In order to improve the reliability of the spacecraft micro cold gas propulsion system and realize the precise control of the spacecraft attitude and orbit, a micro-thrust, high-precision cold gas thruster is carried ...In order to improve the reliability of the spacecraft micro cold gas propulsion system and realize the precise control of the spacecraft attitude and orbit, a micro-thrust, high-precision cold gas thruster is carried out, at the same time due to the design requirements of the spacecraft, this micro-thrust should be continuous working more than 60 minutes, the traditional solenoid valve used for the thrusts can’t complete the mission, so a long-life micro latching valve is developed as the control valve for this micro thruster, because the micro latching valve can keep its position when it cuts off the outage. Firstly, the authors introduced the design scheme and idea of the thruster. Secondly, the performance of the latching valve and the flow characteristics of the nozzle were simulated. Finally, from the experimental results and compared with the numerical study, it shows that the long-life micro cold gas thruster developed in this paper meets the mission requirements.展开更多
Digital micro-thruster arrays can be used for special missions of micro/nano-satellites with the requirements of high precision and small impulse.This paper presents a novel control allocation algorithm for the digita...Digital micro-thruster arrays can be used for special missions of micro/nano-satellites with the requirements of high precision and small impulse.This paper presents a novel control allocation algorithm for the digital micro-thruster array,namely status graph based control allocation(SGBCA)algorithm,which aims at finding the optimal micro thrusters combination scheme to realize the sequential control synthesis for micro/nano-satellite during real-time orbit control tasks.A mathematical model is set up for the control allocation of this multivariate over-actuated system.Through dividing thrusters into disjoint segments by offline calculation and combining segments dynamically online to provide a sequence of the required impulse for the micro/nano-satellite,the time complexity of the control allocation algorithm decreases significantly.All levels of impulse can be generated by the digital micro thruster arrays and the service life of the arrays can be extended using the segment converting strategy proposed in this paper.The simulation indicates that the algorithm can satisfy the requirements of real-time orbit control for micro/nano-satellites.展开更多
Pulsed plasma thrusters (PPT) are micro-propulsion devices used in satellites for station keeping. Conventionally the plasma discharge in a PPT is initiated by a spark plug. The primary objective of the present work...Pulsed plasma thrusters (PPT) are micro-propulsion devices used in satellites for station keeping. Conventionally the plasma discharge in a PPT is initiated by a spark plug. The primary objective of the present work was to develop and characterize a PPT that does not need a spark plug to initiate the plasma discharge. If the spark plug is eliminated, the size of the thrusters can be reduced and arrays of such thrusters can be manufactured using micro electro mechanical systems (MEMS) techniques, which can provide tremendous control authority over the satellite positioning. A parallel rail thruster was built and its performances were characterized inside a vacuum chamber to elucidate the effect of vacuum level on the performance. The electrical performance of the thruster was quantified by measuring the voltage output from a Rogowski coil, and the thrust produced by the developed thruster was estimated by measuring the force exerted by the plume on a light weight pendulum, whose deflection was measured using a laser displacement sensor. It was observed that the thruster can operate without a spark plug. In general, the performance parameters such as thrust, mass ablation, impulse bit, and specific impulse per discharge, would increase with the increase in pressure up to an optimum level due to the increase in discharge energy as well as the decrease in the total impedance of the plasma discharge. The thrust efficiency is found to be affected by the discharge energy.展开更多
文摘In order to improve the reliability of the spacecraft micro cold gas propulsion system and realize the precise control of the spacecraft attitude and orbit, a micro-thrust, high-precision cold gas thruster is carried out, at the same time due to the design requirements of the spacecraft, this micro-thrust should be continuous working more than 60 minutes, the traditional solenoid valve used for the thrusts can’t complete the mission, so a long-life micro latching valve is developed as the control valve for this micro thruster, because the micro latching valve can keep its position when it cuts off the outage. Firstly, the authors introduced the design scheme and idea of the thruster. Secondly, the performance of the latching valve and the flow characteristics of the nozzle were simulated. Finally, from the experimental results and compared with the numerical study, it shows that the long-life micro cold gas thruster developed in this paper meets the mission requirements.
文摘Digital micro-thruster arrays can be used for special missions of micro/nano-satellites with the requirements of high precision and small impulse.This paper presents a novel control allocation algorithm for the digital micro-thruster array,namely status graph based control allocation(SGBCA)algorithm,which aims at finding the optimal micro thrusters combination scheme to realize the sequential control synthesis for micro/nano-satellite during real-time orbit control tasks.A mathematical model is set up for the control allocation of this multivariate over-actuated system.Through dividing thrusters into disjoint segments by offline calculation and combining segments dynamically online to provide a sequence of the required impulse for the micro/nano-satellite,the time complexity of the control allocation algorithm decreases significantly.All levels of impulse can be generated by the digital micro thruster arrays and the service life of the arrays can be extended using the segment converting strategy proposed in this paper.The simulation indicates that the algorithm can satisfy the requirements of real-time orbit control for micro/nano-satellites.
文摘Pulsed plasma thrusters (PPT) are micro-propulsion devices used in satellites for station keeping. Conventionally the plasma discharge in a PPT is initiated by a spark plug. The primary objective of the present work was to develop and characterize a PPT that does not need a spark plug to initiate the plasma discharge. If the spark plug is eliminated, the size of the thrusters can be reduced and arrays of such thrusters can be manufactured using micro electro mechanical systems (MEMS) techniques, which can provide tremendous control authority over the satellite positioning. A parallel rail thruster was built and its performances were characterized inside a vacuum chamber to elucidate the effect of vacuum level on the performance. The electrical performance of the thruster was quantified by measuring the voltage output from a Rogowski coil, and the thrust produced by the developed thruster was estimated by measuring the force exerted by the plume on a light weight pendulum, whose deflection was measured using a laser displacement sensor. It was observed that the thruster can operate without a spark plug. In general, the performance parameters such as thrust, mass ablation, impulse bit, and specific impulse per discharge, would increase with the increase in pressure up to an optimum level due to the increase in discharge energy as well as the decrease in the total impedance of the plasma discharge. The thrust efficiency is found to be affected by the discharge energy.