Many studies have evaluated the effects of additives such as nano-silica (NS), micro-silica (MS) and polymer fibers on optimizing the mechanical properties of concrete, such as compressive strength. Nowadays, with pro...Many studies have evaluated the effects of additives such as nano-silica (NS), micro-silica (MS) and polymer fibers on optimizing the mechanical properties of concrete, such as compressive strength. Nowadays, with progress in cement industry provides, it has become possible to produce cement type I with strength classes of 32.5, 42.5, and 52.5 MPa. On the one hand, the microstructure of cement has changed, and modified by NS, MS, and polymers;therefore it is very important to determine the optimal percentage of each additives for those CSCs. In this study, 12 mix designs containing different percentages of MS, NS, and polymer fibers in three cement strength classes(CSCs)(32.5, 42.5, and 52.5 MPa) were designed and constructed based on the mixture method. Results indicated the sensitivity of each CSCs can be different on the NS or MS in compressive strength of concrete. Consequently, strength classes have a significant effect on the amount of MS and NS in mix design of concrete. While, polymer fibers don’t have significant effect in compressive strength considering CSCs.展开更多
选择适宜凝结时间和强度的水泥,并通过试验选择合适的外加剂,进而又引入了硅灰和石膏等掺合料,调配出了一种新型自流平砂浆。试验证明,此种自流平砂浆流动度大,经时损失小,收缩率低,表面光洁,耐磨性能优良,1d抗压强度可达50.60M Pa、抗...选择适宜凝结时间和强度的水泥,并通过试验选择合适的外加剂,进而又引入了硅灰和石膏等掺合料,调配出了一种新型自流平砂浆。试验证明,此种自流平砂浆流动度大,经时损失小,收缩率低,表面光洁,耐磨性能优良,1d抗压强度可达50.60M Pa、抗折强度7.20 M Pa,28d压强度可达87.10M Pa、抗折强度11.30 M Pa。展开更多
文摘Many studies have evaluated the effects of additives such as nano-silica (NS), micro-silica (MS) and polymer fibers on optimizing the mechanical properties of concrete, such as compressive strength. Nowadays, with progress in cement industry provides, it has become possible to produce cement type I with strength classes of 32.5, 42.5, and 52.5 MPa. On the one hand, the microstructure of cement has changed, and modified by NS, MS, and polymers;therefore it is very important to determine the optimal percentage of each additives for those CSCs. In this study, 12 mix designs containing different percentages of MS, NS, and polymer fibers in three cement strength classes(CSCs)(32.5, 42.5, and 52.5 MPa) were designed and constructed based on the mixture method. Results indicated the sensitivity of each CSCs can be different on the NS or MS in compressive strength of concrete. Consequently, strength classes have a significant effect on the amount of MS and NS in mix design of concrete. While, polymer fibers don’t have significant effect in compressive strength considering CSCs.
文摘选择适宜凝结时间和强度的水泥,并通过试验选择合适的外加剂,进而又引入了硅灰和石膏等掺合料,调配出了一种新型自流平砂浆。试验证明,此种自流平砂浆流动度大,经时损失小,收缩率低,表面光洁,耐磨性能优良,1d抗压强度可达50.60M Pa、抗折强度7.20 M Pa,28d压强度可达87.10M Pa、抗折强度11.30 M Pa。