The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm...The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.展开更多
A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost ...A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost the lithium storage performance of Fe3O4/N-doped carbon tubular structures.Poly pyrrole(PPy)has been used as the precursor for N-doped carbon.N-doped carbon-riveted Fe3O4/N-doped carbon(N-C@Fe3O4@N-C)nanocomposites were obtained by pyrolysis of PPy-coated FeOOH@PPy nanotubes in Ar atmosphere.When tested as an anode for LIBs,the N-C@Fe3O4@N-C displays a high reversible discharge capacity of 675.8 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and very good rate capability(470 mA h g_1 at 2 A g-1),which significantly surpasses the performance of Fe3O4@N-C.TEM analysis reveals that after battery cycling the FeOx particles detached from the carbon fibers for Fe3O4@N-C,while for N-C@Fe3O4@N-C the FeOx particles were still trapped in the carbon matrix,thus preserving good electrical contact.Consequently,the superior performance of N-C@Fe3C)4@N-C is attributed to the synergistic effect between Fe3O4 and N-doped carbon combined with the unique structure properties of the nanocomposites.The strategy reported in this work is expected to be applicable for designing other electrode materials for LIBs.展开更多
PANI copolymer micro/nanostructures with different surface wettability were obtained from the chemical oxidation copolymerization of aniline(Ani)with 2-ethyl aniline(EA)at diverse[EA]/[Ani+EA]molar ratios,by employing...PANI copolymer micro/nanostructures with different surface wettability were obtained from the chemical oxidation copolymerization of aniline(Ani)with 2-ethyl aniline(EA)at diverse[EA]/[Ani+EA]molar ratios,by employing ammonium persulfate as an oxidant.The results revealed that the poly(aniline-co-2-ethyl aniline)(PANI-EA)copolymer micro/nanostructures exhibited satisfactory anticorrosion performance for carbon steel,and the corrosion protection efficiency increased with the increase of water repellent property.Poly(2-ethyl aniline)(PEA)showed the largest contact angle(CA=145°)and show the best corrosion protection for the carbon steel(h=87.29%).It is found that the superior anticorrosion property of PEA is attributed to its high hydrophobicity,low conductivity and low porosity.展开更多
Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding tec...Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding technology is the most efficient method of manufacturing micro/nanostructured glass components,the premise of which is meld manufacturing with complementary micro/nanostructures.Numerous mold manufacturing methods have been developed to fabricate extremely small and high-quality micro/nanostructures to satisfy the demands of functional micro/nanostructured glass components for various applications.Moreover,the service performance of the mold should also be carefully considered.This paper reviews a variety of technologies for manufacturing micro/nanostructured molds.The authors begin with an introduction of the extreme requirements of mold materials.The following section provides a detailed survey of the existing micro/nanostructured mold manufacturing techniques and their corresponding mold materials,including nonmechanical and mechanical methods.This paper concludes with a detailed discussion of the authors recent research on nickel-phosphorus(Ni-P)mold manufacturing and its service performance.展开更多
A simple hydrothermal route has been developed for the fabricating Zn O hierarchical micro/nanostructure with excellent reproducibility. SEM and TEM analysis show that the hierarchical rod is a single-crystal, suggest...A simple hydrothermal route has been developed for the fabricating Zn O hierarchical micro/nanostructure with excellent reproducibility. SEM and TEM analysis show that the hierarchical rod is a single-crystal, suggesting that many single-crystal micro/nanorods are assembled into Zn O hierarchical micro/nanostructures. The morphologies of the hierarchical rods can be conveniently tailored by changing the reaction parameters. And we also found citric acid plays a crucial role in the formation process of Zn O micro/nanostructures. Room-temperature photoluminescence spectra reveals that the Zn O hierarchical micro/nanostructures have a strong emission peak at 440 nm and several weak emission peaks at 420, 471 and541 nm, respectively.展开更多
This paper presents a probe-based force-controlled nanoindentation method to fabricate ordered micro/nanostructures.Both the experimental and finite element simulation approaches are employed to investigate the influe...This paper presents a probe-based force-controlled nanoindentation method to fabricate ordered micro/nanostructures.Both the experimental and finite element simulation approaches are employed to investigate the influence of the interval between the adjacent indentations and the rotation angle of the probe on the formed micro/nanostructures.The non-contacting part between indenter and the sample material and the height of the material pile-up are two competing factors to determine the depth relationship between the adjacent indentations.For the one array indentations,nanostructures with good depth consistency and periodicity can be formed after the depth of the indentation becoming stable,and the variation of the rotation angle results in the large difference between the morphology of the formed nanostructures at the bottom of the one array indentation.In addition,for the indentation arrays,the nanostructures with good consistency and periodicity of the shape and depth can be generated with the spacing greater than 1μm.Finally,Raman tests are also carried out based on the obtained ordered micro/nanostructures with Rhodamine probe molecule.The indentation arrays with a smaller spacing lead to better the enhancement effect of the substrate,which has the potential applications in the fields of biological or chemical molecular detection.展开更多
SiGe spheres with different diameters are successfully fabricated on a virtual SiGe template using a laser irradiation method.The results from scanning electron microscopy and micro-Raman spectroscopy reveal that the ...SiGe spheres with different diameters are successfully fabricated on a virtual SiGe template using a laser irradiation method.The results from scanning electron microscopy and micro-Raman spectroscopy reveal that the diameter and Ge composition of the SiGe spheres can be well controlled by adjusting the laser energy density.In addition,the transmission electron microscopy results show that Ge composition inside the SiGe spheres is almost uniform in a well-defined,nearly spherical outline.As a convenient method to prepare sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size,this technique is expected to be useful for SiGe-based material growth and micro/optoelectronic device fabrication.展开更多
This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy...This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.展开更多
Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe...Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.展开更多
Compared with thermodynamically equilibrium supramolecular assemblies, non-equilibrium assemblies from the same building blocks have attracted increasing attentions because their diverse structures and dynamic natures...Compared with thermodynamically equilibrium supramolecular assemblies, non-equilibrium assemblies from the same building blocks have attracted increasing attentions because their diverse structures and dynamic natures may impart the assemblies with novel functionalities. However, facile access to non-equilibrium assemblies remains a formidable challenge. Herein, we endeavored to exploit various solvent-anti-solvent methods to achieve it using peptide amphiphile C16-VVAAEE-NH_(2) as a model. Through systematical utilization of dialysis, ultrasonic and stirring-dropping methods, as well as tuning of processing parameters, we demonstrated the successful formation of diverse non-equilibrium nanostructures with distinct morphologies and structures that significantly deviate from the thermodynamically favored twisted long ribbons. Additionally, these metastable nanostructures ultimately underwent spontaneous transformation into thermodynamically stable states. The transformation processes of three representative non-equilibrium assemblies were also demonstrated and characterized in detail using transmission electron microscopy, circular dichroism spectrum, and thioflavin T fluorescence spectrum. Furthermore, non-equilibrium assemblies exhibited various degrees of cytotoxic effects, which may stem from their spontaneous, dynamic transformation and interactions with cellular membranes. This study offers valuable approaches for direct access to diverse non-equilibrium supramolecular nanostructures from self-assembling peptide, and also has implications for the development of advanced materials with unprecedented biological functions.展开更多
Microwave irradiation is considered an important approach to Green Chemistry, because of its ability to rapidly increase the internal temperature of polar-organic compounds that lead to synthesis times of minutes rath...Microwave irradiation is considered an important approach to Green Chemistry, because of its ability to rapidly increase the internal temperature of polar-organic compounds that lead to synthesis times of minutes rather than hours when compared to conventional thermal heating. This works describes a dual allometry test for the discrimination between the solvents and reagents used in the microwave-assisted synthesis of transition metal (zinc oxide, palladium silver, platinum, and gold) nanostructures. The test is performed in log-log process energy phase-space projection, where the synthesis data (kJ against kJ·mol<sup>-1</sup>) has a power-law signature. The test is shown to discriminate between recommended Green Chemistry, problematic Green Chemistry, and Green Chemistry hazardous solvents. Typically, recommended Green chemistry exhibits a broad y-axes distribution within an upper exponent = 1 and lower exponent = 0.5. Problematic Green Chemistry exhibits a y-axes narrower distribution with an upper exponent = 0.94 and lower exponent = 0.64. Non-Green Chemistry hazardous data exhibits a further narrowing of the y-axes distribution within upper exponent = 0.87 and lower exponent = 0.66. In all three cases, the y-axes is aligned to original database power-law signature. It is also shown that in the x-axes direction (process energy budget) the grouped order of magnitude decreases from four orders for recommended Green Chemistry solvent and reagent data, through two orders for non-Green Chemistry hazardous material and down to one order for problematic Green Chemistry.展开更多
In this study,hierarchical Ag/La2 O2 CO3 micro/nanostructures(MNSs)were synthesized by in situ loading Ag nanoparticles(NPs)on the surface of the La2 O2 CO3 MNSs.The prepared La2 O2 CO3 MNSs present flower-like shape ...In this study,hierarchical Ag/La2 O2 CO3 micro/nanostructures(MNSs)were synthesized by in situ loading Ag nanoparticles(NPs)on the surface of the La2 O2 CO3 MNSs.The prepared La2 O2 CO3 MNSs present flower-like shape and can be tuned by the molar ratio of La(NO3)3 and CO(NH2)2.In the molar ratio of 1:2 to 1:55,the La2 O2 CO3 MNSs mainly consist of polyhedral rods,irregular rods and irregular spindles and their size is about 10,8 and 7μm,respectively.After loading Ag NPs,the spindle-like Ag/La2 O2 CO3 MNSs were used for phosphate removal and antibacterial activity.At the initial phosphate concentration of20 mg/L,the removal rate is 59.6%.The Ag/La2 O2 CO3 MNSs have significant antibacterial activity and their MIC values for S.aureus and E.coli are 31.3 and 15.6μg/mL,respectively.The results indicate that Ag/La2 O2 CO3 MNSs may have good application prospects in open water to inhibit bacterial growth.展开更多
Organic single crystals hold great promise for the development of organic semiconductor materials,because they could reveal the intrinsic electronic properties of these materials,providing high-performance electronic ...Organic single crystals hold great promise for the development of organic semiconductor materials,because they could reveal the intrinsic electronic properties of these materials,providing high-performance electronic devices and probing the structureproperty relationships.This article reviews the preparation methods for organic single crystals or crystalline micro/nanostructures,including vapor phase growth methods and solution-processed methods,and summarizes a few methods employed in the fabrication of field-effect transistors along with dozens of examples concerning both small molecules and polymers with high field-effect performance.展开更多
Organic semiconductors have gradually become the super stars on the stage of optoelectronic materials, due to their low cost, flexibility and solution processability. Numerous organic semiconductors, including small m...Organic semiconductors have gradually become the super stars on the stage of optoelectronic materials, due to their low cost, flexibility and solution processability. Numerous organic semiconductors, including small molecules and conjugated polymers, have been designed and synthesized to explore the potential of organic materials in optoelectronic industry. One-dimensional micro/nanostructures of organic semiconductors generally have more ordered packing structure with fewer defects compared with thin films, and are thus thought to show intrinsic carrier mobility of organic materials. Moreover, the packing structure in micro/nanostructures is clear and relatively easy to analyze, which makes these micro/nanostructures a good platform to study structure-property relationship. Therefore, design of suitable organic molecules to form micro-/nanostructures and methods to obtain ideal micro/nanostructures for functional devices will be fully discussed in this mini review. Finally, the perspective and opportunity of 1D micro/nanostructured organic materials based OFETs in the near future are also addressed.展开更多
Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality.However,it is limited by the high overpotential of oxygen evolution react...Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality.However,it is limited by the high overpotential of oxygen evolution reaction(OER)at the anode.To reduce the operating voltage of electrolyzer,herein thermodynamically favorable glycerol oxidation reaction(GOR)is proposed to replace the OER.Moreover,vertical Ni O flakes and NiMoNH nanopillars are developed to boost the reaction kinetics of anodic GOR and cathodic hydrogen evolution,respectively.Meanwhile,excluding the explosion risk of mixed H_2/O_(2),a cheap organic membrane is used to replace the expensive anion exchange membrane in the electrolyzer.Impressively,the electrolyzer delivers a remarkable reduction of operation voltage by 280 mV,and exhibits good long-term stability.This work provides a new paradigm of hydrogen production with low cost and good feasibility.展开更多
The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron tr...The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron transport layer for bismuth vanadate(BiVO_(4))with a short charge diffusion length.In_(2)O_(3)NRs reinforce the electron transport and hole blocking of BiVO_(4),surpassing the state-of-the-art photoelectrochemical performances of BiVO_(4)-based photoanodes.Also,a tannin-nickel-iron complex(TANF)is used as an oxygen evolution catalyst to speed up the reaction kinetics.The final TANF/BiVO_(4)/In_(2)O_(3)NR photoanode generates photocurrent densities of 7.1 mAcm^(−2) in sulfite oxidation and 4.2 mA cm^(−2) in water oxidation at 1.23 V versus the reversible hydrogen electrode.Furthermore,the“artificial leaf,”which is a tandem cell with a perovskite/silicon solar cell,shows a solar-to-hydrogen conversion efficiency of 6.2%for unbiased solar water splitting.We reveal significant advances in the photoactivity of TANF/BiVO_(4)/In_(2)O_(3)NRs from the tailored nanostructure and band structure for charge dynamics.展开更多
The peony-like CuO micro/nanostructures were fabricated by a facile hydrothermal approach. The peony- like CuO micro/nanostructures about 3 -5μm in diameter were assembled by CuO nanoplates. These CuO nanoplates, as ...The peony-like CuO micro/nanostructures were fabricated by a facile hydrothermal approach. The peony- like CuO micro/nanostructures about 3 -5μm in diameter were assembled by CuO nanoplates. These CuO nanoplates, as the building block, were self-assembled into multilayer structures under the action of ethidene diamine, and then grew into uniform peony-like CuO architecture. The novel peony-like CuO micro/nanostructures exhibit a high cycling stability and improved rate capability. The peony-like CuO microJnanostructures electrodes show a high reversible capacity of 456 mAhJg after 200 cycles, much higher than that of the commercial CuO nanocrystals at a current 0.1 C. The excellent electrochemical performance of peony-like CuO micro/nanostructures might be ascribed to the unique assembly structure, which not only provide large electrode/electrolyte contact area to accelerate the lithiation reaction, but also the interval between the multilayer structures of CuO nanoplates electrode could provide enough interior space to accommodate the volume change during Li insertion and de-insertion process,展开更多
基金supported by the Special Actions for Developing High-performance Manufacturing of Ministry of Industry and Information Technology(Grant No.:TC200H02J)the Research Grants Council of the Hong Kong Special Ad-ministrative Region,China(Project No.:PolyU 152125/18E)+1 种基金the National Natural Science Foundation of China(Project No.:U19A20104)the Research Committee of The Hong Kong Polytechnic University(Project Code G-RK2V).
文摘The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.
基金financially supported by the National Natural Science Foundation of China (Nos. 21601098 and 51602167)Shandong Provincial Science Foundation (ZR2016EMB07 and ZR2017JL021)+1 种基金Key Research and Development Program (2018GGX102033)Qingdao Applied Fundamental Research Project (16-5-1-92-jch and 17-1-1-81-jch)
文摘A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost the lithium storage performance of Fe3O4/N-doped carbon tubular structures.Poly pyrrole(PPy)has been used as the precursor for N-doped carbon.N-doped carbon-riveted Fe3O4/N-doped carbon(N-C@Fe3O4@N-C)nanocomposites were obtained by pyrolysis of PPy-coated FeOOH@PPy nanotubes in Ar atmosphere.When tested as an anode for LIBs,the N-C@Fe3O4@N-C displays a high reversible discharge capacity of 675.8 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and very good rate capability(470 mA h g_1 at 2 A g-1),which significantly surpasses the performance of Fe3O4@N-C.TEM analysis reveals that after battery cycling the FeOx particles detached from the carbon fibers for Fe3O4@N-C,while for N-C@Fe3O4@N-C the FeOx particles were still trapped in the carbon matrix,thus preserving good electrical contact.Consequently,the superior performance of N-C@Fe3C)4@N-C is attributed to the synergistic effect between Fe3O4 and N-doped carbon combined with the unique structure properties of the nanocomposites.The strategy reported in this work is expected to be applicable for designing other electrode materials for LIBs.
基金financial supports of the National Natural Science Foundation of China (No. 41476059)the Natural Science Foundation of Hebei Province (No. E2018108011)
文摘PANI copolymer micro/nanostructures with different surface wettability were obtained from the chemical oxidation copolymerization of aniline(Ani)with 2-ethyl aniline(EA)at diverse[EA]/[Ani+EA]molar ratios,by employing ammonium persulfate as an oxidant.The results revealed that the poly(aniline-co-2-ethyl aniline)(PANI-EA)copolymer micro/nanostructures exhibited satisfactory anticorrosion performance for carbon steel,and the corrosion protection efficiency increased with the increase of water repellent property.Poly(2-ethyl aniline)(PEA)showed the largest contact angle(CA=145°)and show the best corrosion protection for the carbon steel(h=87.29%).It is found that the superior anticorrosion property of PEA is attributed to its high hydrophobicity,low conductivity and low porosity.
基金This work was financially supported by National Natural Science Foundation of China(Nos.51775046&51875043&52005040)the China Postdoctoral Science Foundation(No.2019M660480)+1 种基金the Beijing Municipal Natural Sci-ence Foundation(JQ20014)The authors would also like to acknowledge support from the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Insti-tutions of China(No.151052).
文摘Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding technology is the most efficient method of manufacturing micro/nanostructured glass components,the premise of which is meld manufacturing with complementary micro/nanostructures.Numerous mold manufacturing methods have been developed to fabricate extremely small and high-quality micro/nanostructures to satisfy the demands of functional micro/nanostructured glass components for various applications.Moreover,the service performance of the mold should also be carefully considered.This paper reviews a variety of technologies for manufacturing micro/nanostructured molds.The authors begin with an introduction of the extreme requirements of mold materials.The following section provides a detailed survey of the existing micro/nanostructured mold manufacturing techniques and their corresponding mold materials,including nonmechanical and mechanical methods.This paper concludes with a detailed discussion of the authors recent research on nickel-phosphorus(Ni-P)mold manufacturing and its service performance.
基金supported by the Program for the Science and Technology Commission of Shanghai Municipality (No. 0952nm02500)
文摘A simple hydrothermal route has been developed for the fabricating Zn O hierarchical micro/nanostructure with excellent reproducibility. SEM and TEM analysis show that the hierarchical rod is a single-crystal, suggesting that many single-crystal micro/nanorods are assembled into Zn O hierarchical micro/nanostructures. The morphologies of the hierarchical rods can be conveniently tailored by changing the reaction parameters. And we also found citric acid plays a crucial role in the formation process of Zn O micro/nanostructures. Room-temperature photoluminescence spectra reveals that the Zn O hierarchical micro/nanostructures have a strong emission peak at 440 nm and several weak emission peaks at 420, 471 and541 nm, respectively.
基金National Natural Science Foundation of China(Grant Nos.52035004,51911530206,51905047)Heilongjiang Provincial Natural Science Foundation of China(Grant No.YQ2020E015)+1 种基金Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS202001C)Young Elite Scientist Sponsorship Program by CAST(Grant No.YESS20200155).
文摘This paper presents a probe-based force-controlled nanoindentation method to fabricate ordered micro/nanostructures.Both the experimental and finite element simulation approaches are employed to investigate the influence of the interval between the adjacent indentations and the rotation angle of the probe on the formed micro/nanostructures.The non-contacting part between indenter and the sample material and the height of the material pile-up are two competing factors to determine the depth relationship between the adjacent indentations.For the one array indentations,nanostructures with good depth consistency and periodicity can be formed after the depth of the indentation becoming stable,and the variation of the rotation angle results in the large difference between the morphology of the formed nanostructures at the bottom of the one array indentation.In addition,for the indentation arrays,the nanostructures with good consistency and periodicity of the shape and depth can be generated with the spacing greater than 1μm.Finally,Raman tests are also carried out based on the obtained ordered micro/nanostructures with Rhodamine probe molecule.The indentation arrays with a smaller spacing lead to better the enhancement effect of the substrate,which has the potential applications in the fields of biological or chemical molecular detection.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62004218,61991441,and 61804176)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01000000)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2021005).
文摘SiGe spheres with different diameters are successfully fabricated on a virtual SiGe template using a laser irradiation method.The results from scanning electron microscopy and micro-Raman spectroscopy reveal that the diameter and Ge composition of the SiGe spheres can be well controlled by adjusting the laser energy density.In addition,the transmission electron microscopy results show that Ge composition inside the SiGe spheres is almost uniform in a well-defined,nearly spherical outline.As a convenient method to prepare sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size,this technique is expected to be useful for SiGe-based material growth and micro/optoelectronic device fabrication.
文摘This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.
基金supported by National Natural Science Foundation of China(NSFC,Grant No.51972178)Natural Science Foundation of Ningbo(2022J139)Ningbo Yongjiang Talent Introduction Programme(2022A-227-G)
文摘Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.
基金supported by the National Key R&D Program of China(No.2022YFC3501900)Beijing Natural Science Foundation(Nos.L222127 and L212013)+1 种基金AI + Health Collaborative Innovation Cultivation Project(No.Z211100003521002)the National Natural Science Foundation of China(No.U20A20412).
文摘Compared with thermodynamically equilibrium supramolecular assemblies, non-equilibrium assemblies from the same building blocks have attracted increasing attentions because their diverse structures and dynamic natures may impart the assemblies with novel functionalities. However, facile access to non-equilibrium assemblies remains a formidable challenge. Herein, we endeavored to exploit various solvent-anti-solvent methods to achieve it using peptide amphiphile C16-VVAAEE-NH_(2) as a model. Through systematical utilization of dialysis, ultrasonic and stirring-dropping methods, as well as tuning of processing parameters, we demonstrated the successful formation of diverse non-equilibrium nanostructures with distinct morphologies and structures that significantly deviate from the thermodynamically favored twisted long ribbons. Additionally, these metastable nanostructures ultimately underwent spontaneous transformation into thermodynamically stable states. The transformation processes of three representative non-equilibrium assemblies were also demonstrated and characterized in detail using transmission electron microscopy, circular dichroism spectrum, and thioflavin T fluorescence spectrum. Furthermore, non-equilibrium assemblies exhibited various degrees of cytotoxic effects, which may stem from their spontaneous, dynamic transformation and interactions with cellular membranes. This study offers valuable approaches for direct access to diverse non-equilibrium supramolecular nanostructures from self-assembling peptide, and also has implications for the development of advanced materials with unprecedented biological functions.
文摘Microwave irradiation is considered an important approach to Green Chemistry, because of its ability to rapidly increase the internal temperature of polar-organic compounds that lead to synthesis times of minutes rather than hours when compared to conventional thermal heating. This works describes a dual allometry test for the discrimination between the solvents and reagents used in the microwave-assisted synthesis of transition metal (zinc oxide, palladium silver, platinum, and gold) nanostructures. The test is performed in log-log process energy phase-space projection, where the synthesis data (kJ against kJ·mol<sup>-1</sup>) has a power-law signature. The test is shown to discriminate between recommended Green Chemistry, problematic Green Chemistry, and Green Chemistry hazardous solvents. Typically, recommended Green chemistry exhibits a broad y-axes distribution within an upper exponent = 1 and lower exponent = 0.5. Problematic Green Chemistry exhibits a y-axes narrower distribution with an upper exponent = 0.94 and lower exponent = 0.64. Non-Green Chemistry hazardous data exhibits a further narrowing of the y-axes distribution within upper exponent = 0.87 and lower exponent = 0.66. In all three cases, the y-axes is aligned to original database power-law signature. It is also shown that in the x-axes direction (process energy budget) the grouped order of magnitude decreases from four orders for recommended Green Chemistry solvent and reagent data, through two orders for non-Green Chemistry hazardous material and down to one order for problematic Green Chemistry.
基金Project supported by the National Natural Science Foundation of China(21271062)。
文摘In this study,hierarchical Ag/La2 O2 CO3 micro/nanostructures(MNSs)were synthesized by in situ loading Ag nanoparticles(NPs)on the surface of the La2 O2 CO3 MNSs.The prepared La2 O2 CO3 MNSs present flower-like shape and can be tuned by the molar ratio of La(NO3)3 and CO(NH2)2.In the molar ratio of 1:2 to 1:55,the La2 O2 CO3 MNSs mainly consist of polyhedral rods,irregular rods and irregular spindles and their size is about 10,8 and 7μm,respectively.After loading Ag NPs,the spindle-like Ag/La2 O2 CO3 MNSs were used for phosphate removal and antibacterial activity.At the initial phosphate concentration of20 mg/L,the removal rate is 59.6%.The Ag/La2 O2 CO3 MNSs have significant antibacterial activity and their MIC values for S.aureus and E.coli are 31.3 and 15.6μg/mL,respectively.The results indicate that Ag/La2 O2 CO3 MNSs may have good application prospects in open water to inhibit bacterial growth.
基金support of the National Natural Science Foundation of China (60771031, 60736004, 20571079, 20721061 and 50725311)Ministry of Science and Technology of China (2006CB806200, 2006CB932100) and Chinese Academy of Sciences
文摘Organic single crystals hold great promise for the development of organic semiconductor materials,because they could reveal the intrinsic electronic properties of these materials,providing high-performance electronic devices and probing the structureproperty relationships.This article reviews the preparation methods for organic single crystals or crystalline micro/nanostructures,including vapor phase growth methods and solution-processed methods,and summarizes a few methods employed in the fabrication of field-effect transistors along with dozens of examples concerning both small molecules and polymers with high field-effect performance.
基金supported by the National Basic Research Program of China(2013CB933501)the National Natural Science Foundation of China
文摘Organic semiconductors have gradually become the super stars on the stage of optoelectronic materials, due to their low cost, flexibility and solution processability. Numerous organic semiconductors, including small molecules and conjugated polymers, have been designed and synthesized to explore the potential of organic materials in optoelectronic industry. One-dimensional micro/nanostructures of organic semiconductors generally have more ordered packing structure with fewer defects compared with thin films, and are thus thought to show intrinsic carrier mobility of organic materials. Moreover, the packing structure in micro/nanostructures is clear and relatively easy to analyze, which makes these micro/nanostructures a good platform to study structure-property relationship. Therefore, design of suitable organic molecules to form micro-/nanostructures and methods to obtain ideal micro/nanostructures for functional devices will be fully discussed in this mini review. Finally, the perspective and opportunity of 1D micro/nanostructured organic materials based OFETs in the near future are also addressed.
基金the financial support from National Natural Science Foundation of China(92163117,52072389,52172058,51972006)。
文摘Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality.However,it is limited by the high overpotential of oxygen evolution reaction(OER)at the anode.To reduce the operating voltage of electrolyzer,herein thermodynamically favorable glycerol oxidation reaction(GOR)is proposed to replace the OER.Moreover,vertical Ni O flakes and NiMoNH nanopillars are developed to boost the reaction kinetics of anodic GOR and cathodic hydrogen evolution,respectively.Meanwhile,excluding the explosion risk of mixed H_2/O_(2),a cheap organic membrane is used to replace the expensive anion exchange membrane in the electrolyzer.Impressively,the electrolyzer delivers a remarkable reduction of operation voltage by 280 mV,and exhibits good long-term stability.This work provides a new paradigm of hydrogen production with low cost and good feasibility.
基金National Research Foundation of Korea,Grant/Award Numbers:2021M3H4A1A03057403,2021R1A6A3A03039988,2021R1A6A3A13046700,2021R1A2B5B03001851。
文摘The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron transport layer for bismuth vanadate(BiVO_(4))with a short charge diffusion length.In_(2)O_(3)NRs reinforce the electron transport and hole blocking of BiVO_(4),surpassing the state-of-the-art photoelectrochemical performances of BiVO_(4)-based photoanodes.Also,a tannin-nickel-iron complex(TANF)is used as an oxygen evolution catalyst to speed up the reaction kinetics.The final TANF/BiVO_(4)/In_(2)O_(3)NR photoanode generates photocurrent densities of 7.1 mAcm^(−2) in sulfite oxidation and 4.2 mA cm^(−2) in water oxidation at 1.23 V versus the reversible hydrogen electrode.Furthermore,the“artificial leaf,”which is a tandem cell with a perovskite/silicon solar cell,shows a solar-to-hydrogen conversion efficiency of 6.2%for unbiased solar water splitting.We reveal significant advances in the photoactivity of TANF/BiVO_(4)/In_(2)O_(3)NRs from the tailored nanostructure and band structure for charge dynamics.
基金supported by the National Key Research and Development Program of China(No.2016YFB0601100)the Fundamental Research Funds for the Central Universities(No.FRFBD-16-008A)
文摘The peony-like CuO micro/nanostructures were fabricated by a facile hydrothermal approach. The peony- like CuO micro/nanostructures about 3 -5μm in diameter were assembled by CuO nanoplates. These CuO nanoplates, as the building block, were self-assembled into multilayer structures under the action of ethidene diamine, and then grew into uniform peony-like CuO architecture. The novel peony-like CuO micro/nanostructures exhibit a high cycling stability and improved rate capability. The peony-like CuO microJnanostructures electrodes show a high reversible capacity of 456 mAhJg after 200 cycles, much higher than that of the commercial CuO nanocrystals at a current 0.1 C. The excellent electrochemical performance of peony-like CuO micro/nanostructures might be ascribed to the unique assembly structure, which not only provide large electrode/electrolyte contact area to accelerate the lithiation reaction, but also the interval between the multilayer structures of CuO nanoplates electrode could provide enough interior space to accommodate the volume change during Li insertion and de-insertion process,