The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone t...The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone to uncertainties such as model parameter variations and disturbances. Robust optimal tracking controller design for this kind of precision stages with mass and damping ratio uncertainties was researched. The mass and damping ratio uncertainties were modeled as the structured parametric uncertainty model. An identification method for obtaining the parametric uncertainties was developed by using unbiased least square technique. The instantaneous frequency bandwidth of the external disturbance signals was analyzed by using short time Fourier transform technique. A two loop tracking control strategy that combines the p-synthesis and the disturbance observer (DOB) techniques was proposed. The p-synthesis technique was used to design robust optimal controllers based on structured uncertainty models. By complementing the/z controller, the DOB was applied to further improving the disturbance rejection performance. To evaluate the positioning performance of the proposed control strategy, the comparative experiments were conducted on a prototype micro milling machine among four control schemes: the proposed two-loop tracking control, the single loop μ control, the PID control and the PID with DOB control. The disturbance rejection performances, the root mean square (RMS) tracking errors and the performance robustness of different control schemes were studied. The results reveal that the proposed control scheme has the best positioning performance. It reduces the maximal errors caused by disturbance forces such as friction force by 60% and the RMS errors by 63.4% compared with the PID control. Compared to PID with DOB control, it reduces the RMS errors by 29.6%.展开更多
Microcutting is a precision technology that offers flexible fabrication of microfeatures or complex three-dimensional components with high machining accuracy and superior surface quality.This technology may offer grea...Microcutting is a precision technology that offers flexible fabrication of microfeatures or complex three-dimensional components with high machining accuracy and superior surface quality.This technology may offer great potential as well as advantageous process capabilities for the machining of hard-to-cut materials,such as tungsten carbide.The geometrical design and dimension of the tool cutting edge is a key factor that determines the size and form accuracy possible in the machined workpiece.Currently,the majority of commercial microtools are scaled-down versions of conventional macrotool designs.This approach does not impart optimal performance due to size effects and associated phenomena.Consequently,in-depth analysis and implementation of microcutting mechanics and fundamentals are required to enable successful industrial adaptation in microtool design and fabrication methods.This paper serves as a review of recent microtool designs,materials,and fabrication methods.Analysis of tool performance is discussed,and new approaches and techniques are examined.Of particular focus is tool wear suppression in the machining of hard materials and associated process parameters,including internal cooling and surface patterning techniques.The review concludes with suggestions for an integrated design and fabrication process chain which can aid industrial microtool manufacture.展开更多
The presented work will show the highest relevance of solving all the issues related to this problem and present the results of the analysis of the main expected potential problems,which may occur in the implementatio...The presented work will show the highest relevance of solving all the issues related to this problem and present the results of the analysis of the main expected potential problems,which may occur in the implementation of the INDUSTRY-4.0 reform.It is proved that the pace and level of development of this reform will be determined to a large extent by the effectiveness of the individual nodes used and the entire mechatronic system.It has also been established that as a result of systematic miniaturization of the nodes of radio-electronic equipment and microelectronic equipment and microelectronic technology,the main problem of these reforms and the implementation of complex technological processes is instrumental and technological support,especially with cutting micro-tools and equipment.Therefore,on the example of these investigations,methods for improving their performance are shown.展开更多
This paper addresses double-loop robust tracking controller design of the miniaturized linear motor drive precision stage with mass and damping ratio uncertainties. As an inner-loop, a disturbance observer (DOB) is ...This paper addresses double-loop robust tracking controller design of the miniaturized linear motor drive precision stage with mass and damping ratio uncertainties. As an inner-loop, a disturbance observer (DOB) is employed to suppress exogenous low frequency disturbances such as friction and cutting force. To further eliminate the residual disturbance and to guarantee the robust tracking to the reference input, μ-synthesis outer-loop controller is designed. For eliminating the steady state error, a technique is proposed to design the μ-synthesis outer-loop controller with an integrator. A guideline to select the bandwidth of the Q-filter in the DOB is provided. Simulations using a model of a prototype micro-milling machine indicate that the proposed outer-loop synthesis scheme is superior to the H∞ suboptimal control in disturbance rejection performance and steady state tracking performance. Furthermore, it is shown experimentally that the proposed double-loop robust tracking controller improves the tracking performance of the stage by 29.6% over PID control with a DOB inner-loop.展开更多
High quality micro mould tools are critical for ensuring defect-free production of micro injection moulded products.The demoulding stage of the micro injection moulding can adversely affect the surface integrity due t...High quality micro mould tools are critical for ensuring defect-free production of micro injection moulded products.The demoulding stage of the micro injection moulding can adversely affect the surface integrity due to friction,adhesion and thermal stresses between the metallic mould and polymeric replicated part.In the present work,we propose the use of precision electropolishing(EP)as a shaping and polishing process to control the draft angle and fillet radius of micro features in order to ease demoulding.Typical defects that occur in replicated polymer parts include cracks,burrs and distorted features.A nickel mould having multiple linear ridges and star shape patterns was designed for the present investigation to have characteristic dimensions ranging from 10μm to 150μm and with various aspect ratios to study the effect of electropolishing on modifying the shape of micro features and surface morphology.A transient 2D computational analysis has been conducted to anticipate the effect of shaping on the Ni mould after electrochemical polishing with non-uniform material removal rates,based on the distribution of current density.The experimental results indicate that after shaping using EP,the draft angle of star-patterns and linear patterns can be effectively increased by approximately 3.6°,while the fillet radius increases by up to 5.0μm.By controlling the electropolishing process,the surface roughness can be maintained under 50 nm.This work uses a green and environmental friendly nickel sulfamate electrolyte which can be effective for shaping of nickel micro features without causing any surface deposition.展开更多
基金Project(50875257) supported by the National Natural Science Foundation of China
文摘The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone to uncertainties such as model parameter variations and disturbances. Robust optimal tracking controller design for this kind of precision stages with mass and damping ratio uncertainties was researched. The mass and damping ratio uncertainties were modeled as the structured parametric uncertainty model. An identification method for obtaining the parametric uncertainties was developed by using unbiased least square technique. The instantaneous frequency bandwidth of the external disturbance signals was analyzed by using short time Fourier transform technique. A two loop tracking control strategy that combines the p-synthesis and the disturbance observer (DOB) techniques was proposed. The p-synthesis technique was used to design robust optimal controllers based on structured uncertainty models. By complementing the/z controller, the DOB was applied to further improving the disturbance rejection performance. To evaluate the positioning performance of the proposed control strategy, the comparative experiments were conducted on a prototype micro milling machine among four control schemes: the proposed two-loop tracking control, the single loop μ control, the PID control and the PID with DOB control. The disturbance rejection performances, the root mean square (RMS) tracking errors and the performance robustness of different control schemes were studied. The results reveal that the proposed control scheme has the best positioning performance. It reduces the maximal errors caused by disturbance forces such as friction force by 60% and the RMS errors by 63.4% compared with the PID control. Compared to PID with DOB control, it reduces the RMS errors by 29.6%.
基金supported by Science Foundation Ireland(No.15/RP/B3208)the National Natural Science Foundation of China(Nos.51320105009&61635008)the‘111’Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘Microcutting is a precision technology that offers flexible fabrication of microfeatures or complex three-dimensional components with high machining accuracy and superior surface quality.This technology may offer great potential as well as advantageous process capabilities for the machining of hard-to-cut materials,such as tungsten carbide.The geometrical design and dimension of the tool cutting edge is a key factor that determines the size and form accuracy possible in the machined workpiece.Currently,the majority of commercial microtools are scaled-down versions of conventional macrotool designs.This approach does not impart optimal performance due to size effects and associated phenomena.Consequently,in-depth analysis and implementation of microcutting mechanics and fundamentals are required to enable successful industrial adaptation in microtool design and fabrication methods.This paper serves as a review of recent microtool designs,materials,and fabrication methods.Analysis of tool performance is discussed,and new approaches and techniques are examined.Of particular focus is tool wear suppression in the machining of hard materials and associated process parameters,including internal cooling and surface patterning techniques.The review concludes with suggestions for an integrated design and fabrication process chain which can aid industrial microtool manufacture.
基金This work was supported by Shota Rustaveli National Science Foundation(SRNSF)[PHDF-19-2224,Improving the efficiency of mechatronic systems in order to ensure the reform of“Industry-4.0”].
文摘The presented work will show the highest relevance of solving all the issues related to this problem and present the results of the analysis of the main expected potential problems,which may occur in the implementation of the INDUSTRY-4.0 reform.It is proved that the pace and level of development of this reform will be determined to a large extent by the effectiveness of the individual nodes used and the entire mechatronic system.It has also been established that as a result of systematic miniaturization of the nodes of radio-electronic equipment and microelectronic equipment and microelectronic technology,the main problem of these reforms and the implementation of complex technological processes is instrumental and technological support,especially with cutting micro-tools and equipment.Therefore,on the example of these investigations,methods for improving their performance are shown.
基金supported by the Canada Foundation for Innovation (CFI) and the National Natural Science Foundation of China (Grant No.50875257)
文摘This paper addresses double-loop robust tracking controller design of the miniaturized linear motor drive precision stage with mass and damping ratio uncertainties. As an inner-loop, a disturbance observer (DOB) is employed to suppress exogenous low frequency disturbances such as friction and cutting force. To further eliminate the residual disturbance and to guarantee the robust tracking to the reference input, μ-synthesis outer-loop controller is designed. For eliminating the steady state error, a technique is proposed to design the μ-synthesis outer-loop controller with an integrator. A guideline to select the bandwidth of the Q-filter in the DOB is provided. Simulations using a model of a prototype micro-milling machine indicate that the proposed outer-loop synthesis scheme is superior to the H∞ suboptimal control in disturbance rejection performance and steady state tracking performance. Furthermore, it is shown experimentally that the proposed double-loop robust tracking controller improves the tracking performance of the stage by 29.6% over PID control with a DOB inner-loop.
基金support of the Science Foundation Ireland and I-Form(Grant No.16/RC/3872).
文摘High quality micro mould tools are critical for ensuring defect-free production of micro injection moulded products.The demoulding stage of the micro injection moulding can adversely affect the surface integrity due to friction,adhesion and thermal stresses between the metallic mould and polymeric replicated part.In the present work,we propose the use of precision electropolishing(EP)as a shaping and polishing process to control the draft angle and fillet radius of micro features in order to ease demoulding.Typical defects that occur in replicated polymer parts include cracks,burrs and distorted features.A nickel mould having multiple linear ridges and star shape patterns was designed for the present investigation to have characteristic dimensions ranging from 10μm to 150μm and with various aspect ratios to study the effect of electropolishing on modifying the shape of micro features and surface morphology.A transient 2D computational analysis has been conducted to anticipate the effect of shaping on the Ni mould after electrochemical polishing with non-uniform material removal rates,based on the distribution of current density.The experimental results indicate that after shaping using EP,the draft angle of star-patterns and linear patterns can be effectively increased by approximately 3.6°,while the fillet radius increases by up to 5.0μm.By controlling the electropolishing process,the surface roughness can be maintained under 50 nm.This work uses a green and environmental friendly nickel sulfamate electrolyte which can be effective for shaping of nickel micro features without causing any surface deposition.