002031,12122202U22B2083)+1 种基金the China Postdoctoral Science Foundation(Nos.BX2021038 and 2021M700428)the National Key Research and Development of China(No.2022YFB4601901)。
文摘The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this paper,an adaptive enhancement design method based on the non-uniform stress distribution in structures with uniform thickness is proposed to design the P-type TPMS lattice structures with higher mechanical properties.Two types of structures are designed by adjusting the adaptive thickness distribution in the TPMS.One keeps the same relative density,and the other keeps the same of non-enhanced region thickness.Compared with the uniform lattice structure,the elastic modulus for the structure with the same relative density increases by more than 17%,and the yield strength increases by more than 10.2%.Three kinds of TPMS lattice structures are fabricated by laser powder bed fusion(L-PBF)with 316L stainless steel to verify the proposed enhanced design.The manufacture-induced geometric deviation between the as-design and as-printed models is measured by micro X-ray computed tomography(μ-CT)scans.The quasi-static compression experimental results of P-type TPMS lattice structures show that the reinforced structures have stronger elastic moduli,ultimate strengths,and energy absorption capabilities than the homogeneous P-TPMS lattice structure.
文摘The possibility of the use of recycled aggregates from the construction industry in green concrete production is of increasing importance to reduce the negative environmental impact associated with construction and demolition wastes.The objective of this study is to investigate the effect of recycled concrete aggregate(RCA)quality on the properties of hardened concrete properties such as compressive strength,splitting tensile strength,density,water absorption capacity and porosity accessible to water.The RCA used in this study was obtained from the crushing of waste concrete with two different compressive strengths(LRCA obtained from the crushing of waste concrete having compressive strengths below 30 MPa and HRCA obtained from the crushing of waste concrete having compressive strengths above 30 MPa).The natural coarse limestone aggregate was 100%replaced with coarse LRCA and HRCA.As a result of the study,the use of 100%HRCA and%100 LRCA instead of limestone coarse aggregate in the concrete adversely affected its mechanical and physical properties.In addition,HRCA showed better performance in terms of compressive strength,tensile strength,water absorption and porosity compared to the use of LRCA.Furthermore,the percentage of adhered mortar on the surface of LRCA and HRCA was analyzed using a computerized micro tomography device,and it was found that the percentages of attached mortar and aggregates are 61%and 35.5%for LRCA,whilst the attached mortar and aggregate contents for HRCA are 45.9%and 53.7%,respectively.
基金financial support from National Key R&D Program of China(2020YFE0201700)Major New Drugs Innovation and Development(2017ZX09101001-005,China)+1 种基金the National Natural Science Foundation of China(81803441,81803446 and 81773645)Youth Innovation Promotion Association CAS(2018323,China)。
文摘Changes in structure of oral solid dosage forms(OSDF) elementally determine the drug release and its therapeutic effects.In this research,synchrotron radiation X-ray micro-computed tomography was utilized to visualize the 3 D structure of enteric coated pellets recovered from the gastrointestinal tract of rats.The structures of pellets in solid state and in vitro compendium media were measured.Pellets in vivo underwent morphological and structural changes which differed significantly from those in vitro compendium media.Thus,optimizations of the dissolution media were performed to mimic the appropriate in vivo conditions by introducing pepsin and glass microspheres in media.The sphericity,pellet volume,pore volume and porosity of the in vivo esomeprazole magnesium pellets in stomach for2 h were recorded 0.47,1.55 × 10^(8)μm^(3),0.44 × 10^(8)μm^(3)and 27.6%,respectively.After adding pepsin and glass microspheres,the above parameters in vitro reached to 0.44,1.64 × 10^(8)μm^(3)0.38 × 10^(8)μm^(3)and 23.0%,respectively.Omeprazole magnesium pellets behaved similarly.The structural features of pellets between in vitro media and in vivo condition were bridged successfully in terms of 3 D structures to ensure better design,characterization and quality control of advanced OSDF.
文摘This work deals with the investigation of the synergistic effect of bagasse ash with sisal-banana-kenaf-flax fibers reinforced epoxy composite for their flexural behavior.The composites with three combinations of hybrid fibers viz.sisal/kenaf(HSK),banana/kenaf(HBK),and banana/flax(HBF)with bagasse ash(BGA)as filler material are fabricated using vacuum bag assisted resin transfer molding.Experiments were conducted based on L27 orthogonal array to understand the influence of control factor viz.fiber volume,alkali concentration&BGA over output response.A'-ray micro computed tomography analysis was conducted over the developed sample to infer the uniform dispersion of fiber and filler material.The experimental results reveal that the addition of fiber up to 30 vol%depicts better strength and further addition results in a negative impact.Increasing in order of BGA decreases the flexural strength of the developed composites.